Homework 2: Please hand in starred problems by Wed, Oct 23, in class.

Exercise 1:

Let \(\mathcal{L} \) be a non-empty set.

Suppose \(\mathcal{L} \) is a non-empty collection of subsets of \(\mathcal{L} \).

Suppose \(\mathcal{L} \) satisfies

(i) \(\emptyset \in \mathcal{L} \);

(ii) if \(A \in \mathcal{L} \), then \(A^c \in \mathcal{L} \);

(iii) if \(\{ A_n \}_{n=1}^{\infty} \) is a collection of disjoint sets in \(\mathcal{L} \),

then \(\bigcup_{n=1}^{\infty} A_n \) is in \(\mathcal{L} \).

Prove that \(\mathcal{L} \) is a \(\lambda \)-system.

[Comment: in fact the above is an equivalent characterization to the one given in class.]

Exercise 2:

Let \(\mathcal{L} = \{1, 2, 3, 4, 5\} \), \(\mathcal{C} = \{\{1, 2, 3\}, \{2, 3\}\} \).

Find \(\sigma(\mathcal{C}) \).

Exercise 3:

Let \(\mathcal{L} \) be a non-empty set.

A monotone class \(\mathcal{M} \) is a non-empty collection of subsets of \(\mathcal{L} \) that is closed under monotone limits, i.e., \(\mathcal{M} \) is a monotone class if \(\bigcup_{n=1}^{\infty} A_n \in \mathcal{M} \) and \(\bigcap_{n=1}^{\infty} A_n \in \mathcal{M} \), and

\(\bigcup_{n=1}^{\infty} A_n \in \mathcal{M} \) and \(\bigcap_{n=1}^{\infty} A_n \in \mathcal{M} \) for all \(n \).

Show that a \(\sigma \)-algebra is an algebra that is also a monotone class, and conversely, an algebra that is a monotone class is a \(\sigma \)-algebra.

Exercise 4:

Suppose \(\mathcal{P} \) is a \(\Pi \)-system contained in a monotone class \(\mathcal{M} \). Give an example to show that \(\sigma(\mathcal{P}) \) need not be contained in \(\mathcal{M} \). Hint: Consider \(\mathcal{L} \) with a small number of elements.
Exercise 5. Suppose \mathcal{F} is a σ-algebra of subsets of a non-empty set Ω. Suppose $\mathcal{Q} : \mathcal{F} \to [0,1]$ is a function such that:

(i) \mathcal{Q} is finitely additive on \mathcal{F};
(ii) $0 \leq \mathcal{Q}(A) \leq 1$ for all $A \in \mathcal{F}$ and $\mathcal{Q}(\Omega) = 1$;
(iii) if $\{A_i\}_{i=1}^{\infty}$ are disjoint sets in \mathcal{F} and $\Omega = \bigcup_{i=1}^{\infty} A_i$, then $\sum_{i=1}^{\infty} \mathcal{Q}(A_i) = 1$.

Prove that \mathcal{Q} is a probability measure (i.e., show \mathcal{Q} is countably additive on \mathcal{F}).

Exercise 6. Let $\mathcal{S} = \{1, 2, 3, \ldots\}$.
Suppose \mathcal{A} is the algebra of subsets of Ω containing all sets A such that A or A^c is finite.
Let $\mu : \mathcal{A} \to [0,1]$ be defined by

$$
\mu(A) = \begin{cases}
0 & \text{if } A \text{ is finite} \\
1 & \text{if } A^c \text{ is finite}.
\end{cases}
$$

(i) Prove that \mathcal{A} is finitely additive on \mathcal{A}.

(ii) Give an example of a sequence of sets $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A}$ such that $A_n \nrightarrow A$ as $n \to \infty$ (i.e., $A_n \nrightarrow A_{n+i}$ for all n and $\bigcap_{n=1}^{\infty} A_n = \emptyset$) and $\mu(A_n) \to 0$ as $n \to \infty$.