(Short question) Prove that $A_L \vdash \forall x \forall y (x < y \rightarrow x \neq y)$.

(Long question) Let φ be the wff

$\forall x (S^2 x \neq y) \rightarrow \exists x (Sy = x \land z = S^3 x)$.

Find a quantifier-free formula ψ such that $\models _{\mathfrak{S}} \psi \iff \varphi$. Use ψ to find the binary relation defined in \mathfrak{S} by φ. *Hint: start with the prenex normal form of φ.*
• Recall that \(L4 \) (antisymmetry) is \(\forall x\forall y(x < y \rightarrow \neg y < x) \). On the other hand, axiom group 6 for first-order deduction includes \(x = y \rightarrow (\alpha \rightarrow \alpha') \) for any \(\alpha \) where \(\alpha' \) is \(\alpha \) with some \(x \)'s replaced by \(y \)'s. If we consider \(\alpha \) to be \(x < y \) then this axiom implies that \(x = y \rightarrow (x < y \rightarrow x < x) \). Combining this with \(x < x \rightarrow \neg x < x \) (instantiating \(L4 \)) we can prove that \(x < y \rightarrow x \neq y \) via the tautology

\[
(A \rightarrow B \rightarrow C) \rightarrow (B \rightarrow \neg C) \rightarrow (B \rightarrow \neg A).
\]

To make this formal, we can use the Generalization Theorem and Rule T.

Alternatively, by Soundness and Completeness, proving that \(A_L \models \forall x\forall y(x < y \rightarrow x \neq y) \) is equivalent to proving that \(A_L \models \forall x\forall y(x < y \rightarrow x \neq y) \). Let \(\mathfrak{A} \) be model for \(A_L \) and let \(a, b \in |\mathfrak{A}| \). We must prove that \(\models_{\mathfrak{A}} (x < y \rightarrow x \neq y) \). By definition of satisfaction, this is exactly the fact that \(a \neq^\mathfrak{A} b \) or \(a \neq b \). Suppose (towards a contradiction) that \(a \neq^\mathfrak{A} b \) and \(a = b \). Since \(a = b \), these two are names of the same object. Namely, because we have that \(a <^\mathfrak{A} b \) we may conclude that \(a <^\mathfrak{A} a \). Since \(\mathfrak{A} \) is a model of \(A_L \), and in particular, of \(L4 \), we have \(\models_{\mathfrak{A}} \forall x\forall y(x < y \rightarrow \neg y < x) \). Instantiating \(x, y \) as \(a: a \neq^\mathfrak{A} a \). This is a contradiction, so we are done.

• To put the formula in prenex normal form, we rename the first quantified variable

\[
\forall w(S^2w \neq y) \rightarrow \exists x(Sy = x \land z = S^3x)
\]

then use the templates for dealing with \(\rightarrow \):

\[
\exists w\exists x(S^2w \neq y \rightarrow (Sy = x \land z = S^3x)).
\]

We rewrite the quantifier-free part in DNF (where \(A \rightarrow (B \land C) \models_{\mathfrak{A}} \neg A \lor (B \land C) \))

\[
\exists w\exists x(S^2w = y \lor (Sy = x \land z = S^3x)).
\]

This wff is logically equivalent to

\[
\exists x\exists w(S^2w = y) \lor \exists w\exists x(Sy = x \land z = S^3x).
\]

We work on each disjunct in turn. For the first, note that \(x \) is not mentioned.

\[
\models_{\mathfrak{A}} \exists w(S^2w = y) \leftrightarrow (0 \neq y \land 1 \neq y).
\]

For the second disjunct \(w \) is not mentioned:

\[
\models_{\mathfrak{A}} \exists x(Sy = x \land z = S^3x) \leftrightarrow (z = S^4y).
\]

Putting these together:

\[
\models_{\mathfrak{A}} (\forall w(S^2w \neq y) \rightarrow \exists x(Sy = x \land z = S^3x)) \leftrightarrow ((0 \neq y \land 1 \neq y) \lor (z = S^4y))
\]

Therefore, the binary relation defined by the wff in \(\mathfrak{M}_S \) is

\[
\{(a, b) \in \mathbb{N}^2 : \models_{\mathfrak{A}} ((0 \neq y \land 1 \neq y) \lor (z = S^4y))[[a, b]] = \{(a, b) : a \geq 2, b \in \mathbb{N}\} \cup \{(a, a + 4) : a \in \mathbb{N}\}.
\]