Math 183 - Midterm Review (Highlights)

Instructions:
Be sure to bring your official UCSD student ID to the exams.

1. **Probability of events; Venn diagrams.**

 Show that for any two events A and B in a sample space S,

 $$P(A \cap B) \geq 1 - P(A^c) - P(B^c).$$

2. **Conditional probabilities; Bayes formula.**

 During a riot 100 people are arrested on suspicion of looting, and each is given a polygraph test. Supposed that the polygraph is 90% reliable when given to a guilty suspect and 98% reliable when given to someone who is innocent. Suppose that 12 out of the 100 people were involved in the looting, what is the probability that a given suspect is innocent if the polygraph says he’s guilty?

 Solution. Let $F = \{\text{polygraph says suspect is guilty}\}$, $E = \{\text{suspect is guilty}\}$...

3. **Random variables: discrete, continuous; CDF; density; expectation.**

 Rayleigh distribution, named after the physicist Lord Rayleigh while studying waves, has density

 $$f(y) = \frac{y}{a^2}e^{-y^2/2a^2}, \quad y > 0$$

 where $a > 0$ is a constant. Find $E(Y)$.

4. **Joint distribution; marginal distribution; independence.**

 Suppose two components of a machine have independent exponentially distributed lifetimes T_1 and T_2, with densities

 $$f_1(t_1) = \lambda e^{-\lambda t_1}, \quad f_2(t_2) = \mu e^{-\mu t_2}, \quad t_1, t_2 > 0$$

 where λ and μ are the parameters.

 (a) Write out the joint density of T_1 and T_2;

 (b) Find $P(T_1 > T_2)$.