Field Theory Qual Review

Robert Won
Prof. Rogalski

1 (Some) qual problems

• (Fall 2007, 5) Let F be a field of characteristic p and $f \in F[x]$ a polynomial $f(x) = \sum f_i x^i$. Give necessary and sufficient conditions on the $\{f_i\}$ for $f(x^p)$ to itself be a p^{th} power, i.e. $\exists g(x)$ such that $f(x^p) = g(x)^p$. In particular, prove that your condition is necessary.

• (Fall 2007, 6) Let F/K be a field extension of degree 2
 a. If K is characteristic not 2, show that F/K is Galois.
 b. Give an example where F/K is Galois even though char $K = 2$.
 c. Give an example where F/K is not Galois.

• (Fall 2009, 3) Let F be a finite field of order q and E/F a field extension. Suppose that an element $a \in E$ is algebraic over F. Prove that $[F(a) : F]$ is the smallest positive integer n such that $a^{q^n} = a$ and that it divides every other such positive integer.

• (Fall 2009, 4) Let G be any finite group and F any field. Show that there exist fields L and E with $F \subseteq L \subseteq E$, such that E is Galois over L with the Galois group of E/L being isomorphic to G.

• (Fall 2009, 5) Consider the splitting field of E of the polynomial $f(x) = x^4 - 5$ over \mathbb{Q}.
 a. Find the degree $[E : \mathbb{Q}]$
 b. Determine the Galois group of E over \mathbb{Q} as a subgroup of S_4.

• (Spring 2008, 4) Suppose that there exists an intermediate field L of the Galois extension F/E of degree 2 over E. What can we say about $\text{Gal}(F/E)$?

• (Spring 2009, 4) Let $a = \sqrt{2} + \sqrt{2}$ in \mathbb{C} and let f be the minimal polynomial of a over \mathbb{Q}. Let E be the splitting field for f over \mathbb{Q}. Determine the Galois group $\text{Gal}(E/\mathbb{Q})$.

• (Spring 2009, 5) Let E/F be a Galois extension and let K, L be intermediate fields. Show that K and L are F-isomorphic (i.e. there exists an isomorphism from K to L which is the identity on F) if and only if the subgroups of $G = \text{Gal}(E/F)$ corresponding to K and L are conjugate in G.
2 (Some) field things to know

Throughout, F and K are fields.

- Basic facts and definitions. (characteristic, prime subfield, field extension, degree of a field extension, field extensions generated by elements, primitive elements, algebraic extensions)
- The characteristic of F is either 0 or prime.
- Any homomorphism of fields is 0 or injective.
- Let $p(x) \in F[x]$ be irreducible. Then there exists a field extension K/F in which $p(x)$ has a root. In particular, $K = F[x]/p(x)$ and $[K : F] = n$. If $\deg p(x) = n$ and $\theta = x \mod (p(x)) \in K$ then $1, \theta, \ldots, \theta^{n-1}$ are an F-basis for K.
- Let $p(x) \in F[x]$ be irreducible. If K is an extension of F containing α a root of $p(x)$ then $F(\alpha) \cong F[x]/p(x)$.
- Let $\varphi : F \rightarrow F'$ be an isomorphism of fields and $p(x) \in F[x]$ be irreducible. Let $p'(x) \in F'[x]$ be the irreducible polynomial obtained by applying φ to the coefficients. Let α be a root of $p(x)$ and β be a root of $p'(x)$. Then there is an isomorphism
 \[\sigma : F(\alpha) \rightarrow F'(\beta)\]
such that $\sigma(\alpha) = \beta$ and $\sigma|_F = \varphi$.
- Let α be algebraic over F. Then there is a unique monic irreducible polynomial $m_{\alpha,F}(x) \in F[x]$ which has α as a root. The polynomial $m_{\alpha,F}(x)$ is called the minimal polynomial and its degree is called the degree of α.
- If L/F is an extension of fields and α is algebraic over F and L then $m_{\alpha,L}(x)$ divides $m_{\alpha,F}(x)$ in L.
- Let α be algebraic over F, then $F(\alpha) \cong F[x]/(m_{\alpha}(x))$ and $[F(\alpha) : F] = \deg m_{\alpha}(x) = \deg \alpha$.
- The element α is algebraic over F if and only if $F(\alpha)/F$ is finite.
- If K/F is finite, then it is algebraic.
- If $F \subseteq K \subseteq L$ are fields then $[L : F] = [L : K][K : F]$.
- The extension K/F is finite if and only if K is generated by a finite number of algebraic elements over F.
- If α and β are algebraic over F then $\alpha \pm \beta$, $\alpha \beta$, α/β are all algebraic.
- Let L/F be an arbitrary extension. Then the collection of elements of L that are algebraic over F form a subfield K of L.
- If K is algebraic over F and L algebraic over K then L is algebraic over F.
Let K_1 and K_2 be two finite extensions of a field F contained in K. Then

$$[K_1K2 : F] \leq [K_1 : F][K_2 : F]$$

with equality if and only if an F-basis for one of the fields remain linearly independent over the other field.

