Let $n \in \mathbb{N}^\neq 0$ and $a, b, c \in \mathbb{Z}$.

(1) Prove that $a \equiv a \mod n$.

(2) Prove that if $a \equiv b \mod n$ then $b \equiv a \mod n$.

(3) Prove that if $a \equiv b \mod n$ and $b \equiv c \mod n$ then $a \equiv c \mod n$.
For all three parts, recall that the definition of $a \equiv b \mod n$ is that a and b have the same remainders when divided by n.

Alternatively, we could use the equivalent characterization that $a \equiv b \mod n$ if and only if $n|(a-b)$.

1. Prove that $a \equiv a \mod n$.

 * a has the same remainder as itself when divided by n. Alternatively, $n|0$ because all integers divide 0.

2. Prove that if $a \equiv b \mod n$ then $b \equiv a \mod n$.

 The assumption says that a and b have the same remainders when divided by n. But, that means that b and a have the same remainders when divided by n. So $b \equiv a \mod n$.

 Alternatively, the assumption is equivalent to $n|(a-b)$. So, there is $C \in \mathbb{Z}$ such that $Cn = a - b$. Multiplying by -1 gives $-Cn = b - a$ so $n|(b-1)$.

3. Prove that if $a \equiv b \mod n$ and $b \equiv c \mod n$ then $a \equiv c \mod n$.

 The assumption says that a and b have the same remainders when divided by n, say r. Also that b and c have the same remainders when divided by n, say s. Then r and s are both the remainder obtained when we divide b by n. But, this remainder is unique so $r = s$. Thus, a and c have the same remainder when divided by n.

 Alternatively, the assumption gives that $n|(a - b)$ and $n|(b - c)$. So, there are $\alpha, \beta \in \mathbb{Z}$ such that $\alpha n = a - b$ and $\beta n = b - c$. We can rewrite the second equation as $b = \beta n + c$ and substitution in the first equation gives $\alpha n = a - (\beta n + c)$. Grouping terms, we get $(\alpha + \beta)n = a - c$. Thus $n|(a - c)$.