Some Practice Problems involving Green’s, Stokes’, Gauss’ theorems.

1. Let \(\mathbf{x}(t) = (a \cos t^2, b \sin t^2) \) with \(a, b > 0 \) for \(0 \leq t \leq \sqrt{2\pi} \). Calculate \(\int_{\mathbf{x}} x \, dy \). Hint: \(\cos^2 t = \frac{1 + \cos 2t}{2} \).

2. Let \(\mathbf{F} = \frac{-yi + zj}{x^2 + y^2} \).
 a) Use Green’s theorem to explain why \(\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = 0 \) if \(\mathbf{x} \) is the boundary of a domain that doesn’t contain 0.
 b) Let \(\mathbf{x}(t) = (\cos t, 3 \sin t), 0 \leq t \leq 2\pi \) and \(\mathbf{F} = \frac{-yi + zj}{x^2 + y^2} \). Calculate \(\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} \). Hint: Consider the domain between \(\mathbf{x} \) and the circle \(\mathbf{y}(t) = (\cos t, \sin t) \). Use part a) to see that \(\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{y}} \mathbf{F} \cdot d\mathbf{s} \).

3. Which if the following vector fields is of the form \(\nabla f \)? If it is compute an \(f \).
 a) \(\mathbf{F} = x^2 \mathbf{i} + xy \mathbf{j} \).
 b) \(\mathbf{F} = x^2 \mathbf{i} - y^2 \mathbf{j} \).
 c) \(\mathbf{F} = yi - xj \).
 d) \(\mathbf{F} = (3x^2y + 2xy^2) \mathbf{i} + (x^3 + 2x^2y + 3y^2) \mathbf{j} \).

4. Let \(S \) be the surface \(z = 4 - x^2 - y^2, z \geq -3 \) and let \(\mathbf{F} = (2xyz + 3z) \mathbf{i} + x^2y \mathbf{j} + \cos(xyz) e^x \mathbf{k} \). Calculate
 \[\int \int_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} \]
 Hint: Observe that \(\partial S \) is the boundary of another surface.

5. Let \(S \) be the union of the surfaces \(z = x^2 + y^2 - 1 \) with \(z \leq 0 \) and \(x^2 + y^2 + z^2 = 1, z \geq 0 \). Let \(\mathbf{x}(t) = (\cos t, \sin t, 0), 0 \leq t \leq 2\pi \). Calculate \(\int \int_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} \) for \(\mathbf{F} \) an arbitrary \(C^1 \) vector field using Stokes’ theorem. Do the same using Gauss’s theorem (that is the divergence theorem).

6. Let \(V \) be the solid cylinder \(x^2 + y^2 \leq 1, |z| \leq 1 \). Describe the boundary of \(V \). Orient the boundary using the outward normal and use Gauss’s theorem to calculate \(\int \int_{\partial V} \mathbf{F} \cdot d\mathbf{S} \) with \(\mathbf{F} = x \mathbf{k} + y \mathbf{j} + z \mathbf{i} \).