6.5.4. Suppose X and Y are standard normal variables. Find an expression for $P(X + 2Y \leq 3)$ in terms of the standard normal distribution function Φ,

(a) in case X and Y are independent;
(b) in case X and Y have bivariate normal distribution with correlation 1/2.

6.5.6. Let X and Y be independent standard normal variables.

(a) For a constant k, find $P(X > kY)$.
(b) If $U = \sqrt{3}X + Y$, and $V = X - \sqrt{3}Y$, find $P(U > kV)$.
(c) Find $P(U^2 + V^2 < 1)$.
(d) Find the conditional distribution of X given $V = v$.

6.5.8. Let X_1 and X_2 be two independent standard normal random variables. Define two new random variables as follows: $Y_1 = X_1 + X_2$ and $Y_2 = \alpha X_1 + 2X_2$. You are not given the constant α but it is known that $\text{Cov}(Y_1, Y_2) = 0$. Find

(a) the density of Y_2;
(b) $\text{Cov}(X_2, Y_2)$.

6.5.9. Suppose W has the normal (μ, σ^2). Given that $W = w$, suppose Z has normal $(aw + b, \tau^2)$ distribution.

(a) Show the joint distribution of W and Z is bivariate normal, and find its parameters.
(b) What is the distribution of Z?
(c) What is the conditional distribution of W given $Z = z$?

From the Pinsky-Karlin text:

Section 3.1. (pp.81-83): Ex. 1.4, 1.5; Pr. 1.4
Section 3.2. (pp.84-87): Ex. 2.2; Pr. 2.2, 2.5