Section 1.1-2.3

1. Consider the equation
\[\frac{d^2 y}{dt^2} + t \frac{dy}{dt} + (\cos^2 t)y = t^3, \]
determine the order of this equation, state whether the equation is ODE or PDE, linear or nonlinear.

Solution: It is a second order linear ODE.

2. Verify that
\[y = e^{t^2} \int_0^t e^{-s^2} ds + e^{t^2} \]
is a solution of the differential equation
\[y' - 2ty = 1. \]

Solution: Since
\[y = e^{t^2} \int_0^t e^{-s^2} ds + e^{t^2} \]
we differentiate it and get
\[y' = e^{t^2} \cdot 2t \left(\int_0^t e^{-s^2} ds + e^{t^2} \right) + e^{t^2} \cdot 2t = 2t \left(e^{t^2} \int_0^t e^{-s^2} ds + e^{t^2} \right) + 1 = 2t \cdot y + 1 \]
which is exact the same as
\[y' - 2ty = 1. \]

3. Briefly Draw a direction field for the differential equation
\[y' = 3 - 2y. \]

Based on the direction field, determine the behavior of \(y \) as \(t \to \infty \). If this behavior depends on the initial value of \(y \) at \(t = 0 \), describe the dependency.

Solution: From the slope field (omit), we can see that \(y \) approaches the equilibrium \(y = 3/2 \) as \(t \to 0 \). If the streamline initially (t=0) start from some point where \(y > 3/2 \), then it will keep decreasing until it approaches \(y = 3/2 \) at \(t = \infty \); if the streamline initially start from \(y < 3/2 \), it keeps growing up to \(y = 3/2 \) at \(t = \infty \).

4. Solve the initial value problem
\[ty' + 2y = \sin t, \quad y(\pi/2) = 1, \quad t > 0. \]

Solution: The original equation is equivalent to
\[y' + \frac{2}{t} y = \frac{\sin t}{t}. \] (1)
We apply the integrating factor method. First of all, the integrating factor $\mu(t)$ is
\[
\mu(t) = e^{\int \frac{2}{t} \, dt} = t^2.
\]
Second of all, we multiply both sides of (1) by $\mu(t)$, and have:
\[
t^2y' + 2ty = \sin t \cdot t
\]
It turns out that the left hand of (2) is a total derivative and can be written as
\[
(\mu(t)y)' = t \sin t.
\]
Integrating the both sides of (3), we have
\[
\mu(t)y = \int t \sin t \, dt = \sin t - t \cos t + C.
\]
Hence finally the solution is:
\[
y = \frac{\sin t}{t^2} - \frac{\cos t}{t} + \frac{C}{t^2}
\]
and the initial condition $y(\pi/2) = 1$ determines that $C = \pi^2/4 - 1$.

5. Solve the initial value problem
\[
2y' + ty = 2, \quad y(0) = 1.
\]
Show that the solution approaches a limit as $t \to \infty$, and find the limiting value.

Solution: Similar as the previous problem, we apply the integrating factor method. The equation can be rewrite as
\[
y' + \frac{t}{2}y = 1.
\]
Then
\[
\mu(t) = e^{\int \frac{t}{2} \, dt} = e^{t^2/4}.
\]
After finding $\mu(t)$,
\[
(\mu(t)y)' = e^{t^2/4} \Rightarrow \mu(t)y = \int_0^t e^{s^2/4} \, ds + C \Rightarrow y = e^{-t^2/4} \int_0^t e^{s^2/4} \, ds + C \cdot e^{-t^2/4}.
\]
Initial condition implies that $C = 1$, so the final solution is:
\[
y = e^{-t^2/4} \int_0^t e^{s^2/4} \, ds + e^{-t^2/4}.
\]
When $t \to +\infty$, $e^{-t^2/4}$ goes to 0. For the first term
\[
\frac{\int_0^t e^{s^2/4} \, ds}{e^{t^2/4}}.
\]
we can apply the L’Hospital’s rule and show that it approaches 0 also.

6. Solve the initial value problem

\[y' = \frac{2 \cos(2x)}{3 + 2y}, \quad y(0) = -1 \]

and determine where the solution attains its maximum value.

Solution: This is a separable ODE which can be separate as

\[(3 + 2y)dy = 2 \cos(2x)dx \Rightarrow 3y + y^2 = \sin(2x) + C \Rightarrow 3y + y^2 = \sin(2x) - 2.\]

To find the max, please follows the steps I did in class.

7-8. Solve the differential equations

\[\frac{dy}{dx} = \frac{x - e^{-x}}{y + e^y}, \quad \frac{dy}{dx} = \frac{x^2}{1 + y^2}. \]

Solution: Both these ODE are separable. For the first one,

\[(y + e^y)dy = (x - e^{-x})dx \Rightarrow \frac{y^2}{2} + e^y = \frac{x^2}{2} + e^{-x} + C; \]

for the second one,

\[(1 + y^2)dy = x^2dx \Rightarrow y + \frac{y^3}{3} = \frac{x^3}{3} + C. \]

9. A tank initially contains 120 L of pure water. A mixture containing a concentration of \(\gamma \) g/L of salt enters the tank at a rate of 2 L/min, and the well-stirred mixture leaves the tank at the same rate. Find an expression in terms of \(\gamma \) for the amount of salt in the tank at any time \(t \). Also find the limiting amount of salt in the tank as \(t \to \infty \).

Solution: The ODE for this model is:

\[\frac{dQ}{dt} = 2\gamma - 2 \frac{Q}{120} \Rightarrow Q = 120\gamma - A \cdot e^{-t/60}. \]

since initially \(Q(0) = 0 \), we have

\[A = 120\gamma \Rightarrow Q = 120\gamma(1 - e^{-t/60}). \]

When \(t \to 0 \), \(Q \) approaches 120\(\gamma \).

10. A young person with no initial capital invests \(k \) dollars per year at an annual rate of return \(r \). Assume that investments are made continuously and that the return is compounded continuously. Determine the sum \(S(t) \) accumulated at any time \(t \).

Solution: The equation associated with this compound interest model is

\[\frac{dS}{dt} = rS + k, \quad S(0) = 0. \]

And the solution is

\[S = \frac{k}{r}(e^{rt} - 1). \]