Problem Set 3 - Do for Monday Oct. 16

Folland p. 123:
#23* (You may use without proof the fact that an open set in \(\mathbb{R} \) is a countable union of disjoint open intervals)
#29* (a*), (b) (Interesting) p. 127 #32*, #34*

Also:
1*. (Sequences are not enough) Let \(X = 2^\mathbb{R} \) be the product space, where 2 represents the two point set \{0, 1\}, with the discrete topology. Give \(X \) the product topology. Thus \(X \) can be identified with the set all functions from \(\mathbb{R} \) to \{0, 1\} (with no assumption of continuity). Let
\[
E = \{ f \in X : f(r) = 0 \text{ for all but finitely many } r \}.
\]
Show
(a) \(E \) is dense in \(X \)
(b) There is no sequence in \(E \) converging to the constant function \(f_1 \), where \(f_1(r) = 1 \ \forall r \in \mathbb{R} \).

2*. A topological space \((X, T)\) is totally disconnected if the connected component (see Exercise 10(d) of sec. 4.1) of every point \(x \in X \) is \(\{x\} \).
(a) Show that if \(T \) is the discrete topology, then \(X \) is totally disconnected.
(b) Show that if \(X \) is finite and totally disconnected, then \(T \) is the discrete topology.
(c) Give an example of \((X, T)\) totally disconnected, but where \(T \) is not the discrete topology.