Homework #3 Due Wed. Oct. 29 in Class.

1. Let $(\mathcal{S}, \mathcal{F})$ be a measurable space.
 Prove that $A \in \mathcal{F}$ if and only if $1_A : \mathcal{S} \to \mathbb{R}$
 is measurable where \mathbb{R} has the Borel σ-algebra
 on it.
 Here $1_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}$

* 2. Suppose $\Omega = [0, 1]$,
 $\mathcal{F} = \mathcal{B}([0, 1])$,
 \mathbb{P} = Lebesgue
 measure on $([0, 1])$.
 Define
 $X_1(\omega) = 0$ for all $\omega \in \Omega$,
 $X_2(\omega) = 1_{\{\frac{1}{3}\}}(\omega)$ for all $\omega \in \Omega$,
 $X_3(\omega) = 1_A(\omega)$ for all $\omega \in \Omega$
 where A is the set of rational numbers in $[0, 1]$.
 (i) Find $\sigma(X_i)$ for $i = 1, 2, 3$, the σ-algebras on Ω
 generated by X_1, X_2, X_3.
 (ii) Prove that
 $\mathbb{P}(X_1 = X_2 = X_3) = 1$.
 (Hint: You may use the fact that the Lebesgue measure of the
 rationals is zero).
3. Prove that if \(X \) is a random variable, so is \(|X| \).

 Give an example to show that the converse may be false.

4. Exercise 1.3.5 from Durrett.

5. Suppose \(X: \mathbb{R} \to \mathbb{R} \) takes only countably many values in \(\mathbb{R} \). Show that \(X \) is measurable if and only if
 \[
 X^{-1}(\{x\}) \in \mathcal{F} \quad \text{for each } x \in \mathbb{R}.
 \]
 [Here \(\mathbb{R} \) has \(\sigma \)-algebra \(\mathcal{F} \) and \(\mathbb{R} \) has the Borel \(\sigma \)-algebra \(\mathcal{B}(\mathbb{R}) \).]

6. Let \(X \) and \(Y \) be random variables and let \(A \in \mathcal{F} \).

 Prove that
 \[
 Z(w) = \begin{cases}
 X(w) & \text{if } w \in A, \\
 Y(w) & \text{if } w \notin A
 \end{cases}
 \]
 is a random variable.

 [Here \(X, Y, Z \) are all defined on the measurable space \((\Omega, \mathcal{F}) \).]