Fluctuations of Brownian Motions on \mathbb{GL}_N

Guillaume Cébron
Fachrichtung Mathematik
Saarland University
66123, Saarbrücken, Germany
cebron@math.uni-sb.de

Todd Kemp*
Department of Mathematics
University of California, San Diego
La Jolla, CA 92093-0112
tkemp@math.ucsd.edu

January 23, 2015

Abstract

We consider a two parameter family of unitarily invariant diffusion processes on the general linear group \mathbb{GL}_N of $N \times N$ invertible matrices, that includes the standard Brownian motion as well as the usual unitary Brownian motion as special cases. We prove that all such processes have Gaussian fluctuations in high dimension with error of order $O(\frac{1}{N})$; this is in terms of the finite dimensional distributions of the process under a large class of test functions known as trace polynomials. We give an explicit characterization of the covariance of the Gaussian fluctuation field, which can be described in terms of a fixed functional of three freely independent free multiplicative Brownian motions. These results generalize earlier work of Lévy and Maida, and Diaconis and Evans on unitary groups. Our approach is geometric, rather than combinatorial.

Contents

1 Introduction 2

2 Background 4

2.1 Brownian motions on \mathbb{GL}_N 5

2.2 The Intertwining Spaces $\mathcal{P}(J)$ and $\mathcal{C}(J)$ 6

2.3 Computation of the heat Kernel 8

2.4 Free Multiplicative Brownian Motion 9

3 Gaussian Fluctuations 10

3.1 The carré du champ of $T \cdot \Delta_N$ 10

3.2 Main theorem 11

3.3 Proof of Theorem 3.3 13

4 Study of the covariance 17

4.1 New characterization of the covariance 17

4.2 The simple case of polynomials 21

*Supported by NSF CAREER Award DMS-1254807
1 Introduction

This paper is concerned with the fluctuations of Brownian motions on the general linear groups $GL_N = GL(N, \mathbb{C})$ when the dimension N tends to infinity.

Let M_N denote $N \times N$ complex matrices. A random matrix ensemble or model is a sequence of random variables $(B^N)_{N \geq 1}$ such that $B^N \in M_N$. The first phenomenon typically studied is the convergence in non-commutative distribution (cf. Section 2.4) of B^N, meaning that for each non-commutative polynomial P in two variables, we ask for convergence of $E[tr(P(B^N, B^{N*}))]$, where tr is the normalized trace (so that $tr(I_N) = 1$). In the special case that $B^N = (B^N)^*$ is self-adjoint, this is morally (and usually literally) equivalent to weak convergence in expectation of the empirical spectral distribution of B^N: the random probability measure placing equal masses at each of the random eigenvalues of the matrix. The prototypical example here is Wigner’s semicircle law [24]: if B^N is a Wigner ensemble (meaning it is self-adjoint and the upper triangular entries are i.i.d. normal random variables with mean 0 and variance $\frac{1}{N}$) then as $N \to \infty$ the empirical spectral distribution converges to $\frac{1}{2\pi} \sqrt{4 - x^2}dx$. In fact, the weak convergence is not only in expectation but almost sure.

For non-self-adjoint (and more generally non-normal) ensembles that cannot be characterized by their eigenvalues, the non-commutative distribution is the right object to consider. As with Wigner’s law, in most cases, we have the stronger result of almost sure convergence of the random variable $tr(P(B^N, B^{N*}))$ to its mean. It is therefore natural to ask for the corresponding central limit theorem: what is the rate of convergence to the mean, and what is the noise profile that remains? More precisely, consider the random variables

$$tr(P(B^N, B^{N*})) - E[tr(P(B^N, B^{N*}))]$$

for each non-commutative polynomial P; these are known as the fluctuations. The question is: what is their order of magnitude, and when appropriately renormalized, what is their limit as $N \to \infty$? The standard scaling for this kind of central limit theorem in random matrix theory is well-known to be $\frac{1}{\sqrt{N}}$ instead of the classical $\frac{1}{N}$ (see the fundamental work of Johansson [15]). Thus far, it was known that

$$N \left(tr(P(B^N, B^{N*})) - E[tr(P(B^N, B^{N*}))] \right)$$

is asymptotically Gaussian when

- B^N is a Wigner random matrix [5];
- B^N is a unitary random matrix whose distribution is the Haar measure [12];
- B^N is a unitary random matrix arising from a Brownian motion on the unitary group [19] or the orthogonal group [10].

Remark 1.1. The existence of Gaussian fluctuations of a random matrix model is sometimes referred to as a second order distribution; cf. [20] [21], in which the authors gave the corresponding diagrammatic combinatorial theory of fluctuations. The similar but more complicated combinatorial approach to fluctuations for Haar unitary ensembles was done in [7] [9], where is is known as Weingarten calculus. The recent work of Dahlqvist [11] follows these ideas to provide the combinatorial framework for the finite-time heat kernels on classical compact Lie groups. Our present approach is geometric, rather than combinatorial.

Our main result is of this type, when B^N is sampled from a two-parameter family of random matrix ensembles that may rightly be called Brownian motions on GL_N. Fix $r, s > 0$, and following [17], we will define (in Section 2.1) an (r, s)-Brownian motion $(B^N_{r,s}(t))_{t \geq 0}$ on GL_N for each dimension $N > 0$. This family encompasses the two most well-studied Brownian motions on invertible matrices: the canonical Brownian motion $G^N(t) \equiv$
Theorem 1.2. Let \((B_{r,s}^N(t))_{t \geq 0}\) be an \((r, s)\)-Brownian motion on \(\mathbb{GL}_N\). Let \(n \in \mathbb{N}\) and \(t_1, \ldots, t_n \geq 0\); set
\[T = (t_1, \ldots, t_n),\]
and let
\[B_{r,s}^N(T) = (B_{r,s}^N(t_1), \ldots, B_{r,s}^N(t_n)).\]
Let \(P_1, \ldots, P_k\) be non-commutative polynomials in \(2n\) variables, and define the random variables
\[X_j = N[\text{tr}(P_j(B_{r,s}^N(T), B_{r,s}^N(T)^*) \equiv N(\text{Etr}(P_j(B_{r,s}^N(T), B_{r,s}^N(T)^*))),\quad 1 \leq j \leq k.\] (1.1)

Then, as \(N \to \infty\), \((X_1, \ldots, X_k)\) converges in distribution to a multivariate centered Gaussian.

As mentioned, Theorem 1.2 generalizes the main theorem [19] Theorem 2.6] to general \(r, s > 0\) from the \((r, s) = (1, 0)\) case considered there. In fact, even when \((r, s) = (1, 0)\) this is a significant generalization, as the fluctuations proved in [19] were for a single time \(t\) – i.e. for a heat-kernel distributed random matrix – while we prove the optimal result for the full process – i.e. for all finite-dimensional distributions.

Remark 1.3. (1) In fact, [19] Theorem 8.2] does give a partial generalization to multiple times, in the sense that the argument of \(P_j\) in (1.1) is allowed to depend on \(B_{r,s}^N(t_j)\) for a \(j\)-dependent time; however, it must still be a function of Brownian motion at a single time. Our generalization allows full consideration of all finite-dimensional distributions.

(2) To be fair, [19] yields Gaussian fluctuations for a larger class of test functions. In the case of a single time \(t\), the random matrix \(U_N(t)\) is normal, and hence ordinary functional calculus makes sense; the fluctuations in [19] extend beyond polynomial test functions to \(C^1\) functions with Lipschitz derivative on the unit circle. Such a generalization is impossible for the generically non-normal matrices in \(\mathbb{GL}_N\).

Theorem 3.3 actually gives a further generalization of Theorem 1.2 as the class of test functions is not just restricted to traces of polynomials, but the much larger algebra of trace polynomials, cf. Section 2.2] That is, we may consider more general functions of the form
\[Y_j = \text{tr}(P_j^1) \cdots \text{tr}(P_j^n)\] (or linear combinations thereof); then the result of Theorem 1.2 applies to the fluctuations
\[X_j = N[\text{tr}(Y_j) \equiv N(\text{Etr}(Y_j))] as well.

Remark 1.4. Moreover, Theorem 3.3 shows that the difference between any mixed moment in \(X_1, \ldots, X_k\) and the corresponding mixed moment of the limit Gaussian distribution is \(O(\frac{1}{N})\). This implies that, in the language of [21], the random matrices \(B_{r,s}^N(T)\) possess a second order distribution. (Note we normalize the trace, while [21] uses the unnormalized trace, which accounts for the apparent discrepancy in normalizations.) Since the random matrices \(B_{r,s}^N(t)\) are unitarily invariant for each \(t\), it then follows from [20] Theorem 1] that the increments of
\[(B_{r,s}(t))_{t \geq 0}\] are asymptotically free of second order.

We can also explicitly describe the covariance of the fluctuations, and thus completely characterize them. The full result is spelled out in Theorem 4.3. Here we state only one result of Corollary 4.5] which already elucidates how the covariance extends from the unitary \((r, s) = (1, 0)\) case.\]
Theorem 1.5. Let $(b_t)_{t\geq 0}$, $(c_t)_{t\geq 0}$, and $(d_t)_{t\geq 0}$ be freely independent free multiplicative (r, s)-Brownian motions in a tracial non-commutative probability space (\mathcal{A}, τ) (for definitions, see Section 2.4). As in Theorem 1.2 let $n = 1$ and $T = T$, and let $P_1, \ldots, P_k \in \mathbb{C}[X]$ be ordinary one-variable polynomials, with X_1, \ldots, X_k denoting the fluctuations associated to $\text{tr}P_1, \ldots, \text{tr}P_n$. Then their asymptotic Gaussian distribution has covariance

$$\sigma_T(i, j) = (r + s) \int_0^T \tau[P'(b_t c_{T-t}) (Q'(b_t d_{T-t})))^*] dt. \quad (1.2)$$

Here P' is the derivative of P relative to the unit circle:

$$P'(z) = \lim_{h \to 0} \frac{f(e^{i\theta}) - f(z)}{h}.$$

Eq. (1.2) generalizes [19, Theorem 2.6]. As pointed out there, in this special case the covariances converge as $T \to \infty$ to the Sobolev $H^{1/2}$ inner-product of the involved polynomials, reproducing the main result of [12] (as it must, since the heat kernel measure on U_N converges to the Haar measure in the large time limit). For more general trace polynomial test functions, the covariance can always be described by such an integral, involving three freely independent free multiplicative Brownian motions in an input function built out of the “carré du champ” intertwining operator determined by the (r, s)-Laplacian on $\mathbb{G}L_N$, cf. Section 3.1.

Let us say a few words about the notation used in the formulation of Theorem 3.3. In [6] and in [13, 17], two different formalism were developed to handle general trace polynomial functions. Concretely, two different spaces were defined, namely $\mathbb{C}\{X_j, X_j^*: j \in J\}$ and $\mathcal{P}(J)$; in Theorem 1.2, $J = \{1, \ldots, k\}$. Each space leads to a functional calculus adapted to linear combinations of functions from $\mathbb{G}L_N$ to \mathbb{C} of the form

$$(G_j)_{j\in J} \mapsto \text{tr}(P_1(G_j, G_j^*: j \in J)) \cdots \text{tr}(P_k(G_j, G_j^*: j \in J)),$$

where P_1, \ldots, P_k are non-commutative polynomials in elements of $(G_j)_{j\in J}$ and their adjoints. In Section 2.2, we investigate the relationship between these two spaces, demonstrating an explicit algebra isomorphism between a subspace of $\mathbb{C}\{X_j, X_j^*: j \in J\}$ and $\mathcal{P}(J)$ for a given index set J. For notational convenience, most of the calculations throughout this paper (in particular in the proof of Theorem 3.3) are expressed using the space $\mathcal{P}(J)$, but all the results and proofs of this article can be transposed from $\mathcal{P}(J)$ to $\mathbb{C}\{X_j, X_j^*: j \in J\}$ without major modifications.

