1 (Some) qual problems and (some) techniques

- (Spring 2008, 1) Let G be a finite group and H a proper subgroup. Show that G is not the set-theoretic union of the conjugates of H.
 Consider the intersection and count.

- (Spring 2008, 2) Classify all groups with 99 elements.
 These types of problems are very common, so do a lot of these as practice. Your tools include Sylow, semidirect products, etc.

- (Spring 2008, 3) Let p be prime. If $|G| = p^n$ and N is a normal subgroup, show that N intersects the center of G nontrivially.
 A normal subgroup is a union of conjugacy classes. Count.

- (Spring 2007, 1) Let p be a prime and G a group of order p^3.
 (a) Prove that G has a normal subgroup of order p^2.
 (b) Assume that G has a cyclic normal subgroup N of order p^2 generated by some element n. Let g be an element not in N.
 i. If the order $|g|$ of g is p^3, classify the possible G up to isomorphism.
 ii. If the order $|g|$ of g is p, classify the possible G up to isomorphism
 Use Sylow, semidirect products.

- (Fall 2007, 1) Let G be a group of order $240 = 2^4 \cdot 3 \cdot 5$.
 (a) How many p-Sylow subgroups might G have, for $p = 2, 3, 5$?
 (b) If G has a subgroup of order 15, show that it has an element of order 15.
 (c) Say G does not have a subgroup of order 15. Show that the number of 3-Sylows is 10 or 40.
 Use Sylow, use Sylow again on the subgroup of order 15, semidirect products.

- (Fall 2006, 2.1) Let p be a prime number. $(\mathbb{Z}/p^2\mathbb{Z})^\times$ denotes the multiplicative group consisting of all congruence classes $\tilde{x} \in \mathbb{Z}/p^2\mathbb{Z}$ such that $\gcd(x, p) = 1$.
 (a) Show that the order of $1 + p$ in $(\mathbb{Z}/p^2\mathbb{Z})^\times$ is equal to p.

1
(b) Use (a) to construct a non-abelian group of order p^3.

(c) Describe the non-abelian group in (b) via generators and relations.

Semidirect products, etc.

- (Fall 2006, 2.2) Let G be a group. Let $r \geq 2$ be an integer. Assume that G contains a non-trivial subgroup H of index $[G : H] = r$. Prove the following.

 (a) If G is simple, then G is finite and $|G|$ divides $r!$.

 (b) If $r \in \{2,3,4\}$, then G cannot be simple.

 (c) For all integers $r \geq 5$, there exist simple groups G which contain non-trivial subgroups H of index $[G : H] = r$. If G is simple, act on cosets of H by multiplication to give an injection $G \to S_n$. This is a common technique when you are dealing with simple groups. Also see Dummit and Foote pp. 201-213.

2 (Some) group things to know

- Basic facts and definitions. (homomorphisms, isomorphism theorems, subgroups, normal subgroups, normalizers, centralizers, quotient groups, cyclic groups, dihedral groups, symmetric groups, etc.)

- $H \leq G$. Given $a, b \in G$, either $aH = bH$ if and only if $a^{-1}b \in H$ or $aH \cap bH = \emptyset$. So cosets partition G and $|aH| = |H|$.

- The kernel of a group homomorphism is a normal subgroup.

- G act on A, then for each $g \in G$, we get $\sigma_g : A \to A$. This σ_g is a permutation of A and the map $G \to S_n, g \mapsto \sigma_g$ is a homomorphism.

- (Orbit-stabilizer) $|O_x| = [G : G_x] = |G|/|G_x|$.

- Automorphisms

 If $H \leq G$, then G acts by conjugation on H as automorphisms of H. Also $G/C_G(H) \cong$ a subgroup of $\text{Aut}(H)$.

 For any $H \leq G$, $N_G(H)/C_G(H) \cong$ a subgroup of $\text{Aut}(H)$.

 $G/Z(G) \cong$ subgroup of $\text{Aut}(G)$.

 p a prime $\iff \text{Aut}(\mathbb{Z}_p) \cong \mathbb{Z}_{p-1}$.

- Isomorphism Theorems

 First Isomorphism Theorem: If $\varphi : G \to H$ is a homomorphism, then $\ker \varphi \leq G$ and $G/\ker \varphi \cong \varphi(G)$.

 2
φ injective \iff ker $\varphi = 1$

Second Isomorphism Theorem: $A \leq G$, $B \leq G$ and $A \leq N_G(B)$ (or $B \trianglelefteq G$). Then $AB \leq G$ and $B \trianglelefteq AB$, $A \cap B \trianglelefteq A$ and $AB/B \cong A/A \cap B$.

$|AB| = |A||B|/|A \cap B|.$

Third Isomorphism Theorem: $H \trianglelefteq G$ and $K \trianglelefteq G$ with $H \trianglelefteq K$. Then $K/H \trianglelefteq G/H$ and $G/K \cong G/H$.

