Monotone Formula for majority (Math 262A),
Session 13

Samuel Buss *

Let’s review the definition of Majority and Threshold first.

Definition 1. Let x_0, \ldots, x_{n-1} be input bits, we define the threshold function as

$$Th^n_k(x_0, \ldots, x_{n-1}) = \begin{cases} 1 & \text{if } \sum x_i \geq k \\ 0 & \text{otherwise} \end{cases}$$

and we also define the majority function as

$$Maj^n(x_0, \ldots, x_{n-1}) = Th^n_{\lceil n/2 \rceil}(x_0, \ldots, x_{n-1}).$$

Also we showed in the previous lecture that both Th^n_k and Maj^n are in NC^1, and also all of these functions are monotone boolean functions, thus it is natural to ask that

Could we prove that $Maj^n, Th^n_k \in monotone NC^1$?

As the first stage of this, we can try the divide and conquer method, i.e.,

Definition 2. We can represent the threshold function as

$$Th^n_k(x_0, \ldots, x_{n-1}) = \bigvee_{l \leq \min(k, n/2)} (Th^{n/2}_l(x_0, \ldots, x_{n/2-1}) \land Th^{n/2}_{k-l}(x_{n/2}, \ldots, x_n)),$$

here we assumed that n is the power of 2.

Then what is the depth of these formula? In fact, we have that

Lemma 3. With unbounded fan in \land’s and \lor’s, the depth of the formula above is $O(\log n)$.

The lemma is easy to prove, however in the case of fan-in 2 \land’s and \lor’s, the depth is $O((\log n)^2)$ and the size is $2^{(\log n)^2} = n^{O(\log n)}$. Fortunately, we can also show that $Maj^n, Th^n_k \in monotone NC^1$ by the following probabilistic method.

Lectured on October 4, 2013, and scribed by Jiapeng Zhang
Theorem 4 (Valiant 1983). *Majority has monotone fan-in 2 formula of depth $O(\log n)$, hence size $n^{O(1)}$. *

Proof. Let $\text{Maj}(x_0, \ldots, x_{n-1})$ be the majority function, and without loss of generality, we assume that n is even. We consider the circuits that will contain subcircuits that compute $Z' = (Z_1 \lor Z_2) \land (Z_3 \lor Z_4)$, i.e.,

Definition 5. A level 0 formula φ is selected at random as

$$\varphi = \begin{cases} x_i, & \text{with probability } \frac{2\alpha}{n-1} \\ 0, & \text{with probability } 1 - \frac{2\alpha}{n-1} \end{cases}$$

where $\alpha = \frac{3 - \sqrt{5}}{2} \approx 0.38$.

A level $i + 1$ formula is selected at random by choosing level i formulas $\varphi_1, \ldots, \varphi_4$ at random, and setting $\varphi = (\varphi_1 \lor \varphi_2) \land (\varphi_3 \lor \varphi_4)$.

Lemma 6 (Valiant 83). Let α as above, let $1 < \gamma < 4\alpha$, then we can choose $t = (1 + \frac{1}{(\log \gamma)^2}) \log n + O(1) = O(\log n)$ such that, for φ a randomly chosen level t formula, $\Pr[\varphi \equiv \text{Maj}(x_0, \ldots, x_{n-1})] \geq 1/2$.

Lemma 7 (continue). In fact, for values a_0, \ldots, a_{n-1} as the inputs, then

- if $\sum_i a_i \geq n/2$, $\Pr[\varphi(a_0, \ldots, a_{n-1}) = 1] \geq 1 - \frac{1}{2^{t+1}}$;
- if $\sum_i a_i < n/2$, $\Pr[\varphi(a_0, \ldots, a_{n-1}) = 0] \geq 1 - \frac{1}{2^{t+1}}$.

Lemma 6 follows from lemma 7 by a standard averaging argument, hence it is sufficient to prove lemma 7.

Proof. (of lemma 7). Fix $a_0, \ldots, a_{n-1} \in \{0, 1\}$, let $k = \sum_i a_i$, define

$$P_i := P_{i,k} = \Pr[\varphi(a_0, \ldots, a_{n-1}) = 1],$$

where φ is randomly chosen level l formula. Then we are going to show that

- $P_i \geq 1 - \frac{1}{2^{t+1}}$, if $k \geq n/2$;
- $P_i \leq \frac{1}{2^{t+1}}$, if $k < n/2$.

By the definition, we have that $P_0 = \frac{2\alpha}{n-1}$ and

$$P_{i+1} = (1 - (1 - P_i)^2)^2 = 4P_i^2 - 4P_i^3 + P_i^4.$$

Let $f(x) = 4x^2 - 4x^3 + x^4$, then we have

- $f(0) = 0$, $f(\alpha) = \alpha$, and $f(1) = 1$;
- $f'(0) = 0$, $f'(\alpha) = 4\alpha$, and $f'(1) = 0$;
- $f''(0) = 8$, and $f''(1) = -4$;
Also, by the definitions

If $k < \frac{n}{2}$, then

$$P_0 \leq \frac{2\alpha\left(\frac{n}{2} - 1\right)}{n - 1} = \frac{\alpha(n - 2)}{n - 1} < \alpha - \frac{\alpha}{n};$$

Similarly, if $k \geq \frac{n}{2}$, then

$$P_0 \geq \alpha + \frac{\alpha}{n},$$

here we used the fact that n is even.

By continuity of the first derivative, for any $1 < \gamma < 4\alpha$, $\exists \epsilon_0$ such that

if $|P_i - \alpha| < \epsilon_0$, then

$$|f(P_i) - \alpha| \geq |P_i - \alpha| \cdot \gamma.$$

Choose $l_1 = \log_\gamma (n \cdot \epsilon_0/2) = \log_\gamma (n) = O(\log n)$, then $\frac{2}{\gamma} l_1 \geq \epsilon_0$, so

if $k < \frac{n}{2}$, then $P_{i+1} = n - \epsilon_0$

if $k \geq \frac{n}{2}$, then $P_{i+1} > n + \epsilon_0$,

where ϵ_0 is a constant that does not depend on n.

So we can take $l_2 = l_1 + c$, where c is a constant such that

if $k < \frac{n}{2}$, then $P_{i+1} < \frac{1}{16}$

if $k \geq \frac{n}{2}$, then $P_{i+1} > 1 - \frac{1}{8} = \frac{7}{8}$,

From more calculus facts, since $f(x) \leq 8x^2$ and $(1 - f(1 - x)) \leq 4x^2$ for the range $x \in [0, 1]$ we have that at some point the two cases begin to diverge at a quadratic rate. Thus:

if $k < \frac{n}{2}$, let $Q_i = 8P_i$. Since $P_{i+1} \leq 8P_i^2$, then $Q_{i+1} \leq Q_i^2$. Also $Q_{i+1} \leq 1/2$, we have that $Q_{i+2+\log n+3} \leq 2^{-(n+4)}$, thus

$$P_{i+2+\log n+3} \leq 2^{-(n+1)}$$

if $k < \frac{n}{2}$, let $Q_i = 4(1 - P_i)$. Since $P_{i+1} \leq 8P_i^2$, so $Q_{i+1} \leq Q_i^2$ and $Q_{i+1} \leq 1/2$, thus $Q_{i+2+\log n+2} \leq 2^{-(n+3)}$, thus

$$P_{i+2+\log n+2} \geq 1 - 2^{-(n+1)}$$

Let $l = l_2 + \log n + 3$, then lemma 7 then follows.

The theorem also follows from the lemma 6.