The rest of the paper is organized as follows. In Section 2, we give the definition of the (r, s)-Brownian motion as well as the definitions of $\mathbb{C}\{X_j, X_j^*: j \in J\}$ and $\mathcal{P}(J)$, we recall some results from [6, 17], and we investigate the relationship between $\mathbb{C}\{X_j, X_j^*: j \in J\}$ and $\mathcal{P}(J)$. Section 3 provides the statement of our main result Theorem 3.3, an abstract description of the limit covariance matrix, and the proof of Theorem 3.3. Finally, in Section 4, we give an alternative description of the limit covariance, using three non-commutative processes in the framework of free probability, extending the results in [19] from the unitary case to the general linear case, and beyond to all (r, s).

2 Background

In this section, we briefly describe the basic definitions and tools used in this paper. Section 2.1 discusses Brownian motions on $\mathbb{G}L_N$ (including the Brownian motion on U_N as a special case). Section 2.2 addresses trace polynomials functions, and the two (equivalent) abstract intertwining spaces used to compute with them. Section 2.3 states the main structure theorem for the Laplacian that is used to prove the optimal asymptotic results herein. Finally, Section 2.4 gives a brief primer on free multiplicative Brownian motion. For greater detail on these topics, the reader is directed to the authors’ previous papers [6, 13, 16, 17].
2.1 Brownian motions on GL_N

Fix $r, s > 0$ throughout this discussion. Define the real inner product $\langle \cdot, \cdot \rangle^N_{r,s}$ on \mathbb{M}_N by

$$\langle A, B \rangle^N_{r,s} = \frac{1}{2} \left(\frac{1}{s} + \frac{1}{r} \right) N \Re \text{Tr}(AB^*) + \frac{1}{2} \left(\frac{1}{r} - \frac{1}{s} \right) N \Re \text{Tr}(AB).$$

As discussed in [17], this two-parameter family of metrics encompasses all real inner products on $\mathbb{M}_N = \text{Lie}(GL_N)$ that are invariant under conjugation by U_N in a strong sense that is natural in our context, and so we restrict our attention to diffusion processes adapted to these metrics. An (r, s)-Brownian motion on GL_N is a diffusion process starting at the identity and with generator $\frac{1}{2} \Delta^N_{r,s}$, where $\Delta^N_{r,s}$ is the Laplace-Beltrami operator on GL_N for the left-invariant metric induced by $\langle \cdot, \cdot \rangle^N_{r,s}$. More concretely, if we fix a orthonormal basis $\beta^N_{r,s}$ of \mathbb{M}_N for the inner-product $\langle \cdot, \cdot \rangle^N_{r,s}$, we have

$$\Delta^N_{r,s} = \sum_{\xi \in \beta^N_{r,s}} \partial^2_{\xi},$$

where, for $\xi \in \mathbb{M}_N$, ∂_{ξ} denotes the induced left-invariant vector field on GL_N:

$$(\partial_{\xi} f)(g) = \frac{d}{dt} \bigg|_{t=0} f(g e^{t\xi}), \quad f \in C^\infty(GL_N).$$

The (r, s)-Brownian motion $B_{r,s}^N(t)$ may also be seen as the solution of a stochastic differential equation, cf. [17] Section 2.1. Let $W_{r,s}^N(t)$ denote the diffusion on \mathbb{M}_N determined by the (r, s)-metric; in other words, let $W_\xi(t)$ be i.i.d. standard \mathbb{R}-valued Brownian motions for $\xi \in \beta^N_{r,s}$, and take

$$W_{r,s}^N(t) = \sum_{\xi \in \beta^N_{r,s}} W_\xi(t)\xi.$$

This can also be expressed in terms of standard GUE$_N$-valued Brownian motions:

$$W_{r,s}^N(t) = \sqrt{r} i X^N(t) + \sqrt{s} Y^N(t) \quad (2.1)$$

where $X^N(t)$ and $Y^N(t)$ are independent Hermitian matrices, with all i.i.d. upper triangular entries that are complex Brownian motions of variance $\frac{1}{N}$ above the main diagonal and real Brownian motions of variance $\frac{1}{N}$ on the main diagonal. Then the (r, s)-Brownian motion on GL_N is the unique solution of the stochastic differential equation

$$dB_{r,s}^N(t) = B_{r,s}^N(t) dW_{r,s}^N(t) - \frac{1}{2} (r-s) B_{r,s}^N(t) dt, \quad (2.2)$$

cf. [17] (Equation 2.10).

Fix an index set J; in this paper J will usually be finite. For all $j \in J$, let $B_{r,s}^{j,N} = (B_{r,s}^{j,N}(t))_{t \geq 0}$ be independent (r, s)-Brownian motions on GL_N. Set $B^N_j = (B_{r,s}^{j,N})_{j \in J}$, which is the family of independent (r, s)-Brownian motions on GL_N indexed by J. The process $(B^N(t))_{t \geq 0}$ is therefore a diffusion process on GL_N^J. More precisely, $(B^N(t))_{t \geq 0}$ is a Brownian motion on the Lie group GL_N^J for the metric $(\langle \cdot, \cdot \rangle^N_{r,s})^\otimes J$. The reader is directed to [17] Section 3.1 for a discussion of the Laplace operators on GL_N^J for the metric $(\langle \cdot, \cdot \rangle^N_{r,s})^\otimes J$. The degenerate $(r, s) = (1, 0)$ case gives the usual Laplacian on U_N^J, while $(r, s) = (\frac{1}{2}, \frac{1}{2})$ yields the canonical Laplacian on GL_N^J (induced by the scaled Hilbert-Schmidt inner product on $\mathbb{M}_N = \text{Lie}(GL_N)$). Note: we could vary the parameters r, s with $j \in J$ as well, with only trivial modifications to the following; at present, we do not see any advantage in doing so.
For each \(j \in J \), let \(\Delta_j^N \) denote the Laplacian on the \(j \)th factor of \(\mathbb{GL}_N \) in \(\mathbb{GL}_N^J \). That is to say,

\[
\Delta_j^N = \sum_{\xi_j \in \beta_{r,s}^N} \partial_{\xi_j}^2
\]

where \(\beta_{r,s}^N \) is an orthonormal basis of \(M_N \) for the inner-product \(\langle \cdot, \cdot \rangle_{r,s}^N \), and for all \(\xi \in \beta_{r,s}^N \), \(\partial_{\xi_j} \) is the left-invariant vector field which acts only on the \(j \)th component of \(\mathbb{GL}_N^J \). For \(j \in J \), let \(t_j \geq 0 \), and set \(T = (t_j)_{j \in J} \).

We consider the operator

\[
T \cdot \Delta^N = \sum_{j \in J} t_j \Delta_j^N.
\]

(2.3)

Definition 2.1. For \(J \) finite, denote by \((B^N(t)T)_{t \geq 0} \) the diffusion process on \(\mathbb{GL}_N^J \) with generator \(T \cdot \Delta^N \).

We could write down a stochastic differential equation for \(B^N(t)T \) similar to (2.2); for our purposes, we only need the fact that it is a diffusion process.

A common computational tool used throughout [6, 13, 16, 17] is the collection of so-called “magic formulas.” In the present context, the form needed is as follows; cf. [17, Equations (2.7) and (3.6)]

\[
\sum_{\xi \in \beta_{r,s}^N} \text{tr}(\xi A)\text{tr}(\xi B) = \sum_{\xi \in \beta_{r,s}^N} \text{tr}(\xi^* A)\text{tr}(\xi^* B) = \frac{1}{N^2} (s-r) \text{tr}(AB),
\]

and

\[
\sum_{\xi \in \beta_{r,s}^N} \text{tr}(\xi^* A)\text{tr}(\xi B) = \frac{1}{N^2} (s+r) \text{tr}(AB).
\]

2.2 The Intertwining Spaces \(\mathcal{P}(J) \) and \(\mathbb{C}\{J\} \)

Let \(J \) be an index set as above, and let \(A = (A_j)_{j \in J} \) be a collection of matrices in \(M_N \). A **trace polynomial** function on \(M_N \) is a linear combination of functions of the form

\[
A \mapsto P_0(A)\text{tr}(P_1(A))\text{tr}(P_2(A)) \cdots \text{tr}(P_m(A))
\]

for some finite \(m \), where \(P_1, \ldots, P_m \in \mathbb{C} \) are non-commutative polynomials in \(J \times \{1, *\} \) variables (i.e. the polynomials may depend explicitly on \(A_j \) and \(A_j^* \) for all \(j \in J \)). Such functions arise naturally in our context: applying the operator \(T \cdot \Delta^N \) to the smooth function \(A \mapsto Q(A) \) for any non-commutative polynomial \(Q \) generally results in a trace polynomial function. The vector space of trace polynomial functions is closed under the action of \(T \cdot \Delta^N \), and this is a motivation for defining abstract spaces which encodes them. In [6] and in [13, 17], two different spaces are defined, namely \(\mathbb{C}\{X_j, X_j^*: j \in J\} \) and \(\mathcal{P}(J) \). We will see now that those two spaces are intimately related.

First we give the definition of the space \(\mathcal{P}(J) \). Let \(\mathcal{E}(J) = \bigcup_{n \geq 1} (J \times \{1, *\})^n \) be the set of all words whose letters are pairs of the form \((j, 1)\), or \((j, *)\) for some \(j \in J \). Let \(\mathcal{V}_J = \{v_\varepsilon: \varepsilon \in \mathcal{E}(J)\} \) be commuting variables indexed by all such words, and let

\[
\mathcal{P}(J) \equiv \mathbb{C}[\mathcal{V}_J]
\]

be the algebra of commutative polynomials in these variables. That is, \(\mathcal{P}(J) \) is the vector space with basis 1 together with all monomials

\[
v_{\varepsilon(1)} \cdots v_{\varepsilon(k)}, \quad k \in \mathbb{N}, \quad \varepsilon(1), \ldots, \varepsilon(k) \in \mathcal{E}(J),
\]
and the (commutative) product on $\mathcal{P}(J)$ is the standard polynomial product.

Let us now recall the abstract trace polynomial algebra introduced in [6]. It is a \mathbb{C}-algebra X equipped with a center-valued expectation $\text{tr}: X \to Z(X)$; a linear map satisfying $\text{tr}(1_X) = 1_X$ and $\text{tr}(AB) = \text{tr}(A)\text{tr}(B)$ for all $A, B \in X$. (Note: the symbol tr is presently denoting an abstract function, not necessarily the normalized trace on \mathbb{M}_N; this should present no confusion to the reader, as the two will usually coincide.) The algebra X is an extension of $\mathbb{C}(J) = \mathbb{C}(X_j, X_j^* : j \in J)$, the non-commutative polynomials in J variables and their adjoints. We denote it by

$$X \equiv \mathbb{C}\{J\} \equiv \mathbb{C}\{X_j, X_j^* : j \in J\},$$

equipped with its centered-valued expectation Υ. It is defined by a universal property [6, Universal Property 1.1]. Let \mathcal{A} be any \mathbb{C}-algebra equipped with a center-valued trace τ, and specified elements $(A_{(j, \epsilon)})_{j \in J, \epsilon \in \{1, *, \}}$ in \mathcal{A}. Then there is a unique algebra homomorphism $f: \mathbb{C}\{J\} \to \mathcal{A}$ such that

1. for all $(j, \epsilon) \in J \times \{1, *\}$, $f(X_j^*) = A_{(j, \epsilon)}$; and
2. for all $X \in \mathbb{C}\{J\}$, $\tau(f(X)) = f(\text{tr}(X))$.

