1 November 27 - Constant Depth Circuits for approximate counting (aka BPP is in the Polynomial Hierarchy)

Definition 1.1. \textit{ApxMaj}_{1/3}(\vec{x}) outputs }i \in \{0, 1\}\textit{ if more than }2/3\textit{ of the input are equal to }i\textit{, else it outputs whatever. Note that }1/3, 2/3\textit{ can be replaced by any }\epsilon, 1 - \epsilon\textit{ or even }1/\log n, 1 - 1/\log n\textit{.}

Theorem 1.2. (Sipser, Gacs, Lautemann.) \textit{There are quasipolynomial size, depth 3 unbounded fan }\bigvee, \bigwedge, x_i, \overline{x_i}\textit{ circuits for }ApxMaj_{1/3}\textit{. In fact, we can achieve depth }2^{1/2}\textit{.}

Definition 1.3. \textit{Quasipolynomial size means we have }n^\log n^O(1)\textit{ or }2^{\log n^O(1)}\textit{. Of course, note that }n^\log n = 2^{\log n + 1}\textit{.}

Note that quasipolynomial is much closer to polynomial \(2^{O(\log n)}\) than exponential \(2^{O(n)}\) or \(2^{n^O(1)}\).

Recall 1.4. (Chernoff Bound.) Let \(X_i\) be 0-1 random variables. Let \(E(\frac{1}{m} \sum X_i) = \mu\) (for instance if \(E(X_i) = \mu\) for all \(i\)). Let \(c > 0\).

Then
\[
P\left[\left| \frac{1}{m} \sum X_i - \mu \right| > c\mu \right] \leq 2e^{-\mu m \min\{c^2/4, c/2\}}.
\]

That is, there exists \(\delta = \delta(c, \mu)\) such that
\[
P\left[\left| \frac{1}{m} \sum X_i - \mu \right| > c\mu \right] \leq 2^{-\delta \mu}.
\]

Remark 1.5. Here’s the idea of the proof. Pick \(m\) many inputs at random (with replacement).

Then if \(\sum x_i < \frac{1}{3}n\), the probability that the majority of the selected inputs is 0 is at least \(1 - 2^{-\delta m}\), and vice versa.

Proof. (of Theorem 1.2.) Let \(c = \frac{1}{2}, \mu = \frac{2}{3}\). Set \(\delta = \delta(c, \mu)\). Without loss of generality, let \(n\) be a power of 2 with \(n = 2^l\). Let \(\alpha = \lceil \delta^{-1} \rceil\), and let \(m = \alpha \log n = \alpha l\).
Consider all \(n^m \) many sequences of the inputs \(x_i = x_{i_1}, \ldots, x_{i_m} \). Compute \(\text{Maj}(x_i) \) for each sequence. Call these values \(y_i \). Note that it depends on \(m = \alpha \log n = \alpha l \) different variables, so it has a DNF of size at most \(2^{\alpha \log n} = n^\alpha \).

There are \(n^m = 2^{\alpha (\log n)^2} \) many such sequences (quasipolynomially many).

If \(\sum x_i < \frac{1}{3} n \), then the number of values \(y_i = 1 \) is at most

\[
2^{-2^l (n^m)} = 2^{-2^l n^m}
\]

\[
= \frac{1}{2^l} n^m
\]

\[
= 2^{l} n^m.
\]

So \(y_i = 0 \) for at least \((1 - 2^{-l}) n^m \) many choices of \(i \). Same is true of the dual situation: when \(\sum x_i \geq \frac{2}{3} n \), most of the \(y_i \)s are 1.

Now, \(n^m = 2^{\alpha l^2} \). Let \(L = \alpha l^2 \). There are \(2^L \) many sequences of length \(m \). A sequence is specified by \(L \) many bits; that is, \(l \) bits for each of its \(m \) members.

We want a function \(f \) such that

\[
f(y) = \begin{cases} 1 & \text{if the number of } y_i = 1 \text{ is at least } (1 - 2^{-l}) 2^L, \\ 0 & \text{if the number of } y_i = 0 \text{ is at least } (1 - 2^{-l}) 2^L, \end{cases}
\]

and is arbitrary otherwise. \(f \) has \(2^L \) many inputs, and we want a constant depth circuit for \(f \).

Identify sequences of length \(m \) with binary strings in \(\omega \in \{0, 1\}^L \). If \(u, v \in 2^L \), define \(u \oplus v \) as the bitwise XOR of \(u, v \). We have the following facts.

