1. We look for \(\frac{1}{n} < \frac{5}{12} < \frac{1}{(n-1)} \). So \(n = 3 \). Now \(\frac{5}{12} - \frac{1}{3} = \frac{1}{12} \). So the answer is \(\frac{5}{12} = \frac{1}{3} + \frac{1}{12} \). For \(\frac{4}{11} \), \(n = 3 \) again. \(\frac{4}{11} - \frac{1}{3} = \frac{1}{33} \) so \(4/11 = 1/3 + 1/33 \). As for the Babylonian sexagesimal multiply 5 by 60 and divide by 12 and get 25 so \(\frac{5}{12} = 25/60 = 25 \). For \(\frac{4}{11} \) multiply 4 by 60 and get 240. Divide by 11 and get 21 with remainder 9. Multiply 9 by 60 and get 540 divide by 11 and get 49 with remainder 1. Multiply by 60 and divide by 11 and get 5 with remainder 5. Multiply 5 by 60 and divide by 11 and get 27 with remainder 3. Multiply 3 by 60 and divide by 11 and get 16 with remainder 4. Thus the expansion is \(; 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, \ldots \)

2. \(\frac{31}{3} \) is \(1 + 2 + 4 + 8 + 16 \). So we have

\[
\begin{align*}
37 & \quad 1 \\
74 & \quad 2 \\
148 & \quad 4 \\
296 & \quad 8 \\
592 & \quad 16
\end{align*}
\]

so \(31 \) times 37 is \(37 + 74 + 148 + 296 + 592 = 1147 \). \(12 = 4 + 8 \) so 37 times 12 is \(148 + 296 = 444 \).

3. Since we are asking for \(2/3 \) of the original quantity at first let’s try following the recipe “plugging in” \(3 \). \(2/3 \) of 3 is 2 and the new quantity is 5. Subtracting \(\frac{1}{3} \) of this is subtracting \(1 + 2/3 \) (a legal Egyptian fraction). This subtracted from 5 is \(3 + 1/3 \). If we multiply this by 3 we get \(9 + 1 = 10 \). Thus the solution is 9.

4. Recall that \((1 + x + x^2 + \ldots + x^n)(x - 1) = x^{n+1} - 1 \). Thus if \(x = 3 \) and \(n = 15 \). We are looking at

\[
\frac{40346721 - 1}{3 - 1} = \frac{40346720}{2} = 20173360. \]

5. \(P(n) \) is the statement that there is no \(m \) so that \(n^2 = 3m^3 \). Suppose \(P(n) \) is false. We must show that this would imply that there is an \(m \) with \(1 < m < n \) so that \(P(m) \) is false. Then \(n > 1 \) since 1 is not divisible by 3. Now since \(P(n) \) is false there is \(m \) such that \(n^2 = 3m^2 \). We note that \(m > 1 \) (otherwise \(n^2 = 3 \)) and \(m < n \) since if \(m \geq n \) then \(3m > m \geq n \) so \(3m^2 > mn \geq n^2 \). Now 3 divides \(n^2 \) so according to Euclid since 3 is prime 3 divides \(n \). Thus \(n = 3k \). So we have an identity

\[
9k^2 = 3m^2.
\]

This implies that \(m^2 = 3k^2 \) this implies that \(P(m) \) is false.