The space $\mathbb{C}\{J\}$ can be constructed explicitly as a partially-symmetrized tensor algebra over $\mathbb{C}(J)$. As a vector space, it has as a basis the set

$$M_0 \text{tr}M_1 \cdots \text{tr}M_k, \quad k \in \mathbb{N}, \quad M_0, \ldots, M_k \text{ are monomials in } \mathbb{C}(J).$$

As we will now see, $\mathcal{P}(J)$ is isomorphic to the “scalar part” $\text{tr}(\mathbb{C}\{J\})$ of $\mathbb{C}\{J\}$.

Lemma 2.3. For any index set J, there is an algebra isomorphism

$$\Upsilon: \mathbb{C}(J) \otimes \mathcal{P}(J) \to \mathbb{C}\{J\}$$

such that the restriction $\Upsilon|_{\mathbb{C}(J) \otimes \mathcal{P}(J)}$ is an algebra isomorphism onto $\text{tr}(\mathbb{C}\{J\})$. More explicitly, Υ is given as follows: for any monomial $M_0 \in \mathbb{C}(J)$ and any words $\epsilon(j) \in \mathcal{E}$, we have

$$\Upsilon(1) = 1, \quad \Upsilon(M_0 \otimes v_{\epsilon(1)} \cdots v_{\epsilon(k)}) = M_0 \text{tr}(X_{\epsilon(1)}^* \cdots X_{\epsilon(k)}^*),$$

where, for all $\epsilon = ((j_1, \epsilon_1), \ldots, (j_n, \epsilon_n))$, $X_{\epsilon} = X_{\epsilon_1}^{j_1} \cdots X_{\epsilon_n}^{j_n}$.

Proof. The homomorphism Υ transforms a basis of $\mathbb{C}(J) \otimes \mathcal{P}(J)$ into a basis of $\mathbb{C}\{J\}$, and is therefore a vector space isomorphism. It is simple to check that it is also an algebra homomorphism. Alternatively, $\mathbb{C}(J) \otimes \mathcal{P}(J)$ is naturally isomorphic to the construction of $\mathbb{C}\{J\}$ in [6, Appendix] as the partial symmetrization of the tensor algebra over $\mathbb{C}(J)$ — the polynomial algebra $\mathcal{P}(J)$ is nothing other than the symmetric tensor algebra over $\mathbb{C}(J)$. It is also easy to see that this map defines an algebra isomorphism using the universal property defining the space $\mathbb{C}\{J\}$ in [6], where the center-valued expectation on the algebra $\mathbb{C}(J) \otimes \mathcal{P}(J)$ is the tracing map T of [13, Definition 3.12], defined by

$$T(X_{\epsilon(0)} v_{\epsilon(1)} \cdots v_{\epsilon(k)}) = v_{\epsilon(0)} v_{\epsilon(1)} \cdots v_{\epsilon(k)},$$

for any words $\epsilon(0), \ldots, \epsilon(k) \in \mathcal{E}$. \qed

In [6, Section 1.1.3] and [17, Definition 3.2], notions of degrees of elements in the isomorphic spaces $\mathbb{C}(J) \otimes \mathcal{P}(J) \cong \mathbb{C}\{J\}$ are defined:

$$\deg_{\mathcal{P}(J)}(X_{\epsilon(0)} v_{\epsilon(1)} \cdots v_{\epsilon(k)}) = |\epsilon(0)| + \cdots + |\epsilon(k)|,$$

$$\deg_{\mathbb{C}\{J\}}(M_0 \text{tr}(M_1) \cdots \text{tr}(M_k)) = \deg_{\mathbb{C}(J)}M_0 + \cdots + \deg_{\mathbb{C}(J)}M_k.$$
where the degree \(\deg_{C(J)} \) of a monomial \(X_\varepsilon \) is simply the number of terms in the product, which is \(|\varepsilon| \) (the length of the string \(\varepsilon \)). It is therefore immediate that, for any \(P \in C(J) \otimes \mathcal{P}(J) \),
\[
\deg_{C(J)} \Upsilon(P) = \deg_{\mathcal{P}(J)}(P).
\]
Henceforth, we will simply use the symbol \(\deg \) to refer to this common value.

Let \((\mathcal{A}, \tau)\) be a non-commutative probability space (cf. Section 2.4). Associated to it there is an evaluation function
\[
V^J_{(\mathcal{A}, \tau)} : \mathcal{A}^J \to \mathbb{C}^{\varepsilon(J)}
\]
where, for each \(a = (a_j)_{j \in J} \in \mathcal{A}^J \), the function \(V^J_{(\mathcal{A}, \tau)}(a) : \varepsilon(J) \to \mathbb{C} \) is given by
\[
\left(V^J_{(\mathcal{A}, \tau)}(a) \right)(\varepsilon) = \tau(a^\varepsilon),
\]
where, if \(\varepsilon = ((j_1, \varepsilon_1), \ldots, (j_n, \varepsilon_n)) \), then \(a^\varepsilon \equiv a_{j_1}^{\varepsilon_1} \cdots a_{j_n}^{\varepsilon_n} \). Note, the \(* \) is no longer a formal symbol here: \(a_j^* \) means the adjoint of \(a_j \) in \(\mathcal{A} \). A polynomial \(P \in \mathcal{P}(J) = \mathbb{C}[v_J] \) may be thought of as a function on \(\mathbb{C}^{\varepsilon(J)} \); indeed, these are the only functions on the abstract space \(\mathbb{C}^{\varepsilon(J)} \) that can be made sense of without additional analytic or metric structure. We may therefore compose \(V^J_{(\mathcal{A}, \tau)} \) with \(P \), to give a \(\mathbb{C} \)-valued function
\[
[P]_{(\mathcal{A}, \tau)} = P \circ V^J_{(\mathcal{A}, \tau)} \text{ on } \mathcal{A}^J.
\]

Following [6], we can also defined a \(C\{J\} \)-calculus. It is explicitly given as follows: for each \(a = (a_j)_{j \in J} \in \mathcal{A}^J \) and each \(P_0, \ldots, P_k \in C\{J\} \), we have
\[
(P_0 \text{tr} P_1 \cdots \text{tr} P_k)(a) = P_0(a) \cdot \tau(P_1(a)) \cdots \tau(P_k(a)),
\]
and \(P \mapsto P(a) \) is an algebra homomorphism. It is immediate that identifying \(\tau(C\{J\}) \) with \(\mathcal{P}(J) \) via the isomorphism \(\Upsilon \), this calculus is the same as the calculus defined in the previous paragraph: for all \(P \in \tau(C\{J\}) \cong \mathcal{P}(J) \), we have
\[
P(a) = [P]_{(\mathcal{A}, \tau)}(a).
\]
In the particular case where \((\mathcal{A}, \tau) = (\mathbb{G}L_N, \text{tr})\), we will simply denote the map \([P]_{(\mathcal{A}, \tau)}\) by \([P]_N\).

There is a natural notion of conjugation on \(\mathcal{P}(J) \): \(P^* \) is the result of taking complex conjugates of all coefficients, and reversing \(1 \leftrightarrow * \) in all indices. In terms of evaluation as a trace polynomial function, we have
\[
\]

We finally remark that if \(a = (a_j)_{j \in J} \) with \(a_j = 1_{\mathcal{A}} \) for all \(j \in J \), then \([P]_{(\mathcal{A}, \tau)}(a)\) does not depend on the space \((\mathcal{A}, \tau)\), and we will simply denote it by
\[
P(1) \equiv [P]_{(\mathcal{A}, \tau)}(a).
\]

2.3 Computation of the heat Kernel

We are now able to see how the Laplacian acts on the space of trace polynomial functions (i.e. functions on \(M_N \) given by evaluations \([P]_N\) of \(P \in \mathcal{P}(J) \)).

Theorem 2.4. [16 Theorems 3.8 and 3.9] Let \(T \) be as in (2.3) above. There exist two operators \(\mathcal{D}^T \) and \(\mathcal{L}^T \) on \(\mathcal{P}(J) \), independent from \(N \), such that:

1. \(\mathcal{D}^T \) is a first-order operator, i.e. for all \(P, Q \in \mathcal{P}(J) \), we have \(\mathcal{D}^T(PQ) = \mathcal{D}^T(P)Q + PD^T(Q) \);

2. \(\mathcal{L}^T \) is a second-order operator, i.e. for all \(P, Q, R \in \mathcal{P}(J) \), we have
\[
\mathcal{L}^T(PQR) = \mathcal{L}^T(PQ)R + P\mathcal{L}^T(QR) + \mathcal{L}^T(PR)Q - \mathcal{L}^T(Q)R - P\mathcal{L}^T(Q)R - PQ\mathcal{L}^T(R);
\]
3. For all \(P \in \mathcal{P}(J) \), we have \((T \cdot \Delta^N)([P]_N) = \left([D^T + \frac{1}{N^2}\mathcal{L}^T](P) \right)_N\).

Remark 2.5. In Section 3.3, there is an inductive definition of \(D^T \) and \(\mathcal{L}^T \) which are denoted similarly. In Sections 4.1 and 4.2, there is an explicit definition of \(D^T \) in the simple cases of \(J = \{1\} \) and \((r, s) = (1, 0)\) or \((r, s) = \left(\frac{1}{2}, \frac{1}{2} \right) \), which corresponds respectively to \(\Delta_U \) and \(\Delta_{GL} \), and of \(\mathcal{L}^T \) in the same simple cases, which corresponds respectively to \(\Delta_U \) and \(\Delta_{GL} \). Since we don’t need any more details about \(D^T \) and \(\mathcal{L}^T \), we refer to [6, [13, 16, 17] for further informations about those operators.

Using Definition 2.1, we deduce the following result from Theorem 2.4.

Corollary 2.6. Let \(B^N = (B_{r,s}^{j,N})_{j \in J} \) be a collection of independent \((r, s)\)-Brownian motions on \(GL_N \). Let \(P \in \mathcal{P}(J) \). We have

\[
\mathbb{E}\left([P]_N(B^N(T)) \right) = e^{D^T + \frac{1}{N^2}\mathcal{L}^T}(P) \quad (1).
\]

This is merely the statement, in the present language, of the fact that the expectation of any function of a diffusion can be computed by applying the associated heat semigroup to the function and evaluating at the starting point.

2.4 Free Multiplicative Brownian Motion

Here we give a very brief description of free stochastic processes, and free probability in general. For a complete introduction to the tools of free probability, the best source is the [22]. For brief summaries of central ideas and tools from free stochastic calculus, the reader is directed to [8, Section 1.2-1.3], [16, Section 2.4-2.5], [17, Section 2.7], and [18, Section 1.1-1.2].

A non-commutative probability space is a pair \((\mathcal{A}, \tau)\) where \(\mathcal{A}\) is a unital algebra of operators on a (complex) Hilbert space, and \(\tau\) is a (usually tracial) state on \(\mathcal{A}\): a linear functional \(\tau: \mathcal{A} \to \mathbb{C}\) such that \(\tau(1) = 1\) and \(\tau(ab) = \tau(ba)\). Typical examples are \(\mathcal{A} = M_N\), \(\tau = \text{tr}\) (deterministic matrices), or \(\mathcal{A} = M_N \otimes L^\infty(P)\), \(\tau = \text{tr} \otimes \mathbb{E}_P\) (random matrices with entries having moments of all orders). In infinite-dimensional cases, it is typical to add other topological and continuity properties to the pair \((\mathcal{A}, \tau)\) that we will not elaborate on presently.

