MATH 103B Homework 3
DUE April 19, 2013 VERSION April 12, 2013

Assigned reading: Chapters 13-14 of Gallian.

Recommended practice questions: Chapter 13 of Gallian, exercises
35, 45, 47, 49, 51, 62, 63
Chapter 14 of Gallian, exercises
8, 9, 12, 13, 17, 24, 28, 29

Assigned questions to hand in:

1. (Gallian Chapter 13 # 46) Suppose that a and b belong to a commutative ring and ab is a zero-divisor. Show that either a or b is a zero-divisor.

2. (Gallian Chapter 13 # 48) Suppose that R is a commutative ring without zero-divisors. Show that the characteristic of R is zero or prime.

3. (Gallian Chapter 14 # 4) Find a subring of $\mathbb{Z} \oplus \mathbb{Z}$ that is not an ideal of $\mathbb{Z} \oplus \mathbb{Z}$. Justify your answer.

4. (Gallian Chapter 14 # 10) If A and B are ideals of a ring, show that the sum of A and B, $A + B = \{a + b : a \in A, b \in B\}$, is an ideal.

5. (Gallian Chapter 14 # 15) If A is an ideal of a ring R and 1 belongs to A, prove that $A = R$.

6. (Gallian Chapter 14 # 22) Let $I = \langle 2 \rangle$. Prove that $I[x]$ is not a maximal ideal of $\mathbb{Z}[x]$, even though I is a maximal ideal of \mathbb{Z}.

7. (Gallian Chapter 14 # 26) If R is a commutative ring with unity and A is a proper ideal of R, show that R/A is a commutative ring with unity.

8. (Gallian Chapter 14 # 35) In $\mathbb{Z} \oplus \mathbb{Z}$, let $I = \{(a, 0) : a \in \mathbb{Z}\}$. Show that I is a prime ideal but not a maximal ideal.