Earlier, we defined functions in general (Eccles chapter 8). An important special case consists of functions on the reals, \(f : \mathbb{R} \to \mathbb{R} \).

Example.

- Polynomials, exponentials, trigonometric functions
- Modulus function
 \[
 |x| = \begin{cases}
 x & \text{if } x \geq 0 \\
 -x & \text{if } x < 0
 \end{cases}
 \]
- Step function
 \[
 H(x) = \begin{cases}
 0 & \text{if } x < 0 \\
 1 & \text{if } x \geq 0
 \end{cases}
 \]
- Floor and ceiling functions
 \[
 \lfloor x \rfloor = \text{largest integer less than } x \quad \lceil x \rceil = \text{smallest integer greater than } x
 \]

Definition. Let \(f : \mathbb{R} \to \mathbb{R} \) and \(x_0 \in X \). Then \(f \) has a limit \(L \) at \(x_0 \) if for each \(\epsilon \in \mathbb{R}^+ \), there is a \(\delta \in \mathbb{R}^+ \) such that for all \(x \in \mathbb{R} \),
\[
0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon.
\]

Example. The function given by \(f(x) = x^2 \) has a limit 0 at \(x_0 = 0 \).

Proof. Let \(\epsilon \in \mathbb{R}^+ \). We want to find \(\delta \) such that for each \(x \) with \(0 < |x| < \delta \), \(0 < |x^2| < \epsilon \). Define \(\delta = \sqrt{\epsilon} \). Then suppose \(0 < |x| < \delta \).
\[
|x^2| = x^2 < \delta^2 = (\sqrt{\epsilon})^2 = \epsilon.
\]

Example. The modulus function has a limit 0 at \(x_0 = 0 \).

Proof. Let \(\epsilon \in \mathbb{R}^+ \). We want to find \(\delta \) such that for each \(x \) with \(0 < |x| < \delta \), \(0 < |x| - 0| < \epsilon \). Define \(\delta = \epsilon \). Then suppose \(0 < |x| < \delta \).
\[
||x| - 0| = |x| < \delta = \epsilon.
\]

Example. The function given by \(f(x) = \begin{cases}
\frac{|x|}{x} & \text{if } x \neq 0 \\
0 & \text{if } x = 0
\end{cases} \) does not have a limit at 0.

Proof. Notice that if \(x < 0 \) then \(f(x) = -1 \) and if \(x > 0 \) then \(f(x) = 1 \). We will show that for any \(L \in \mathbb{R} \), \(L \) is not the limit of \(f \) at \(x_0 = 0 \). Let \(L \) be any number and let \(\epsilon = 1 \).

- Case 1: \(L \geq 0 \). Suppose \(\delta \) is a positive number. Pick some negative number \(x \) such that \(0 < |x| < \delta \). For this \(x \), \(f(x) = -1 \) so
 \[
 |f(x) - L| = |-1 - L| = |-(L + 1)| = L + 1 \geq \epsilon.
 \]
- Case 2: \(L < 0 \). Suppose \(\delta \) is a positive number. Pick some positive number \(0 < x < \delta \). Then \(f(x) = 1 \) and
 \[
 |f(x) - L| = |1 - L| \geq 1 = \epsilon.
 \]
Thus, in either case, there is some \(x \) in the \(\delta \)-neighbourhood of \(x_0 \) whose function value is too far away from \(L \).

\[\square\]

Definition. Let \(f : \mathbb{R} \to \mathbb{R}, x_0 \in \mathbb{R} \). Then \(f \) is **continuous** at \(x_0 \) if for each \(\epsilon \in \mathbb{R}^+ \), there is a \(\delta \in \mathbb{R}^+ \) such that if \(x \in \mathbb{R} \) and \(|x - x_0| < \delta \) then \(|f(x) - f(x_0)| < \epsilon \). In symbols:

\[\forall \epsilon \in \mathbb{R}^+ \exists \delta \in \mathbb{R}^+ \forall x \in \mathbb{R} (|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon).\]

We say that \(f \) is **continuous** if it is continuous at each point in its domain.

Example. Prove that the modulus function is continuous at 0.

Proof. Let \(\epsilon \in \mathbb{R}^+ \). Define \(\delta = \epsilon \). Then, if \(x \in \mathbb{R} \) and \(|x - 0| < \delta \), we are in one of two cases:

- Case 1: \(x \geq 0 \). Then \(0 < x < \delta \). In this case,
 \[|f(x) - f(0)| = |x - 0| = |x| < \delta = \epsilon,\]
 as required.
- Case 2: \(x < 0 \). Then \(-\delta < x < 0 \). In this case,
 \[|f(x) - f(0)| = |-x - 0| = |-x| = |x| < \delta = \epsilon,\]
 as required again. \(\square\)

Example. Prove that the step function is continuous at \(x_0 = 1 \) but is not continuous at \(x_0 = 0 \).

Proof. To prove that \(H(x) \) is continuous at \(x_0 = 1 \), we need to prove that

\[\forall \epsilon \in \mathbb{R}^+ \exists \delta \in \mathbb{R}^+ \forall x \in \mathbb{R} (|x - 1| < \delta \implies |H(x) - 1| < \epsilon).\]

Suppose \(\epsilon \in \mathbb{R}^+ \) is given. Define \(\delta = \frac{1}{2} \) (notice that in this case, our choice of \(\delta \) doesn’t depend on \(\epsilon \)). Then for each \(x \in \mathbb{R} \), if

\[|x - 1| < \frac{1}{2} \quad \text{then} \quad \frac{1}{2} < x < \frac{3}{2}\]

so \(x \) is guaranteed to be positive. Therefore, \(H(x) = 1 \). That is,

\[|H(x) - 1| = |1 - 1| = 0 < \epsilon.\]

The second part asks us to prove that \(H(x) \) is not continuous at \(x_0 = 0 \). So, we need to prove that

\[\exists \epsilon \in \mathbb{R}^+ \forall \delta \in \mathbb{R}^+ \exists x \in \mathbb{R} (|x - 0| < \delta \text{ and } |H(x) - 1| \geq \epsilon)\]

We get to choose \(\epsilon \), so choose \(\epsilon = \frac{1}{2} \). Given \(\delta > 0 \), let \(x = -\frac{\delta}{2} \).