Elements of the algebra \(\mathcal{A}\) are generally called random variables. In any non-commutative probability space, one can speak of the non-commutative distribution of a collection of random variables \(a_1, \ldots, a_n \in \mathcal{A} \): it is simply the collection of all mixed moments in \(a_1, \ldots, a_n, a_1^*, \ldots, a_n^*\); that is the collection \(\tau[P(a_j, a_j^*)_1 \leq j \leq n]\) for all non-commutative polynomials \(P\) in \(2n\) variables. We then speak of convergence in non-commutative distribution: if \((\mathcal{A}_N, \tau_N)\) are non-commutative probability spaces, a sequence \((a_1^N, \ldots, a_n^N) \in \mathcal{A}_N^n\) converges in distribution to \((a_1, \ldots, a_n) \in \mathcal{A}^n\) if

\[
\tau[P(a_j^N, (a_j^N)^*)_1 \leq j \leq n] \to \tau[P(a_j, a_j^*)_1 \leq j \leq n] \quad \text{as } N \to \infty, \quad \text{for each } P.
\]

Free independence (sometimes just called freeness) is an independence notion in any non-commutative probability space. Two random variables \(a, b \in \mathcal{A}\) are freely independent if, given any \(n \in \mathbb{N}\) and any non-commutative polynomials \(P_1, \ldots, P_n, Q_1, \ldots, Q_n\) each in two variables which are such that \(\tau(P_j(a, a^*)) = \tau(Q_j(b, b^*)) = 0\) for each \(j\), it follows that \(\tau(P_1(a, a^*)Q_1(b, b^*) \cdots P_n(a, a^*)Q_n(b, b^*)) = 0\). This gives an algorithm for factoring moments: it implies that \(\tau(a^m b^n) = \tau(a^n b^m)\) for any \(m, n \in \mathbb{N}\), just as holds for classically independent random variables, but it also includes higher-order non-commutative polynomial factorizations; for example \(\tau(abab) = \tau(a^2)\tau(b^2) + \tau(a)^2\tau(b^2) - \tau(a)^2\tau(b)^2\). One finds freely independent random variables typically only in infinite-dimensional non-commutative probability spaces, although random matrices often exhibit asymptotic freeness (i.e. they converge in non-commutative distribution to free objects).

In [23], Voiculescu showed that there exists a non-commutative probability space that possess limits \(x(t), y(t)\) of the matrix-valued diffusion processes \(X^N(t), Y^N(t)\) of (2.1) such that \(x(t), y(t)\) are freely independent. Note that this convergence is not just for each \(t\) separately, but for the whole process: convergence of the finite-dimensional non-commutative distributions. The one-parameter families \(x(t), y(t)\) are known as (free copies of)
additive free Brownian motion. We refer to them as free stochastic processes, although they are deterministic in the classical sense.

There is an analogous theory of stochastic differential equations in free probability, cf. [3, 4]. One may construct stochastic integrals with respect to free additive Brownian motion, precisely mirroring the classical construction. In sufficiently rich non-commutative probability spaces (such as the one Voiculescu dealt with in [23]), free Itô stochastic differential equations of the usual form

$$dm(t) = \mu(t, m(t)) \, dt + \sigma(t, m(t)) \, dx(t),$$

have unique long-time solutions with a given initial condition, assuming standard continuity and growth conditions on the drift and diffusion coefficients functions μ, σ. In particular, letting $w_{r,s}(t) = \sqrt{r}x(t) + \sqrt{s}y(t)$ (mirroring (2.1)), the free stochastic differential equation analogous to (2.2),

$$db_{r,s}(t) = b_{r,s}(t) \, dw_{r,s}(t) - \frac{1}{2}(r-s)b_{r,s}(t) \, dt, \quad b_{r,s}(0) = 1,$$

has a unique solution which we call free multiplicative (r, s)-Brownian motion. In the special case $(r, s) = (1, 0)$, it is known as (standard) free multiplicative Brownian motion. Both were introduced in [1], where it was proven that the process $(B_{r,s}^N(t))_{t \geq 0}$ converges to the process $(b_{r,s}(t))_{t \geq 0}$. The main theorem of [17] is the corresponding convergence result for the general processes $(B_{r,s}^N(t))_{t \geq 0}$ to $(b_{r,s}(t))_{t \geq 0}$.

3 Gaussian Fluctuations

In this section, we prove our main Theorem 3.3, which is summarized in the slightly weaker form of Theorem 1.2 in the Introduction. To begin, in Section 3.1 we set the stage with the main tool involved in the computation: the carré du champ operator associated to the Laplacian on \mathbb{GL}_N, which measures the defect of this second order operator from satisfying the product rule. Section 3.2 then gives the statement of our Main Theorem 3.3 and associated results that together yield the Gaussian fluctuations of the \mathbb{GL}_N Brownian motions. Finally, Section 3.3 is devoted to the proof of Theorem 3.3.

3.1 The carré du champ of $T \cdot \Delta^N$

We define the “carré du champ” operator of $T \cdot \Delta^N$ by

$$\Gamma_T^N(f, g) = \frac{1}{2} \left((T \cdot \Delta^N)(fg) - (T \cdot \Delta^N)(f)g - f(T \cdot \Delta^N)(g) \right),$$

or equivalently by

$$\Gamma_T^N(f, g) = \frac{1}{2} \sum_{\xi \in \beta^N_{r,s} \cup J} t_j \cdot (\partial_{\xi_j} f) (\partial_{\xi_j} g).$$

As with the operator $T \cdot \Delta^N$ in Theorem 2.4, the operator Γ_T^N is the push forward of an operator on $\mathcal{P}(J)$ as follows. Let us define the symmetric bilinear form on $\mathcal{P}(J) \times \mathcal{P}(J)$ by

$$\Gamma_T^T(P, Q) = \frac{1}{2} \left(L_T^T(PQ) - L_T^T(P)Q - PL_T^T(Q) \right).$$

Proposition 3.1. For all $P, Q \in \mathcal{P}(J)$, we have $N^2 \Gamma_T^N([P]_N, [Q]_N) = \left[\Gamma_T^T(P, Q) \right]_N$.

10
Proof. Let us denote by \mathcal{D}_N^T the operator $\mathcal{D}^T + \frac{1}{N^2}\mathcal{L}^T$. We have $\mathcal{D}_N^T(PQ) - \mathcal{D}_N^T(P)Q - P\mathcal{D}_N^T(Q) = 0$. As a consequence, $\Gamma^T(P, Q) = \frac{N^2}{2} (\mathcal{D}_N^T(PQ) - \mathcal{D}_N^T(P)Q - P\mathcal{D}_N^T(Q))$. Using $(\mathbf{T} \cdot \Delta^N)([P]_N) = [\mathcal{D}_N^T(P)]_N$, we obtained that
\[
[\Gamma^T(P, Q)]_N = \frac{N^2}{2} ((\mathbf{T} \cdot \Delta^N)([PQ]_N) - (\mathbf{T} \cdot \Delta^N)([P]_N) \cdot [Q]_N - [P]_N \cdot (\mathbf{T} \cdot \Delta^N)([Q]_N)),
\]
which is the “carré du champ” of $\mathbf{T} \cdot \Delta^N$, as wanted. \hfill \Box

Since \mathcal{L}^T is a second-order differential operator, we have the following.

Lemma 3.2. For all $P, Q, R \in \mathcal{D}$,
\[
\Gamma^T(PQ, R) = \Gamma^T(P, R) \cdot Q + P \cdot \Gamma^T(Q, R).
\]
Additionally, for all $P_1, \ldots, P_k \in \mathcal{D}$,
\[
\mathcal{L}^T(P_1 \cdots P_k) = \sum_{i=1}^k P_1 \cdots \hat{P}_i \cdots P_k \mathcal{L}^T(P_i) + 2 \sum_{1 \leq i < j \leq k} P_1 \cdots \hat{P}_i \cdots \hat{P}_j \cdots P_k \Gamma^T(P_i, P_j).
\]

Proof. Using the second-order property of \mathcal{L}^T, we compute
\[
2\Gamma^T(PQ, R) = \mathcal{L}^T(PQR) - \mathcal{L}^T(PQ)R - PQ\mathcal{L}^T(R)
\]
\[
= \mathcal{L}^T(PR)Q - \mathcal{L}^T(P)QR - PQ\mathcal{L}^T(R)
\]
\[
+ P\mathcal{L}^T(QR) - P\mathcal{L}^T(Q)R - PQ\mathcal{L}^T(R)
\]
\[
= 2\Gamma^T(P, R) \cdot Q + 2P \cdot \Gamma^T(Q, R).
\]
By a direct induction, we deduce that
\[
\mathcal{L}^T(P_1 \cdots P_k) = \mathcal{L}^T(P_1 \cdots P_{k-1})P_k + P_1 \cdots P_{k-1}\mathcal{L}^T(P_k) + 2\Gamma^T(P_1 \cdots P_{k-1}, P_k)
\]
\[
= \mathcal{L}^T(P_1 \cdots P_{k-1})P_k + P_1 \cdots P_{k-1}\mathcal{L}^T(P_k) + 2 \sum_{1 \leq i \leq k} P_1 \cdots \hat{P}_i \cdots P_{k-1}\Gamma^T(P_i, P_k)
\]
\[
= \cdots
\]
\[
= \sum_{i=1}^k P_1 \cdots \hat{P}_i \cdots P_k \mathcal{L}^T(P_i) + 2 \sum_{1 \leq i < j \leq k} P_1 \cdots \hat{P}_i \cdots \hat{P}_j \cdots P_k \Gamma^T(P_i, P_j).
\]

3.2 Main theorem

For all $P, Q \in \mathcal{D}(J)$, define
\[
X_P^N \equiv N \left([P]_N(B^N(T)) - \mathbb{E}[[P]_N(B^N(T))] \right)
\]
and
\[
\sigma_T(P, Q) \equiv 2 \int_0^1 \left[e^{t\mathcal{D}^T} \left(\Gamma^T(e^{(1-t)\mathcal{D}^T} P, e^{(1-t)\mathcal{D}^T} Q) \right) \right] (1) \ dt.
\]
Note that $P \in \mathcal{D}(J)$, and the finite-dimensional subspace of elements with degree lower than or equal to the degree of P is invariant under \mathcal{D}^T (cf. [17, Corollary 3.10]). Hence, $e^{(1-t)\mathcal{D}^T}$ makes sense in this context. The same argument applied twice more shows that the integrand makes sense, and the finite-dimensionality of all involved polynomials yields continuity, so the integral is perfectly well-defined.

The following theorem says that the quantities of the form $\mathbb{E}(X_P^N \cdots X_P^N)$ satisfy a Wick formula in large dimension, with covariances given by σ_T. Let us denote by $\mathcal{P}_2(k)$ the set of pairings of $\{1, \ldots, k\}$.

Theorem 3.3. For any $P_1, \ldots, P_k \in \mathcal{P}(J)$, we have

$$\mathbb{E}(X_{P_1}^N \cdots X_{P_k}^N) = \sum_{\pi \in \mathcal{P}_2(k)} \prod_{(i,j) \in \pi} \sigma_T(P_i, P_j) + O\left(\frac{1}{N}\right).$$

Theorem 3.3 is proved in the next section. We will first reformulate this result as convergence towards a Gaussian field.

Lemma 3.4. There exists a complex Gaussian Hilbert space K (cf. [14]) with some specified random variables $(\xi_P)_{P \in \mathcal{P}} \in K$ such that $P \mapsto \xi_P$ is linear, $\mathbb{E}(\xi_P \xi_Q) = \sigma_T(P, Q)$ and $\xi_P = \xi_{P^*}$.

