5. (a) **Background**: The stock (without dividend paying) return μ and its volatility σ can be computed as follows. Suppose a sequence of historical prices S_i is observed on daily basis. u_i is defined as the continuous compound return $\ln(S_{i+1}/S_i)$ on day i (e.g., $S_{i+1} = S_i e^{u_i}$). Under the assumption that u_i are i.i.d. random variables for all i, the daily return $\mu = \mathbb{E}[u_i]$ and the daily volatility $\sigma = \text{Std}[u_i]$ (e.g., standard deviation). The daily risk-free continuous compound return is r (e.g., $\$$1 becomes $\$$e^r$ one day later).

Show that $\text{Var}[\ln(S_T/S_0)] = \sigma^2 T$ (Stock price S_T for day T).

(b) **Binomial Tree Construction**: Consider the stock price from the time 0 to T (in days). In the n-periods binomial tree, each period corresponds to $\Delta t = T/n$ day. We showed in class that the real probability $p = e^{\frac{\mu \Delta t - d}{u-d}}$, $u = e^{\sigma \sqrt{\Delta t}}$ and $d = e^{-\sigma \sqrt{\Delta t}}$ satisfy (ignore a higher order term $\Delta t^{3/2}$)

$$pS_0u + (1-p)S_0d = S_0e^{\mu \Delta t}$$

and

$$pu^2 + (1-p)d^2 - [pu + (1-p)d]^2 = \sigma^2 \Delta t.$$

In other words, the return and volatility of the binomial model is matched with the real data.

Show that the risk neutral probability is $\tilde{p} = \frac{e^{\mu \Delta t} - d}{u-d}$ and under this risk neutral measure, the volatility of the binomial model does not change, ignoring a higher order term $\Delta t^{3/2}$ (Hint: use the Taylor expansion).

(c) **S_T Distribution under \tilde{p}**: Denote $B_i \Delta t$ be the random variable taking 1 when i-th coin toss H and -1 otherwise. $S_i \Delta t$ is the stock price at the i-th period (S_T is at the last period). Given the binomial tree in (a), it is obvious that $\ln(S_T/S_0) = \sigma \sqrt{\Delta t} \sum_{k=1}^n B_i \Delta t$. Question (b) proved that the volatility under p and \tilde{p} are the same, meaning $\text{Var}[\ln(S_T/S_0)] = \sigma^2 T$. Therefore, the central limit theorem (let $n \to \infty$) implies that $\ln(S_T/S_0)$ has the normal distribution $N(a, \sigma^2 T)$ under \tilde{p} for some unknown constant a.

Show that $a = \mathbb{E}[\ln(S_T/S_0)] = (r - \frac{\sigma^2}{2})T$. (Hint: use the fact that $\ln(S_T/S_0)$ has Gaussian distribution and the formula $S_0 = e^{-rT} \mathbb{E}[S_T]$, e.g., the discount stock price is martingale under \tilde{p}.)

(d) Show that $S_T = S_0 e^{(r - \frac{\sigma^2}{2})T + \sigma^2 Tz}$ with the standard normal random variable $z \sim N(0,1)$ under \tilde{p}. S_T is said to satisfy the lognormal distribution under \tilde{p}.