(1) \((u \oplus v) \oplus u = v \).

(2) \(u \in S \oplus v \) if and only if \(u \oplus v \in S \).

(3) \(|S \oplus v| = |S| \).

(4) If \(w \in 2^L \) and \(u \) is chosen at random, then

\[
P[w \in S \oplus u] = \frac{|S|}{2^L}.
\]

Looking ahead: \(S \) will be the set of \(i \) for which \(y_i = 1 \), and we’ll have

\[
\frac{|S|}{2^L} \geq 1 - 2^{-l} \text{ or } \leq 2^{-l}.
\]

Note that if \(|S| \leq 2^{-l} 2^L \), then

\[
P[w \in S \oplus u] \leq 2^{-l}.
\]

If \(|S| \geq (1 - 2^{-l}) 2^L \), then

\[
P[w \notin S \oplus u] \leq 2^{-l}.
\]
Let $k = \lceil \frac{L+1}{\log n} \rceil \approx \alpha l$. If $|S| \geq (1 - 2^{-l})2^L$, we claim there exists $u_1, \ldots, u_k \in 2^L$ so that

$$\bigcup (S \oplus u_i) = 2^L.$$

That is, we can cover all strings with k (XOR) translations of S. We’ll prove this now.

Consider any fixed $w \in 2^L$. $P(w \notin S \oplus u_i) \leq 2^{-l}$. Thus, the probability that w is not in any of $S \oplus u_i$ is at most $(2^{-l})^k \leq 2^{-(L+1)}$. So, the probability that some w is not in $\bigcup S \oplus u_i$ is at most $\frac{1}{2}$ by the union bound. Hence there exists some selection of u_i’s so that the union covers all strings.

Inversely, if $|S| \leq 2^{-l}2^L$, then no choice of k u_i’s will be able to cover the whole space, since

$$\bigg| \bigcup S \oplus u_i \bigg| \leq k|S| \leq 2^{-l}2^L \ll 2^L.$$

Now we’re ready to write down f! It’s simply

$$\bigvee_{u_1, \ldots, u_k \in 2^L} \bigwedge_{w \in 2^L} w \in S \oplus u_i.$$

Since S is the set of i for which $y_i = 1$, we can rewrite this as

$$\bigvee_{u_1, \ldots, u_k \in 2^L} \bigwedge_{w \in 2^L} y_{w \oplus u_i}.$$

Using the distributive law, we can write $\bigvee_{i=1}^k y_{w \oplus u_i}$ as a big \land of small \lors (small in the sense that their fan in is $O((\log n)^2)$). This reduces the formula to depth 3; even to depth $2 \frac{1}{2}$ if one counts the small fan-in gates as only half a level.

Let’s check the size of this monstrosity. The outermost \lor has how many disjuncts? The number of choices of u_i is at most $(2^L)^k \approx 2^{(\log n)^{O(1)}}$. The next level of \land: there are $2^L = 2^{(\log n)^{O(1)}}$ many choices of w. The \lands from the distribution law are also $2^{(\log n)^{O(1)}}$. Finally, the bottom level of \lors are $2^{O((\log n)^3)} = 2^{(\log n)^{O(1)}}$. So we’re done!

Definition 1.6. Let Q be a language, i.e. a subset of 2^L. Q is in BPP if there exists a polytime computable $R(x,y)$ and a polynomial $p(m)$ so that for all $|x| = m$, $x \in Q$ implies

$$P_{z \in \{0,1\}^{p(m)}} [R(x,z) = 1] \geq \frac{2}{3},$$

and if $x \notin Q$ then

$$P_{z \in \{0,1\}^{p(m)}} [R(x,z) = 1] \leq \frac{1}{3}.$$
Remark 1.7. The above proof applied to this setting shows that $Q \in \Sigma_2^p$, the second level of the polynomial hierarchy.

Here is a sketch of the proof. Let $n = 2^{p(m)}$, so $l = p(m)$, and set $x_i = R(x, i)$ with $i \in 2^{p(m)}$. Existentially guess $u_1, \ldots, u_k \in 2^L$, universally guess $w \in 2^L$, and for $i = 1, \ldots, k$, check if \textit{Majority} \{ $R(x, \pi_j(w \oplus u_i))$ \mid $j = 1 \ldots \alpha l$ \} = 1. Here π_j picks out the jth substring. If this holds for some i, accept; otherwise reject.