Proof. Firstly, the map σ_T is symmetric, non-negative and bilinear on the subspace \mathcal{P}_{sa} of self-adjoint elements of $\mathcal{P}(J)$, and therefore there exists a real Gaussian Hilbert space H and a linear map $P \mapsto \xi_P$ from \mathcal{P}_{sa} to H such that $\mathbb{E}(\xi_P \xi_Q) = \sigma_T(P, Q)$. Let $K = H_\mathbb{C}$, the complexification of H. For all $P \in \mathcal{P}$, we set $\xi_P = (\xi_{P+P^*})/2 + i(\xi_{P-P^*})/2i$ which is linear in P. By bilinearity of σ_T, $\mathbb{E}(\xi_P \xi_Q) = \sigma_T(P, Q)$. Finally,

$$\overline{\xi_P} = (\xi_{P+P^*})/2 - i(\xi_{P-P^*})/2i = (\xi_{P^*+P})/2 + i(\xi_{P-P^*})/2i = \xi_{P^*}. \quad \square$$

Corollary 3.5. As $N \to \infty$, $(X_{P_1}^N, \ldots, X_{P_k}^N) \to (\xi_{P_1}^*, \ldots, \xi_{P_k}^*)$ almost surely in finite-dimensional distribution: for all $P_1, \ldots, P_k \in \mathcal{P}(J)$,

$$(X_{P_1}^N, \ldots, X_{P_k}^N) \xrightarrow{(d) \ N \to \infty} (\xi_{P_1}, \ldots, \xi_{P_k}).$$

More generally, in the dual space $\mathcal{P}(J)^*$ endowed with the topology of pointwise convergence, the random linear map $X^N : P \mapsto X_{P}^N$ converge to the random linear map $\xi : P \mapsto \xi_P$ in distribution:

$$X^N \xrightarrow{(d) \ N \to \infty} \xi.$$

Note that, for P and Q in $\mathcal{P}(J)$, the asymptotic covariance of X_{P}^N and X_{Q}^N, or equivalently the covariance of ξ_P and ξ_Q, is $\mathbb{E}(\xi_P \xi_Q) = \mathbb{E}(\xi_P \xi_Q^*) = \sigma_T(P, Q^*)$, which is different from $\sigma_T(P, Q)$.

Proof. Let $k \in \mathbb{N}$ and $P_1, \ldots, P_k \in \mathcal{P}(J)$. Because the vector $(\xi_{P_1}, \ldots, \xi_{P_k})$ is Gaussian, it suffices to prove the convergence of the $*$-moments of $(X_{P_1}^N, \ldots, X_{P_k}^N)$ to those of $(\xi_{P_1}, \ldots, \xi_{P_k})$. Let $1 \leq i_1, \ldots, i_n, j_1, \ldots, j_m \leq k$. We want to prove that

$$\mathbb{E}(X_{i_1}^N \cdots X_{i_n}^N \overline{X}_{j_1}^N \cdots \overline{X}_{j_m}^N) \xrightarrow{N \to \infty} \mathbb{E}(\xi_{i_1} \cdots \xi_{i_n} \overline{\xi}_{j_1} \cdots \overline{\xi}_{j_m}).$$

We have

$$\mathbb{E}(X_{P_1}^N \cdots X_{P_n}^N \overline{X}_{P_{j_1}}^N \cdots \overline{X}_{P_{j_m}}^N) = \mathbb{E}(X_{P_1}^N \cdots X_{P_n}^N X_{P_{j_1}}^N \cdots X_{P_{j_m}}^N) \xrightarrow{N \to \infty} \mathbb{E}(\xi_{P_1} \cdots \xi_{P_n} \xi_{P_{j_1}} \cdots \xi_{P_{j_m}}).$$

The general convergence in distribution follows because $\mathcal{P}(J)$ is a countable-dimensional metric space. \quad \square
3.3 Proof of Theorem 3.3

Observing that \((P_1, \ldots, P_k) \mapsto \mathbb{E}(X_{P_1}^N \cdots X_{P_k}^N)\) and \((P_1, \ldots, P_k) \mapsto \sum_{\pi \in \mathcal{P}_2(k)} \prod_{(i,j) \in \pi} \sigma_T(P_i, P_j)\) are symmetric multilinear forms on \(\mathcal{P}(J)\), it suffices by polarization to verify the asymptotic when \(P_1 = \cdots = P_k = P\) (cf. [14, Appendix D]). In this case, set \(Q_N = P - \mathbb{E}[P(B^N(T))]\). (Note that \(Q_N\) is an element of the abstract space \(\mathcal{P}(J);\) it should not be confused with the notation \([Q]_N\) for evaluation as a trace polynomial function on \(\mathbb{M}_N\).) We want to prove that

\[
N^k \mathbb{E}([Q_N^k]_N(B^N(T))) = \sum_{\pi \in \mathcal{P}_2(k)} \prod_{(i,j) \in \pi} \sigma_T(P_i, P_j) + O\left(\frac{1}{N}\right).
\]

To begin, we remark that

\[
\mathbb{E}(Q_N^k(B^N(T))) = \left[e^{\frac{D}{N^2}} + \frac{1}{N^2} \mathcal{L}^T(Q_N^k) \right],
\]

thanks to Corollary 2.6. The proof will consist in identifying the leading term in the development of \(e^{\frac{D}{N^2}} + \frac{1}{N^2} \mathcal{L}^T\) with respect to \(N\).

In order to control the negligible terms in the development, we will work on a finite dimensional space. Let \(d \in \mathbb{N}\) be the degree of \(Q_N\). The subalgebra \(\mathcal{P}_{kd}\) of elements of \(\mathcal{P}(J)\) whose degrees are \(\leq kd\) is finite dimensional and we endow it with some fixed unital algebra norm \(\|\cdot\|_{(kd)}\). Let us denote by \(\|\cdot\|_{(kd)}\) the induced operator norm on the finite dimensional algebra \(\text{End}(\mathcal{P}_{kd})\), and by \(\|\cdot\|_{(d,d')}\) the induced norm of bilinear maps from \(\mathcal{P}_{d} \times \mathcal{P}_{d'}\) to \(\mathcal{P}_{d+d'}\) when \(d + d' \leq kd\) (in the following development, we will often omit the indices \((kd)\) or \((d,d')\)). Throughout this proof, we will denote by \(D, L\) and \(\Gamma\) the operators \(\mathcal{D}^T, \mathcal{L}^T\) and \(\Gamma^T\) restricted to the finite dimensional algebra \(\mathcal{P}_{kd}\). The differentiability of the exponential map leads to \(e^{\frac{D}{N^2}} = e^D + O(1/N^2)\). More precisely, we have the following result.

Lemma 3.6. For all \(t \geq 0\), we have

\[
e^{t(D + \frac{1}{N^2} L)} = e^{tD} + \frac{1}{N^2} \int_0^t e^{\frac{1}{N^2} L}(t-t_1)^D dt_1.
\]

More generally, for all \(k \in \mathbb{N}\), we have

\[
e^{t(D + \frac{1}{N^2} L)} = e^{tD} + \sum_{n=1}^k \frac{1}{N^{2n}} \int_{0 \leq t_n \leq \cdots \leq t_1 \leq t} e^{t_n D} L e^{(t_{n+1} - t_n)D} L \cdots L e^{(t_1 - t_0)D} dt_1 \cdots dt_n
\]

\[+ \frac{1}{N^{2(k+1)}} \int_{0 \leq t_{k+1} \leq \cdots \leq t_1 \leq t} e^{t_{k+1} D} L e^{(t_{k+1} - t_k)D} L \cdots L e^{(t_1 - t_0)D} dt_1 \cdots dt_{k+1}.
\]

Proof. Let us define \(S(t) = e^{t(D + \frac{1}{N^2} L)} e^{-tD}\); then \(S\) is differentiable, and

\[
S'(t) = e^{t(D + \frac{1}{N^2} L)}(D + \frac{1}{N^2} L - D)e^{-tD} = \frac{1}{N^2} S(t)e^{tD}Le^{-tD}.
\]

Since \(S(0) = I_N\), it follows that \(S(t) = 1 + \frac{1}{N^2} \int_0^t S(\theta)e^{\theta D}Le^{-\theta D} d\theta\). Multiplying by \(e^{tD}\) on the right gives us the first formula. The second formula is obtained by induction over \(k\), using at each step the first formula.

For \(n \in \mathbb{N}\), let us denote by \(\Delta_n \subset \mathbb{R}^n\) the simplex

\[
\Delta_n = \{(t_1, \ldots, t_n) \in \mathbb{R}^n: 0 \leq t_n \leq t_{n-1} \leq \cdots \leq t_1 \leq 1\}.
\]

Using the lemma at step \([k/2]\), the study of the limit of \(N^k \left[e^{D + \frac{1}{N^2} L}(Q_N^k) \right] (1)\) is decomposed into the study of the limits of:
1. $N^k [e^D(Q_N^k)](1)$,

2. $N^{k - 2n} \left[\int_{\Delta_n} e^{tn} D L e^{(t_{n+1}-t_n) D} L \cdots L e^{(1-t_1) D} dt_1 \cdots dt_n (Q_N^k) \right] (1)$ for $1 \leq n \leq \lfloor k/2 \rfloor$, and

3. $N^{k - 2 - \lfloor k/2 \rfloor} \left[\int_{\Delta_{k+1}} e^{tk+1(D + \frac{1}{\sqrt{k}} P)} L e^{(t_{k+1}-t_k) D} L \cdots L e^{(1-t_1) D} dt_1 \cdots dt_{k+1} (Q_N^k) \right] (1)$,

which we address separately in the following three steps. In the fourth step, we sum up the three convergences to conclude the proof. We will see that the only term which does not vanish is the second term considered when $n = \lfloor k/2 \rfloor$.

Step 1 We have $Q_N = P - \mathbb{E}[P(B^N(T))] = P - \left[e^{\frac{D + \frac{1}{\sqrt{k}} P}{N}} (P) \right] (1)$ thanks to Corollary 2.6. Since the map $A \mapsto [A(P)](1)$ is linear, it is therefore bounded and we have $\left[e^{\frac{D + \frac{1}{\sqrt{k}} P}{N}} (P) \right] (1) = [e^D(P)](1) + O(1/N^2)$. Consequently,

$$Q_N = P - [e^D(P)](1) + O(1/N^2) \tag{3.2}$$

and therefore $Q_N^k = (P - [e^D(P)](1))^k + O(1/N^{2k})$. Since D satisfies the product rule, we deduce from a standard formal power series argument that e^D is an algebra homomorphism. Thus

$$[e^D(Q_N^k)](1) = \left[e^D(P - [e^D(P)](1))^k \right] (1) + O(1/N^{2k})$$

$$= ([e^D(P)](1) - [e^D(P)](1))^k + O(1/N^{2k})$$

$$= O(1/N^{2k}).$$

Finally, $N^k [e^D(Q_N^k)](1) = O(1/N^k)$.

