Problems

1. If U is an ideal of R and $1 \in U$, prove that $U = R$.

2. If F is a field, prove its only ideals are (0) and F itself.

3. Prove that any homomorphism of a field is either an isomorphism or takes each element into 0.

4. If R is a commutative ring and $a \in R$,
 (a) Show that $aR = \{ar \mid r \in R\}$ is a two-sided ideal of R.
 (b) Show by an example that this may be false if R is not commutative.

5. If U, V are ideals of R, let $U + V = \{u + v \mid u \in U, v \in V\}$. Prove that $U + V$ is also an ideal.

6. If U, V are ideals of R let UV be the set of all elements that can be written as finite sums of elements of the form uv where $u \in U$ and $v \in V$. Prove that UV is an ideal of R.

7. In Problem 6 prove that $UV \subseteq U \cap V$.

8. If R is the ring of integers, let U be the ideal consisting of all multiples of 17. Prove that if V is an ideal of R and $R \supseteq V \supseteq U$ then either $V = R$ or $V = U$. Generalize!
9. If U is an ideal of R, let $r(U) = \{x \in R \mid xu = 0 \text{ for all } u \in U\}$. Prove that $r(U)$ is an ideal of R.

10. If U is an ideal of R let $[R:U] = \{x \in R \mid rx \in U \text{ for every } r \in R\}$. Prove that $[R:U]$ is an ideal of R and that it contains U.

11. Let R be a ring with unit element. Using its elements we define a ring \tilde{R} by defining $a \oplus b = a + b + 1$, and $a \cdot b = ab + a + b$, where $a, b \in R$ and where the addition and multiplication on the right-hand side of these relations are those of R.
 (a) Prove that \tilde{R} is a ring under the operations \oplus and \cdot.
 (b) What acts as the zero-element of \tilde{R}?
 (c) What acts as the unit-element of \tilde{R}?
 (d) Prove that R is isomorphic to \tilde{R}.

*12. In Example 3.1.6 we discussed the ring of rational 2×2 matrices. Prove that this ring has no ideals other than (0) and the ring itself.