- **Characteristic subgroups**
 Characteristic subgroups are normal.
 If $H \trianglelefteq G$ is the unique subgroup of a given order, then $H \text{ char } G$.
 $K \text{ char } H$ and $H \trianglelefteq G \implies K \trianglelefteq G$.

- **(Lagrange’s Theorem)** G a finite group, $H \trianglelefteq G$, then $|H| \mid |G|$.

- **(Cauchy’s Theorem)** G a finite group and p a prime such that $p \mid |G|$ then G has an element of order p.

- **(Sylow’s Theorem)**
 Sylow p-subgroups of G exist.
 If $P \in Syl_p(G)$ and Q any p-subgroup of G, then $Q \leq gPg^{-1}$.
 $n_p \equiv 1 \pmod{p}$ and $n_p = [G : N_G(P)]$.
 $n_p = 1 \iff P \leq G \iff P \text{ char } G \iff$ All subgroups generated by elements of p-power order are p-groups.

- **(Fundamental Theorem of Finitely Generated Abelian Groups)**
 $G \cong \mathbb{Z}^{r} \times \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_s}$
 Invariant factors: $n_i \mid n_{i+1}$ for $1 \leq i \leq s - 1$
 Elementary divisors
 If n is the product of distinct primes, the only abelian group of order n is the cyclic group of order n, \mathbb{Z}_n.
 $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn} \iff (m,n) = 1$.

- **(Class equation)**
 $|G| = |Z(G)| + \sum_i [G : C_G(x_i)]$ (one x_i from each conjugacy class).

- **Commutators**
 $[x,y] = x^{-1}y^{-1}xy$ is called the commutator ($= 1$ iff x and y commute).
 $G' = \langle [x,y] \mid x, y \in G \rangle$ is the commutator subgroup ($= 1$ iff G abelian).
 $xy = yx[x,y]$.
 $H \leq G$ iff $[H,G] \leq H$.
 $G' \text{ char } G$ and G/G' is abelian (the largest abelian quotient).
 If $G' \leq H, H \leq G$, then G/H is abelian.
• Direct products
 If $H, K \trianglelefteq G$ and $H \cap K = 1$, then $HK \cong H \times K$.

• Semidirect products
 Let K, H be groups $\varphi : K \rightarrow \text{Aut}(H)$ a homomorphism. If $\sigma : K \rightarrow K$ is an automorphism of K then
 \[H \rtimes _{\varphi} K \cong H \rtimes _{\varphi \circ \sigma} K. \]

• p-groups
 $|P| = p^a$, p a prime, then:
 \begin{enumerate}
 \item The center of p is non-trivial:
 \item $H \trianglelefteq P$ then $H \cap Z(P) \neq 1$. So every normal subgroup of order p is contained in the center.
 \item $H < P$ then $H < N_P(H)$
 \item Every maximal subgroup of P is of index p and is normal in P.
 \end{enumerate}

• Upper central series
 $Z_0(G) = 1$, $Z_{i+1}(G)/Z_i(G) = Z(G/Z_i(G))$ (so $Z_{i+1}(G)$ is the preimage in G of the center of $G/Z_i(G)$ under the natural projection).
 $Z_i(G)$ char G.

• Nilpotent groups
 G is nilpotent if $Z_n(G) = G$ for some n. (So abelian groups are nilpotent).
 If $|P| = p^a$ for prime a, then P is nilpotent. (p-groups have non-trivial center).
 $|G| = p_1^{a_1} \cdots p_s^{a_s}$, and $P_i \in Syl_{p_i}(G)$. TFAE:
 \begin{enumerate}
 \item G nilpotent;
 \item $H < G$ then $H < N_G(H)$ (normalizers grow);
 \item $P_i \trianglelefteq G$;
 \item $G \cong P_1 \times \ldots \times P_s$.
 \end{enumerate}
 Finite abelian group is direct product of its Sylow subgroups.
 Finite group is nilpotent iff every maximal subgroup is normal
 Subgroups and factor groups of nilpotent groups are nilpotent

• Lower central series
 $G^0 = G$, $G^i = [G, G^{i-1}]$. Then $G^0 \geq G^1 \geq \cdots$
 A group is nilpotent iff $G^n = 1$ for some n.

4
• Derived series (Commutator series)
 \[G^{(0)} = G, \ G^{(i+1)} = [G^{(i)}, G^{(i)}]. \]
 \[G^{(i)} \text{ char } G. \]

 \(G \) is solvable iff \(G^{(n)} = 1 \) for some \(n \).

 Nilpotent groups and subgroups of solvable groups are solvable.

 If \(G/N \) and \(N \) are solvable, then \(G \) is solvable.