Step 2 We are assuming at this step that $2 \leq k$. For all $R \in \mathcal{P}(J)$, $t \geq 0$ and $n \geq 2$, we have by Lemma 3.2

$$L((e^D(Q_N^k))^n \cdot R) = (e^DQ_N^n) L(R) + n(e^DQ_N^n)^{n-1} \Gamma(e^{D}Q_N, R) + n(e^DQ_N^n)^{-1} L(e^DQ_N) R + n(n-1)(e^DQ_N^n)^{n-2} \Gamma(e^DQ_N, e^DQ_N) R.$$

In other words, for all $d' \leq (k - 1)d$, if we define the bilinear map $B_n : (S, R) \mapsto S \cdot L(R) + 2n \Gamma(S, R) + nL(S) \cdot R$ from $\mathcal{P}_d \times \mathcal{P}_{d'}$ to $\mathcal{P}_{d+d'}$, we have, for all $R \in \mathcal{P}_d$,

$$L((e^D(Q_N^k))^n \cdot R) = (e^DQ_N^n)^{-1} B_n(e^DQ, R) + n(n-1)(e^DQ_N^n)^{n-2} \Gamma(e^DQ_N, e^DQ_N) R. \tag{3.3}$$

Let us denote by $\Gamma(t)$ the element $e^{tD} \Gamma(e^{(1-t)D}Q_N, e^{(1-t)D}Q_N) \in \mathcal{P}_{2d}$. Using (3.3), we prove by induction on n the following lemma.

Lemma 3.7. For all n such that $1 \leq n \leq \lfloor k/2 \rfloor$ and $0 \leq t_n \leq \cdots \leq t_0 = 1$, there exists $R_n \in \mathcal{P}_{(2n-1)d}$ bounded independently of N, t_0, \ldots, t_n such that

$$L e^{(t_{n-1}-t_n) D} \cdots L e^{(1-t_1) D}(Q_N^k)$$

$$= \frac{k!}{(k-2n)!} (e^{(1-t_n) D} Q_N^{k-2n} e^{-t_n D} \Gamma(t_1) \cdots \Gamma(t_n)) + (e^{(1-t_1) D} Q_N^{k-2n+1} R_n. \tag{3.4}$$

Proof. Indeed, when $n = 1$, setting $R_1 = kL(e^{(1-t_1) D} Q_N) \in \mathcal{P}_d$ which is bounded by $k \| L \| e^D \| Q_N \|$, we have

$$L e^{(1-t_1) D}(Q_N^k) = k(k-1)(e^{(1-t_1) D} Q_N^{k-2} \Gamma(e^{(1-t_1) D} Q_N, e^{(1-t_1) D} Q_N) + (e^{(1-t_1) D} Q_N^{k-1} R_1.$$
Because of (3.2), it is bounded independently of \(N \), and so too is \(R_1 \). Assume now that \(2 \leq n \leq \lfloor k/2 \rfloor \) and that (3.4) has been verified up to level \(n - 1 \). We compute

\[
Le^{(t_{n-1} - t_n)D} L \cdots Le^{(T-t_1)D} (Q_N^k)
= Le^{(t_{n-1} - t_n)D} \left(\frac{k!}{(k-2n+2)!} (e^{(T-t_{n-1})D} Q_N^{-2n+2} e^{-t_{n-1}D} (\Gamma(t_1) \cdots \Gamma(t_{n-1})) \right)
+ (e^{(T-t_{n-1})D} Q_N^{-2n+3} R_{n-1})
= \frac{k!}{(k-2n+2)!} L \left((e^{(T-t_{n-1})D} Q_N^{-2n+2} e^{-t_{n-1}D} (\Gamma(t_1) \cdots \Gamma(t_{n-1})) \right)
+ L \left((e^{(T-t_{n-1})D} Q_N^{-2n+3} R_{n-1}) \right).
\]

We use now (3.3) on each term. The first term leads to

\[
\frac{k!}{(k-2n+2)!} (e^{(1-t_n)D} Q_N^{-2n} e^{-t_nD} (\Gamma(t_1) \cdots \Gamma(t_n))
+ \frac{k!}{(k-2n+2)!} (e^{(1-t_n)D} Q_N^{-2n+2} B_{k-2n+2} (e^{(1-t_n)D} Q_N^{-2n+2} e^{-t_nD} (\Gamma(t_1) \cdots \Gamma(t_{n-1}))))
\]

and the second term to

\[
(e^{(1-t_n)D} Q_N^{-2n+2} B_{k-2n+3} (e^{(1-t_n)D} Q_N^{-1} R_{n-1})
+ (k-2n+3)(k-2n+2) (e^{(1-t_n)D} Q_N^{-2n+1} + e^{(1-t_n)D} Q_N^{-1} R_{n-1}).
\]

Thus, \(R_n \in \mathcal{P}_{(2n-1)d} \) can be defined by

\[
R_n = \frac{k!}{(k-2n+2)!} B_{k-2n+2} \left((e^{(1-t_n)D} Q_N^{-2n} e^{-t_nD} (\Gamma(t_1) \cdots \Gamma(t_{n-1}))
+ (e^{(1-t_n)D} Q_N^{-2n+2} B_{k-2n+3} (e^{(1-t_n)D} Q_N^{-1} R_{n-1})
+ (k-2n+3)(k-2n+2) (e^{(1-t_n)D} Q_N^{-2n+1} + e^{(1-t_n)D} Q_N^{-1} R_{n-1})
\]

which verifies (3.4) and which is bounded by

\[
\frac{k!}{(k-2n+2)!} \left(\|B_{k-2n+2}\|_{(d,2(n-1)d)} e^{2\|D\|} \|Q_N\| \|\Gamma(t_1)\| \cdots \|\Gamma(t_{n-1})\| + e^{2\|D\|} \|Q_N\|^2 \|B_{k-2n+3}\|_{(d,2(n-1)d)} \|R_{n-1}\| + (k-2n+3)(k-2n+2) \|\Gamma\|_{(d,d)} e^{2\|D\|} \|Q_N\|^2 \|R_{n-1}\|.
\]

Because of (3.2), it is bounded independently of \(N \). We deduce also that

\[
\Gamma(t_i) = e^{t_iD} \Gamma(e^{(1-t_i)D} Q_N, e^{(1-t_i)D} Q_N)
\]

is bounded by \(\|\Gamma\|_{(d,d)} e^{2\|D\|} \|Q_N\|^2 \) and consequently is bounded independently of \(N, t_1, \ldots, t_n \). Thus, \(R_n \) is bounded independently of \(N, t_1, \ldots, t_n \), as required.

We recall that, because \(D \) is a first order operator, \(e^{t_nD} \) is an algebra homomorphism. Applying \(e^{t_nD} \) to (3.4) on the left, we obtain that, for all \(1 \leq n \leq \lfloor k/2 \rfloor \), \(N \in \mathbb{N} \), and \((t_1, \ldots, t_n) \in \Delta_n \), there exists \(\bar{R}_n \in \mathcal{P}_{(2n-1)d} \) bounded uniformly in \(N, t_0, \ldots, t_n \) such that

\[
e^{t_nD} Le^{(t_{n-1} - t_n)D} L \cdots Le^{(1-t_1)D} (Q_N^k) = \frac{k!}{(k-2n)!} (e^{DQ_N} e^{-t_nD} (\Gamma(t_1) \cdots \Gamma(t_n)) + (e^{DQ_N} e^{-t_nD} (\Gamma(t_1) \cdots \Gamma(t_n)))
\]

15
where $\Gamma(t)$ denotes the element $e^{tD} \Gamma(e^{(1-t)D} Q_N, e^{(1-t)D} Q_N) \in \mathcal{P}_d$.

From (3.2), we deduce that we have $[e^D Q_N]^{k-2n}(1) = O(1/N^{2k-4n})$ and $[e^D Q_N]^{k+1-2n}(1) = O(1/N^{2k+1-4n})$. We have already remarked in the proof of (3.4) that $\Gamma(t_i) = e^{t_i D} \Gamma(e^{(1-t_i)D} Q_N, e^{(1-t_i)D} Q_N)$ and Q_N are bounded independently of N, t_1, \ldots, t_n; consequently,

$$N^{2k-4n} \frac{k!}{(k-2n)!} \left[(e^D Q_N)^{k-2n}(1) \Gamma(t_1) \cdots \Gamma(t_n) \right]$$

are bounded independently of N, t_1, \ldots, t_n, and we deduce that

$$N^{k-2n} \left[\int_{\Delta_n} e^{t_n D} L e^{(t_{n+1}-t_n) D} L \cdots L e^{(t_{q}-t_1) D} L dt_1 \cdots dt_n(Q_N^k) \right] = O(1/N) \text{ if } k > 2n,$$

is equal to $k! \int_{\Delta_n} (\Gamma(t_1) \cdots \Gamma(t_n)) (1) dt_1 \cdots dt_n + O(1/N)$ if $k = 2n$.

In the case where $k = 2n$, because the integrand is symmetric in t_1, \ldots, t_n, the remaining term is equal to

$$\frac{k!}{n!} \int_{0 \leq t_1, \ldots, t_n \leq 1} [\Gamma(t_1) \cdots \Gamma(t_n)] (1) dt_1 \cdots dt_n = \frac{k!}{n!} \left(\int_0^1 \Gamma(t) (1) dt \right)^n = \frac{(2n)!}{2^n n!} \sigma_T(Q_N, Q_N)^n.$$

Note that L kills constants, and similarly $\Gamma(P + c, Q + d) = \Gamma(P, Q)$ for any $c, d \in \mathbb{C}$. As a consequence, $\sigma_T(Q_N, Q_N) = \sigma_T(P, P)$.

To sum up,

$$N^{k-2n} \left[\int_{\Delta_n} e^{t_n D} L e^{(t_{n+1}-t_n) D} L \cdots L e^{(t_{q}-t_1) D} L dt_1 \cdots dt_n(Q_N^k) \right] (1)$$

is equal to $\frac{(2n)!}{2^n n!} \sigma_T(P, P)^n + O(1/N)$ if $k = 2n$ and $O(1/N)$ if not.

Step 3 We have $Q_N^k = (P - [e^D(P)](1))^k + O(1/N^{2k})$ and

$$\left\| \int_{\Delta_{k+1}} e^{t_{k+1}(D+\frac{1}{N^2} L)} L e^{(t_{k+1}-t_k) D} L \cdots L e^{(t_1-t_1) D} L dt_1 \cdots dt_{k+1} \right\| \leq \| L \|^n \| e^D L \|^n \| D \|^n.$$

Consequently

$$\left[\int_{\Delta_{k+1}} e^{t_{k+1}(D+\frac{1}{N^2} L)} L e^{(t_{k+1}-t_k) D} L \cdots L e^{(t_1-t_1) D} L dt_1 \cdots dt_{k+1}(Q_N^k) \right] = O(1/N).$$

is bounded independently of N. On the other hand, $k - 2([k/2] + 1) \leq -1$ and $N^{k-2([k/2]+1)}$ is therefore $O(1/N)$. Thus, the term studied is $O(1/N)$.

Step 4 Finally, $N^k \mathbb{E}(Q_N^k) = \frac{k!}{2^{k/2} (k/2)!} \sigma_T(P, P)^{k/2} + O(1/N)$ if k is even and $O(1/N)$ if not. Because the cardinality of $\mathcal{P}_2(k)$ is $\frac{k!}{2^{k/2} (k/2)!}$ if k is even and 0 if not, we have demonstrated the desired bound,

$$N^k \mathbb{E}(Q_N^k) = \sum_{\pi \in \mathcal{P}_2(k)} \prod_{(i,j) \in \pi} \sigma_T(Q, Q) + O\left(\frac{1}{N}\right).$$

This concludes the proof of Theorem 3.3.
4 Study of the covariance

In [19], Lévy and Maïda established a central limit theorem for random matrices arising from a unitary Brownian motion, which corresponds to the \((r, s) = (1, 0)\) case.

Theorem 4.1. [19, Theorem 2.6] Let \((U_i^N)_{i \geq 0}\) be a unitary Brownian motion on \(\mathbb{U}_N\) \((U^N(t) = B^N_{1,0}(t)\) in our language). Let \(P_1, \ldots, P_n \in \mathbb{C}[X, X^{-1}]\), and \(T \geq 0\). When \(N \to \infty\), the random vector

\[
N \left(\text{tr} \left(P_t(U^N(T)) \right) - \mathbb{E} \left[\text{tr} \left(P_t(U^N(T)) \right) \right] \right)_{1 \leq t \leq n}
\]

converges in distribution to a Gaussian vector.