- Splitting fields exist and the splitting field of a polynomial is unique up to isomorphism.
- If K is an algebraic extension of F which is the splitting field over F for some collection of polynomials, then K is called a normal extension of F.
- A splitting field of a polynomial of degree n has degree at most $n!$.
- A polynomial $f(x)$ has a multiple root α if and only if α is also a root of its derivative. In particular, $f(x)$ is separable if and only if it is relatively prime to its derivative.
- Every irreducible polynomial over a field of characteristic 0 or a finite field is separable.
- If $\text{char } F = p$ then $(a + b)^p = a^p + b^p$ and $(ab)^p = a^pb^p$.
- Let $p(x)$ be an irreducible polynomial over F a field of characteristic p. Then there exists a unique integer $k \geq 0$ and a unique irreducible separable polynomial $p_{\text{sep}}(x) \in F[x]$ such that

$$p(x) = p_{\text{sep}}(x^p).$$

- Every finite extension of a perfect field is separable.

Cyclotomic polynomials: Let ζ_n be a primitive n^{th} root of unity. The n^{th} cyclotomic polynomial $\Phi_n(x)$ is the degree $\varphi(n)$ polynomial whose roots are the primitive n^{th} roots of unity:

$$\Phi_n(x) = \prod_{\zeta \text{ primitive}} (x - \zeta) = \prod_{(a,n)=1} (x - \zeta_n^a).$$

$\Phi_n(x)$ is a monic polynomial in $\mathbb{Z}[x]$ which is the unique irreducible monic polynomial of degree $\varphi(n)$.

$$x^n - 1 = \prod_{d \mid n} \Phi_d(x)$$

$$\Phi_p(x) = x^{p-1} + x^{p-2} + \cdots + x + 1.$$

- Let K/F be a field extension and $\alpha \in K$ algebraic over F. Then for any $\sigma \in \text{Aut}(K/F)$, $\sigma \alpha$ is a root of the minimal polynomial for α over F; that is $\text{Aut}(K/F)$ permutes the roots of irreducible polynomials.
- $|\text{Aut}(E/F)| \leq [E : F]$
• **Galois extensions**: K/F is Galois if any of the following equivalent conditions hold

1. K/F is a splitting field of a collection of separable polynomials over F
2. F is the precisely the set of elements fixed by $\text{Aut}(K/F)$ (in general, the fixed field may be larger than F)
3. $[K : F] = |\text{Aut}(K/F)|$
4. K/F is finite, normal, and separable

• (Fundamental Theorem of Galois Theory) Let K/F be a Galois extension and $G = \text{Gal}(K/F)$. Then there is a bijection

$$\{\text{subfields } E \text{ of } K \text{ containing } F\} \leftrightarrow \{\text{subgroups } H \text{ of } G\}$$

given by the correspondence

$$E \rightarrow \{\text{the elements of } G \text{ fixing } E\}$$

$$\{\text{the fixed field of } H\} \leftarrow H$$

which are inverse. Under this correspondence,

1. $E_1 \subseteq E_2$ if and only if $H_2 \leq H_1$
3. K/E is Galois with Galois group H
4. E/F is Galois if and only if H is normal. In this case, the Galois group of E/F is G/H.
5. The intersection $E_1 \cap E_2$ corresponds to the group $\langle H_1, H_2 \rangle$ and the composite field E_1E_2 corresponds to $H_1 \cap H_2$.

• Any finite field is isomorphic to \mathbb{F}_{p^n} which is the splitting field over \mathbb{F}_p of the polynomial $x^{p^n} - x$, with cyclic Galois group of order n generated by the Frobenius automorphism σ_p. The subfields of \mathbb{F}_{p^n} are the fields \mathbb{F}_{p^d} and are all Galois over \mathbb{F}_p, they are the fixed fields of σ_p^d for $d \mid n$.

• The finite field \mathbb{F}_{p^n} is simple.

• The polynomial $x^{p^n} - x$ is the product of all the distinct irreducible polynomials in $\mathbb{F}_p[x]$ of degree d where d runs across the divisors of n.

• The Galois group of the cyclotomic field $\mathbb{Q}(\zeta_n)$ of n^{th} roots of unity is isomorphic to the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^\times$. The isomorphism is given by

$$(\mathbb{Z}/n\mathbb{Z})^\times \rightarrow \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$$

$$a \mod n \mapsto \sigma_a$$

where $\sigma_a(\zeta_n) = \zeta_n^a$.

• The extension K/F is called abelian if K/F is Galois and $\text{Gal}(K/F)$ is abelian.

• If G is any finite abelian group, then there is a subfield K of the a cyclotomic field with $\text{Gal}(K/\mathbb{Q}) \cong G$.

4