Why? We want \(x \) to be very close to 0 but negative because \(H(x) \) acts differently on negative numbers from how it behaves at \(x_0 = 0 \).

Then

\[|x - 0| = \left| -\frac{\delta}{2} - 0 \right| = \frac{\delta}{2} < \delta\]

and

\[|H(x) - 1| = |0 - 1| = 1 > \frac{1}{2} = \epsilon.\]

\[\square\]
The following theorem is often stated without proof in calculus classes. We now have all the ingredients to prove it. (Note: however, that the implication (b) \Rightarrow (c) is a little tricky.)

Theorem. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ and $x \in \mathbb{R}$. Then TFAE ("the following are equivalent")

(a) f is continuous at x_0.
(b) If $\langle x_n \rangle$ is a sequence in \mathbb{R} that converges to x_0 then the sequence $\langle f(x_n) \rangle$ converges to $f(x_0)$.
(c) f has a limit at x_0 and $\lim_{x \rightarrow x_0} f(x) = f(x_0)$.

Proof. Prove (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a).

(a) \Rightarrow (b) Suppose f is continuous at x_0 and $\langle x_n \rangle$ is a sequence that converges to x_0. Let $\epsilon > 0$. Since f is continuous at x_0, there is $\delta > 0$ such that

$$|x - x_0| < \delta \quad \Rightarrow \quad |f(x) - f(x_0)| < \epsilon.$$

But $\lim_{n \rightarrow \infty} x_n = x_0$ so there is N such that for all $n \geq N$

$$|x_n - x_0| < \delta.$$

Thus, for this N, for all $n \geq N$,

$$|f(x_n) - f(x_0)| < \epsilon.$$

(b) \Rightarrow (c) We prove the contrapositive. Namely, we will prove that if there is $\epsilon > 0$ such that for all $\delta > 0$, there is some x such that $|x - x_0| < \delta$ but $|f(x) - f(x_0)| \geq \epsilon$.

then

there is a sequence which converges to x_0 but whose image sequence does not converge to $f(x_0)$.

So assume there is $\epsilon_0 > 0$ such that for all $\delta > 0$, there is some x such that $|x - x_0| < \delta$ but $|f(x) - f(x_0)| \geq \epsilon$. In particular, we consider \(\delta_1 = \frac{1}{2}, \delta_2 = \frac{1}{4}, \delta_3 = \frac{1}{8}, \ldots, \) and in general, \(\delta_n = \frac{1}{2^n}. \) Since each $\delta_n > 0$, the assumption guarantees that there is some number, call it x_n, such that

$$|x_n - x_0| < \delta_n = \frac{1}{2^n} \quad \text{and} \quad |f(x_n) - f(x_0)| \geq \epsilon_0.$$

Now, consider the sequence $\langle x_n \rangle$. First, we prove that $\lim_{n \rightarrow \infty} x_n = x_0$. To do so, we need to show that

$$\forall \epsilon \in \mathbb{R}^+ \exists N \in \mathbb{Z}^+ \forall n \in \mathbb{Z}^+(n \geq N \Rightarrow |x_n - x_0| < \epsilon).$$

Given some $\epsilon \in \mathbb{R}^+$, define $N = \lceil -\log_2(\epsilon) \rceil + 1$. Then, if $n \geq N$

$$|x_n - x_0| \leq 2^{-n} \leq 2^{-N} < 2^{\log_2(\epsilon)} = \epsilon.$$

But, we also prove that $\lim_{n \rightarrow \infty} f(x_n) \neq f(x_0)$. We need to show that

$$\exists \epsilon \in \mathbb{R}^+ \forall N \in \mathbb{Z}^+ \exists n \in \mathbb{Z}^+(n \geq N \text{ and } |f(x_n) - f(x_0)| \geq \epsilon).$$

The witness will be $\epsilon = \epsilon_0$ from the beginning of this proof because we defined it to be such that all $f(x_n)$ are at least ϵ_0 away from $f(x_0)$. Formally, if $N \in \mathbb{Z}^+$, let $n = N$ and notice that

$$n \geq N \quad \text{and} \quad |f(x_n) - f(x_0)| \geq \epsilon_0.$$
Thus, we have shown that it is not the case that if \(\langle x_n \rangle \) is a sequence in \(\mathbb{R} \) that converges to \(x_0 \) then the sequence \(\langle f(x_n) \rangle \) converges to \(f(x_0) \). In other words, the proof of the contrapositive is complete.

(c) \(\implies \) (a) Suppose \(\lim_{x \to x_0} f(x) = f(x_0) \). Let \(\epsilon > 0 \). By definition of limit of a function, there is \(\delta > 0 \) such that

\[
0 < |x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon.
\]

This is part of the requirement in the definition of continuity; it remains to consider the case \(|x - x_0| = 0 \). In this case, \(x = x_0 \) and \(f(x) - f(x_0) = 0 \).

\(\square \)

Note: the above can be made to work with functions whose domains are subsets of \(\mathbb{R} \) but then need to worry about accumulation points.