(In fact, the test functions allowed in their approach were not only polynomials but \(C^1\) real-valued functions with Lipschitz derivative on unit circle. Generalizing to \(\mathbb{GL}_N\) does not allow for such functional calculus. The statement above for Laurent polynomials is obtained easily from the real-valued case by linearity.)

The limit covariance involves three free unitary Brownian motion \(u_1, u_2, u_3\) which correspond to the \(\text{tr} \cdot \text{tr}\) statement above for Laurent polynomials is obtained easily from the real-valued case by linearity.)

Proposition 4.2. Let \(B^N, C^N, D^N\) be three families of independent \((r, s)\)-Brownian motions on \(\mathbb{GL}_N\) indexed by \(J\) which are independent. For all \(P, Q \in \mathcal{P}(J)\), we have

\[
\sigma_T(P, Q) = 2N^2 \int_0^1 \mathbb{E} \left[\Gamma^T_N \left([P]_N(B_{tT}^N(\cdot)C_{(1-t)T}^N), [Q]_N(B_{tT}^N(\cdot)D_{(1-t)T}^N) \right) (I^J_N) \right] \, dt + O \left(\frac{1}{N^2} \right).
\]

(To be clear on notation: the functions in the arguments of \(\Gamma^T_N\) above are

\[
G \mapsto [P]_N(B_{tT}^N GC_{(1-t)T}^N) \quad \text{and} \quad G \mapsto [Q]_N(B_{tT}^N GD_{(1-t)T}^N);
\]

the resultant function after applying \(\Gamma^T\) is then evaluated at \(I^J_N\) before integrating. This \((\cdot)\) notation is used throughout this section.)
Proof. For all $P, Q \in \mathcal{P}(J)$, we have

$$\sigma_T(P, Q) = 2 \int_0^1 \left[e^{t(D^T + \frac{1}{s^2} \xi T)} \left(\Gamma_T \left(e^{(1-t)(D^T + \frac{1}{s^2} \xi T)} P, e^{(1-t)(D^T + \frac{1}{s^2} \xi T)} Q \right) \right) \right] (1) \ dt.$$

As in the proof of Theorem 3.3, we restrict our computations on a finite-dimensional space \mathcal{P}_d (take d to be the sum of the degrees of P and Q). Because of Lemma 2.6, we have $N^2 \left(e^{t(D^T)} - e^{t(D^T + \frac{1}{s^2} \xi T)} \right)$ bounded independently of N and t; consequently, it is straightforward to verify that

$$\sigma_T(P, Q) = 2 \int_0^1 \left[e^{t(D^T + \frac{1}{s^2} \xi T)} \left(\Gamma_T \left(e^{(1-t)(D^T + \frac{1}{s^2} \xi T)} P, e^{(1-t)(D^T + \frac{1}{s^2} \xi T)} Q \right) \right) \right] (1) \ dt + O \left(\frac{1}{N^2} \right).$$

Hence, the proof will be complete once we show that, for $0 \leq t \leq 1$,

$$\left[e^{t(D^T + \frac{1}{s^2} \xi T)} \left(\Gamma_T \left(e^{(1-t)(D^T + \frac{1}{s^2} \xi T)} P, e^{(1-t)(D^T + \frac{1}{s^2} \xi T)} Q \right) \right) \right] (1) = N^2 \mathbb{E} \left[\Gamma_T \left([P]_N(B_t^N(\cdot) C^N(1-t)_T), [Q]_N(B_t^N(\cdot) D^N(1-t)_T) \right) (I_N^t) \right].$$

Fix $t \in [0, 1]$. We start from the left side to recover the right side. First of all, using Theorem 2.4 and Corollary 2.6, we have

$$\left[e^{t(D^T + \frac{1}{s^2} \xi T)} \left(\Gamma_T \left(e^{(1-t)(D^T + \frac{1}{s^2} \xi T)} P, e^{(1-t)(D^T + \frac{1}{s^2} \xi T)} Q \right) \right) \right] (1) = N^2 \left[e^{t(T \cdot N^t)} \left(\Gamma_T \left(e^{(1-t)(T \cdot N^t)} P, e^{(1-t)(T \cdot N^t)} Q \right) \right) \right] (I_N^t)$$

For all $\xi, \zeta \in \beta_{r,s}$, and for all $\xi \in \beta_{r,s}^N$, ξ_j is the left-invariant vector field which acts only on the jth component of $\mathbb{G}L_{N}^J$. Let us denote respectively by L_ξ and R_ξ the left and the right translation by ξ. We follow the notation of Section 2.1. We compute

$$\left(\Gamma_T \left(e^{(1-t)(T \cdot N^t)} P, e^{(1-t)(T \cdot N^t)} Q \right) \right) (B_t^N)$$

$$= \frac{1}{2} \sum_{\xi \in \beta_{r,s}^N, j \in J} t_j \left(\partial_{\xi_j} (e^{(1-t)(T \cdot N^t)} P) \right) \left(\partial_{\xi_j} (e^{(1-t)(T \cdot N^t)} Q) \right) (B_t^N)$$

Here, in order to reverse the different operators, we introduce the right-invariant vector fields. For all $\xi \in \mathbb{M}_N$, let us denote by ∂'_ξ the associated right-invariant vector field on $\mathbb{G}L_N$:

$$(\partial'_\xi f)(g) = \frac{d}{dt} \bigg|_{t=0} f(e^{t\xi} g), \quad f \in C^\infty(\mathbb{G}L_N).$$

For all $\xi \in \beta_{r,s}^N$, ∂'_ξ is the corresponding right-invariant vector field which acts only on the jth component of $\mathbb{G}L_{N}^J$. Note that, for all $\xi, \zeta \in \mathbb{M}_N$ and all $j, k \in J$, the vector fields ∂_ξ and ∂'_ζ commute. Moreover, for all
\(f \in C^\infty(\mathbb{GL}^J_N) \), we have \((\partial_{\xi_j} f)(I^j_N) = (\partial_{\xi_j} f)(I^j_N) \). Using those two facts, we compute

\[
\left(L_{B^N_{IT}} \circ (\partial_{\xi_j} e^{(1-t)(T \cdot \Delta^N)}[P]_N) \right) (I^j_N) = \left(\partial_{\xi_j} e^{(1-t)(T \cdot \Delta^N)}(L_{B^N_{IT}} \circ [P]_N) \right) (I^j_N)
\]

\[
= \left(\partial_{\xi_j} e^{(1-t)(T \cdot \Delta^N)}(L_{B^N_{IT}} \circ [P]_N) \right) (I^j_N)
\]

\[
= \left(e^{(1-t)(T \cdot \Delta^N)} \partial_{\xi_j} (L_{B^N_{IT}} \circ [P]_N) \right) (I^j_N)
\]

\[
\equiv \left[\left(\partial_{\xi_j} (L_{B^N_{IT}} \circ [P]_N) \right) (C^N_{(1-t)T}) \right] B^N_{IT}
\]

\[
= \left[\left(R_{C^N_{(1-t)T}} \circ \partial_{\xi_j} (L_{B^N_{IT}} \circ [P]_N) \right) (I^j_N) \right] B^N_{IT}
\]

\[
= \left[\partial_{\xi_j} \left([P]_N(B^N_{IT} \circ C^N_{(1-t)T}) \right) (I^j_N) \right] B^N_{IT}
\]

and similarly \(\left(L_{B^N_{IT}} \circ (\partial_{\xi_j} e^{(1-t)(T \cdot \Delta^N)}[P]_N) \right) (I^j_N) = \mathbb{E} \left[\partial_{\xi_j} \left([Q]_N(B^N_{IT} \circ D^N_{(1-t)T}) \right) (I^j_N) \right] B^N_{IT} \). It follows that

\[
\frac{1}{2} \sum_{\xi \in \beta^N_{it}, j \in J} t_j \left[\left(L_{B^N_{IT}} \circ (\partial_{\xi_j} e^{(1-t)(T \cdot \Delta^N)}[P]_N) \right) (I^j_N) \right] \cdot \left[\left(L_{B^N_{IT}} \circ (\partial_{\xi_j} e^{(1-t)(T \cdot \Delta^N)}[P]_N) \right) (I^j_N) \right]
\]

\[
= \frac{1}{2} \sum_{\xi \in \beta^N_{it}, j \in J} t_j \mathbb{E} \left[\partial_{\xi_j} \left([P]_N(B^N_{IT} \circ C^N_{(1-t)T}) \right) (I^j_N) \right] \cdot \partial_{\xi_j} \left([Q]_N(B^N_{IT} \circ D^N_{(1-t)T}) \right) (I^j_N) \right] B^N_{IT}
\]

Taking the expectation leads to the right side of (4.2).

We shall now let the dimension tend to infinity in the previous proposition in order to have a new expression of the covariance involving three freely independent free multiplicative \((r, s)\)-Brownian motions.

Theorem 4.3. For all \(P, Q \in \mathcal{P}(J) \), there exists \(\tilde{\Gamma}^T(P, Q) \in \mathcal{P}(J^3) \) such that for all \(N \in \mathbb{N} \), and all \(B, C, D \in \mathbb{GL}^J_N \),

\[
N^2 \tilde{\Gamma}^T_N ([P]_N(B(\cdot)C), [Q]_N(B(\cdot)D)) (I^j_N) = \left[\tilde{\Gamma}^T(P, Q) \right]_N (B, C, D)
\]

(4.3)

and in this case, taking three families \(b, c, d \) of free multiplicative \((r, s)\)-Brownian motions indexed by \(J \) which are freely independent in a non-commutative probability space \((\mathcal{A}, \tau)\), we have

\[
\sigma_T(P, Q) = 2 \int_0^1 \left[\tilde{\Gamma}^T(P, Q) \right]_{(\mathcal{A}, \tau)} (bt, c(1-t)T, d(1-t)T) dt.
\]

This expression for the covariance, albeit instructive, is not explicit, but in the next section, we will compute the function \(\left[\tilde{\Gamma}^T(P, Q) \right]_N \) explicitly in the simple case \(J = \{1\} \) and \(T = (T) \).

