1*. Suppose that \(\{M_t, \mathcal{F}_t, t \geq 0\} \) is a right continuous uniformly integrable martingale and \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}, t \geq 0)\) satisfies the usual conditions. Prove that \(M \) is of class \(D \), i.e., \(\{M_T : T \text{ is a real-valued stopping time}\} \) is uniformly integrable.

2*. A standard one-dimensional Brownian motion is a real-valued stochastic process \(\{B_t, t \geq 0\} \) such that

- \(B(0) = 0 \),
- for any positive integer \(n \) and times \(0 \leq t_1 < t_2 < \ldots < t_n \), \(\{B(t_1), B(t_2) - B(t_1), \ldots, B(t_n) - B(t_{n-1})\} \) are independent,
- for each \(0 \leq s < t < \infty \), \(B(t) - B(s) \) has a normal distribution with mean zero and variance \(t - s \),
- the paths of \(B \) are continuous.

(This is a process with stationary, independent increments).

For each \(t \geq 0 \), let \(\mathcal{H}_t = \sigma\{B(s) : 0 \leq s \leq t\} \), the smallest \(\sigma \)-algebra with respect to which \(B(s) \) is measurable for each \(0 \leq s \leq t \). Suppose that \((\Omega, \mathcal{F}, P)\) is complete and let \(\mathcal{N} \) denote the \(P \)-null sets in \(\mathcal{F} \). Let \(\mathcal{G}_t = \mathcal{H}_t \vee \mathcal{N} \), the smallest \(\sigma \)-algebra containing \(\mathcal{H}_t \) and \(\mathcal{N} \). Let \(\mathcal{F}_t = \mathcal{G}_t \cap \mathcal{F} \) for all \(t \geq 0 \).

In class we showed that \(\{B(t), \mathcal{H}_t, t \geq 0\} \) and \(\{B_t^2 - t, \mathcal{H}_t, t \geq 0\} \) are martingales.

(a) Prove that \(\{B(t), \mathcal{F}_t, t \geq 0\} \) and \(\{B_t^2 - t, \mathcal{F}_t, t \geq 0\} \) are martingales. Hint: first prove this with \(\mathcal{G}_t \) in place of \(\mathcal{F}_t \).

(b) Let \(T = \inf\{t \geq 0 : B_t > 1\} \). Is \(T \) a stopping time relative to \(\{\mathcal{F}_t, t \geq 0\} \)? Make sure to justify your answer.

(c) Fix \(a < 0 < b \) and let \(S = \inf\{s \geq 0 : B_s \leq a \text{ or } B_s \geq b\} \). Is \(S \) a stopping time relative to \(\{\mathcal{F}_t, t \geq 0\} \)? Use Doob’s stopping theorem to show that \(E[S] < \infty \), \(E[B_S] = 0 \) and to compute the probability that \(B \) hits \(a \) before \(b \). You should also be able to compute \(E[S] \).

(d) (Extra credit) Prove that \(\{M_t = \exp(cB_t - \frac{1}{2}c^2t), \mathcal{F}_t, t \geq 0\} \) is a martingale for any real number \(c \). (You may use results about the moment generating function for the normal distribution.) Prove that \(\lim_{t \to \infty} M_t \) exists a.s. Can you identify this limit?

3*. Let \(B \) be a standard one-dimensional Brownian motion. Let \(X(t) = B(t) - tB(1) \) for all \(0 \leq t \leq 1 \). The process \(X \) is called a Brownian bridge.
(a) Show that \(\{X(t) : 0 \leq t \leq 1\} \) is a Gaussian process and compute its covariance function \(R(s, t) = \text{Cov}(X(s), X(t)) \) for \(0 \leq s, t \leq 1 \).

(b) (Extra credit). Show that for \(0 < t_1 < t_2 < \ldots < t_n < 1 \), the joint distribution of \((B(t_1), B(t_2), \ldots, B(t_n)) \) given \(|B(1)| \leq \epsilon \), converges to the joint distribution of \((X(t_1), \ldots, X(t_n)) \), as \(\epsilon \downarrow 0 \).