Final Review

1) What is a group?

2) Let * be defined on \(\mathbb{Z} \) by \(a*b = a-b \). Is \((\mathbb{Z}, *)\) a group?

3) List all isomorphism types of groups up to order 7.

4) Let \(H \subseteq G \) be nonempty with the property that \(a, b \in H \) implies \(a*b \in H \). Under what additional assumption is \(H \) a subgroup of \(G \)?

5) Let \(\phi: \mathbb{Z}_n \to \mathbb{Z}_n \) be a homomorphism. Suppose \(\phi([1]) = [a]_n \). What are the possible values of \(a \)? Why does \([a]_n\) determine \(\phi \)?

6) Let \(D = \{ f = mx + b \text{ from } \mathbb{R} \to \mathbb{R} | \text{int} x = 0, 3, 6 \} \), and \(D \) the subset of elements of \(B \) with \(m \neq 0 \) that is, \(D = \{ f = mx + b | \text{int} x = 3 \} \). Is \(D \) a subgroup? Is \(D \) normal? Describe \(B/D \).

7) Define \(\phi: GL_n(\mathbb{R}) \to \mathbb{R}^* \) by \(\phi(A) = \det A \). Why is \(\phi \) a homomorphism? What is the kernel of \(\phi \)? Assuming \(\phi \) is onto, what extra isomorphism is determined by \(\phi \)?
9) Let \(H \) be a subgroup of \(G \). How can you tell if \(a, b \in G \) are in the same left coset of \(H \)?

10) Define \([G:N]\). How can it be computed if \(G \) is finite?

11) Fill in implication arrows:
 - \(1 \) : prime, \(G \) cyclic, \(G \) abelian, \(\text{Center of } G = G \)
 - All subgroups are normal

12) Describe, for \(g, h \in G \), \(ghg^{-1} \) in terms of \(g, h, g^{-1} \).

13) List three conditions showing \(N \trianglelefteq G \) (\(N \) normal in \(G \)).

14) Let \(N \trianglelefteq G \). Give a homomorphism with \(\ker \varphi = N \).

15) Let \(\varphi : G \to H \) be a homomorphism. Construct an isomorphism.

16) Describe \(\text{Z}(G) \) (center) in terms of centralizers.

17) Describe the first isomorphism theorem in a picture.
13) Construct a bijection from \(D_n \) to \(\mathbb{Z}_n \times \mathbb{Z}_2 \). Is this a homomorphism?

Tips for exam:
- Be careful to state starting information - assumptions and definitions. Then write the conclusion you are hoping to arrive at. Fill in the middle stuff.
- Use the FTH (\(G/\ker \phi \cong \im \phi \))
- To show \(S \) is equal to another set, \(T \), show \(S \subseteq T \) and \(T \subseteq S \). This can be useful in finding kernels, show some set \(H = \ker \phi \).
- Take your time
- Draw a picture if the situation is unclear.
- Try a simple example to get intuition.
- Remember where your elements live. For example, if \(ab \in \mathbb{H} \), look at \(ab \in \mathbb{E} \).
- For small groups, multiplication tables can be informative.