Problem set 1
Do for Friday, September 29.
Starred problems are to written up carefully and handed in.
Folland p. 117: #1*, #3* #5, #6 # 7*, #8*, #11
Also:
1. Show, by using facts from section 0.6, that if X is a metric space, then the set of all open subsets of X forms a topology for X.

2*. Prove that if $\bigcup I_\alpha$ is a disjoint union of open intervals in \mathbb{R}, then for all but countably many α, I_α is empty. Use this to show that any open set in \mathbb{R} is a countable union of open intervals (some of which may be empty).

 Hint: In each nonempty I_α, you can choose a rational number. Show that there is a 1-1 mapping of the set $\{\alpha : I_\alpha \neq \emptyset\}$ into the rational numbers. (This is not the method I suggested in class, but it is easier.)

3* Give an example of a topology which is NOT first countable, and prove that your example works.