Proof. Let us suppose first that the polynomials \(P \) and \(Q \) are given by \(P = v_\varepsilon \) and \(Q = v_\delta \), with \(\varepsilon = ((j_1, \varepsilon_1), \ldots, (j_n, \varepsilon_n)) \in \mathcal{E} \) and \(\delta = ((k_1, \delta_1), \ldots, (k_m, \delta_m)) \in \mathcal{E} \). Hence, for any input \(G \in \mathbb{M}_N \),

\[
[P]_N(BGC) = \text{tr}((BGC)_{j_1} \cdots (BGC)_{j_n}^\delta), \quad [Q]_N(BGD) = \text{tr}((BGD)_{k_1}^\delta \cdots (BGD)_{k_m}^\delta).
\]

19
We can then compute
\[
\partial_{\xi_j} \left([P]_N(B(\cdot)C) \right) (I^T_N) = \sum_{l=1}^{n} \delta_{j,l} \text{tr}((BC)^{\xi_1}_{j_1} \cdots (BC)^{\xi_k}_{j_k}) (BC)^{\xi_n}_{j_n}) = \sum_{l=1}^{n} \delta_{j,l} \text{tr}(\xi^{\varepsilon_l} \cdot [v_{\varepsilon_l}]_N(B, C, D)),
\]
where \(\varepsilon^{(l)}\) is a word in \(\mathcal{E}(J^3)\), which depends on \(\varepsilon\) and \(l\). Similarly,
\[
\partial_{\xi_j} \left([Q]_N(B(\cdot)D) \right) (I^T_N) = \sum_{h=1}^{m} \delta_{j,h} \text{tr}(\xi^{\varepsilon_h} \cdot [v_{\varepsilon_h}]_N(B, C, D)),
\]
where \(\delta^{(h)}\) is a word in \(\mathcal{E}(J^3)\), which depends on \(\delta\) and \(h\). Finally, using the magic formula of Proposition 2.2, we have
\[
\frac{N^2}{2} \sum_{\xi \in \mathbb{R}^n, j \in J} t_j \delta_{\xi_j} \left([P]_N(B(\cdot)C) \right) \partial_{\xi_j} \left([Q]_N(B(\cdot)D) \right) (I^T_N)
\]
\[
= \frac{1}{2} \sum_{j \in J} t_j \sum_{l=1}^{n} \sum_{h=1}^{m} \delta_{j,l} \delta_{j,h} (s + \sigma_{l,hr}) \text{tr}([v_{\varepsilon_l}](B, C, D) \cdot [v_{\varepsilon_h}](B, C, D)),
\]
where \(\sigma_{l,h} \in \{\pm 1\}\) depends on \(\varepsilon\), \(\delta\), \(l\) and \(h\). Thus, the element
\[
\hat{\Gamma}^T(P, Q) = \frac{1}{2} \sum_{j \in J} t_j \sum_{l=1}^{n} \sum_{h=1}^{m} \delta_{j,l} \delta_{j,h} (r + \sigma_{l,hs}) v_{\varepsilon_l}(\delta_{l,h}) \in \mathcal{P}(J^3)
\]
satisfies (4.3).

We extend the definition of \(\hat{\Gamma}^T\) to all elements of \(\mathcal{P}(J)\) of the form \(P_1 \cdots P_k, Q_1 \cdots Q_l \in \mathcal{P}\) by the relation
\[
\hat{\Gamma}^T(P_1 \cdots P_k, Q_1 \cdots Q_l) = \sum_{1 \leq k, l \leq t} \sum_{1 \leq i < k} \sum_{1 \leq j < l} P_1 \cdots \hat{P}_i \cdots P_k Q_1 \cdots \hat{Q}_j \cdots Q_l \hat{\Gamma}^T(P_i, Q_j),
\]
and finally, we extend \(\hat{\Gamma}^T\) to all elements of \(\mathcal{P}(J)\) by bilinearity. Because \(\Gamma^T_N\) fulfills the same relations, this demonstrates (4.3).

Thanks to Proposition 4.2, we have
\[
\sigma_T(P, Q) = 2N^2 \int_0^1 \mathbb{E} \left[\hat{\Gamma}^T_N \left([P]_N(B_{lT}^N(\cdot)C_{(1-t)T}^N), [Q]_N(B_{lT}^N(\cdot)D_{(1-t)T}^N) \right) (I^T_N) \right] dt + O \left(\frac{1}{N^2} \right)
\]
\[
= 2 \mathbb{E} \left[\int_0^1 \hat{\Gamma}^T(P, Q) \right]_{N} \left(B_{lT}^N, C_{(1-t)T}^N, D_{(1-t)T}^N \right) dt + O \left(\frac{1}{N^2} \right)
\]
\[
= 2 \mathbb{E} \left[\int_0^1 \left(\hat{\Gamma}^T(P, Q) \right) dt \right]_{N} \left(B_{lT}^N, C_{(1-t)T}^N, D_{(1-t)T}^N \right) + O \left(\frac{1}{N^2} \right).
\]

In [17], it is proved that, for all \(R \in \mathcal{P}(J^3)\), we have
\[
\mathbb{E} \left[[R]_N(B_{lT}^N, C_{(1-t)T}^N, D_{(1-t)T}^N) \right] = [R]_{(\delta', \tau')}(b_{lT}, c_{(1-t)T}, d_{(1-t)T}) + O \left(\frac{1}{N^2} \right),
\]

Injective map from $C \to C^J$

4.2 The simple case of polynomials

Polynomial in instances of any finite family of independent Brownian motions, as we use presently. \[\text{Remark 6.5}\] shows how to quickly and easily extend this to the more general setting of convergence of any trace commutative polynomial, and moreover only for instances of a single Brownian motion. However, \[17, \text{Corollary 6.5}\] shows that for all σ-traces, it follows that

$\sigma_T(P, Q) = 2 \int_0^1 \left[\tilde{\Gamma}^T(P, Q) \right]_{(\omega, \tau)} (b_T, c_{(1-t)}T, d_{(1-t)}T) \, dt.$

\[\square\]

Remark 4.4. The main theorem [17, Theorem 1.6] is stated in the special case that R is the trace of a non-commutative polynomial, and moreover only for instances of a single Brownian motion. However, [17, Corollary 6.5] shows how to quickly and easily extend this to the more general setting of convergence of any trace polynomial in instances of any finite family of independent Brownian motions, as we use presently.

4.2 The simple case of polynomials

Throughout this section, we investigate the case where $J = \{1\}$ and $T = (T)$. In this case, we have the injective map from $C(X, X^*)$ to $\text{tr}(C\{J\}) \cong \mathcal{P}(J)$ denoted by tr, and similarly the injective map from $C(X_1, X_2^*, X_2, X_3^*, X_3)$ to $\text{tr}(C\{J^3\}) \cong \mathcal{P}(J^3)$ also denoted by tr.

In the case of a polynomial, it is possible to compute explicitly the term $\left[\tilde{\Gamma}(P, Q) \right]$ of Theorem 4.3 and thus recover the expression for the covariance given by (4.1).

Corollary 4.5. Let us suppose $J = \{1\}$, $T = (T)$, and $P, Q \in C[X]$. Then, following Theorem 4.3,

\[
\tilde{\Gamma}^T(trP, trQ) = \frac{T}{2} (s - r) tr(P'(X_1X_2)Q'(X_1X_3)),
\]

\[
\tilde{\Gamma}^T(trP, trQ^*) = \frac{T}{2} (r + s) tr(P'(X_1X_2)(Q'(X_1X_3))^*)
\]

and

\[
\tilde{\Gamma}^T(trP^*, trQ^*) = \frac{T}{2} (s - r) tr((P'(X_1X_2))^*(Q'(X_1X_3))^*).
\]

Consequently, taking three free multiplicative (r, s)-Brownian motions b, c, d which are freely independent in a non-commutative probability space (ω, τ), we have

\[
\sigma_T(trP, trQ) = (s - r) \int_0^T \tau \left[P'(b_tC_{T-t})Q'(bTd_{T-t}) \right] \, dt,
\]

\[
\sigma_T(trP, trQ^*) = (r + s) \int_0^T \tau \left[P'(b_tC_{T-t})(Q'(bTd_{T-t}))^* \right] \, dt, \quad \text{and}
\]

\[
\sigma_T(trP^*, trQ^*) = (s - r) \int_0^T \tau \left[(P'(b_tC_{T-t}))^*(Q'(bTd_{T-t}))^* \right] \, dt.
\]

Remark 4.6. Let us make a few comments on this final corollary.

1. In the case $(r, s) = (1, 0)$, this result shows that, for all $P, Q \in C[X]$, the covariance of the random variables $N(trP(U_T^N) - E[trP(U_T^N)])$ and $N(trQ(U_T^N) - E[trQ(U_T^N)])$ is asymptotically equal to $\sigma_T(trP, trQ^*)$, which reproduces exactly the expression of (4.1) found by Lévy and Maïda in [19].

2. In the case $(r, s) = (\frac{1}{2}, \frac{1}{2})$, this result shows that, for all $P \in C[X]$, the fluctuation random variable $N(trP(U_T^N) - E[trP(U_T^N)])$ is asymptotically a circularly-symmetric complex normal distribution of variance $\int_0^T \tau \left[P'(b_tC_{T-t})(P'(bTd_{T-t}))^* \right] \, dt$, where b, c, d are three freely independent standard free multiplicative Brownian motions.
Proof. Let $P = X^n$ and $Q = X^m$. We have $\text{tr} P = \nu_\varepsilon$ and $\text{tr} Q = \nu_\delta$ with $\varepsilon = \overline{(1,1), \ldots, (1,1)} \in \mathcal{D}$ and $\delta = \overline{(1,1), \ldots, (1,1)} \in \mathcal{D}$. Let $N \in \mathbb{N}$, and $B, C, D \in \mathbb{GL}_N^1$. Then for all $G \in \mathbb{M}_N$,

$$[\text{tr} P]_N(CGB) = \text{tr}((CGB)^n), \quad [\text{tr} Q]_N(DGB) = \text{tr}((DGB)^m).$$

We compute for all $\xi \in \beta_{r,s}$

$$\partial_\xi ([\text{tr} P]_N(B(\cdot)C)) (I_N) = n\text{tr}(\xi(CB)^n)$$

and

$$\partial_\xi ([\text{tr} Q]_N(B(\cdot)D)) (I_N) = m\text{tr}(\xi(DB)^m).$$

Finally, using the magic formula of Proposition 2.2, we have

$$\frac{N^2}{2} \sum_{\xi \in \beta_{r,s}^N} T \partial_\xi ([\text{tr} P]_N(B(\cdot)C)) \partial_\xi ([\text{tr} Q]_N(B(\cdot)D)) (I_N) = T \left(\begin{array}{c}
(s-r)mn\text{tr}((CB)^n(DB)^m) \\
n\text{tr}(\xi(CB)^n) \\
m\text{tr}(\xi(DB)^m)
\end{array}\right) = \left(\hat{\Gamma}^T(\text{tr} P, \text{tr} Q)\right) (B, C, D)$$

with $\hat{\Gamma}^T(\text{tr} P, \text{tr} Q) = T \left(\begin{array}{c}
(s-r)\text{tr}(P'(X_1 X_2)Q'(X_1 X_3)) \\
n\text{tr}(\xi(CB)^n) \\
m\text{tr}(\xi(DB)^m)
\end{array}\right)$. Similar computations lead to $\hat{\Gamma}^T(\text{tr} P, \text{tr} Q^*) = T \left(\begin{array}{c}
(s-r)\text{tr}(P'(X_1 X_2)^*Q'(X_1 X_3)^*) \\
n\text{tr}(\xi(CB)^n) \\
m\text{tr}(\xi(DB)^m)
\end{array}\right)$, and we extend the formulas to $P, Q \in \mathbb{C}[X]$ by bilinearity.

Thanks to Proposition 4.3, we know that

$$\sigma_T(\text{tr} P, \text{tr} Q) = 2 \int_0^1 \left(\hat{\Gamma}^T(P, Q)\right) (b_T, c_t, d_t) dt = T(s-r) \int_0^1 \tau \left[P'(b_{1-t}c_t)Q'(b_{1-t}d_t)\right] dt = (s-r) \int_0^T \tau \left[P'(b_{1-t}c_{T-t})Q'(b_{1-t}d_{T-t})\right] dt,$$

and the two others cases are treated similarly. \hfill \square

Acknowledgments

The authors wish to thank Bruce Driver for several very helpful mathematical conversations during the production of this paper. In particular, we thank him for making us aware of the integral representation of Lemma 3.6 which greatly simplified the exposition of the proof of Theorem 3.3. We also wish to extend our gratitude to the Fields Institute, for its excellent Workshop on Analytic, Stochastic, and Operator Algebraic Aspects of Noncommutative Distributions and Free Probability in July 2013, during which the authors met for the first time and conceived of the core ideas that led to the present work.

References

