Exact Equations

An *exact equation* is a first order differential equation that can be written in the form

\[M(x,y) + N(x,y)y' = 0, \]

provided that there exists a function \(\psi(x,y) \) such that

\[
\frac{\partial \psi}{\partial x} = M(x,y) \quad \text{and} \quad \frac{\partial \psi}{\partial y} = N(x,y).
\]

Note 1: Often the equation is written in the alternate form of

\[M(x,y) \, dx + N(x,y) \, dy = 0. \]

Theorem (Verification of exactness): An equation of the form

\[M(x,y) + N(x,y)y' = 0 \]

is an exact equation if and only if

\[
\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}. \]

Note 2: If \(M(x) \) is a function of \(x \) only, and \(N(y) \) is a function of \(y \) only, then trivially \(\frac{\partial M}{\partial y} = 0 = \frac{\partial N}{\partial x} \). Therefore, every separable equation,

\[M(x) + N(y)y' = 0, \]

can always be written, in its standard form, as an exact equation.
The solution of an exact equation

Suppose a function \(\psi(x,y) \) exists such that \(\frac{\partial \psi}{\partial x} = M(x,y) \) and \(\frac{\partial \psi}{\partial y} = N(x,y) \). Let \(y \) be an implicit function of \(x \) as defined by the differential equation

\[
M(x,y) + N(x,y)y' = 0.
\]

(1)

Then, by the Chain Rule of partial differentiation,

\[
\frac{d}{dx} \psi(x, y(x)) = \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y} \frac{dy}{dx} = M(x,y) + N(x,y)y'.
\]

As a result, equation (1) becomes

\[
\frac{d}{dx} \psi(x, y(x)) = 0.
\]

Therefore, we could, in theory at least, find the (implicit) general solution by integrating both sides, with respect to \(x \), to obtain

\[
\psi(x,y) = C.
\]

Note 3: In practice \(\psi(x,y) \) could only be found after two partial integration steps: Integrate \(M(=\psi_x) \) respect to \(x \), which would recover every term of \(\psi \) that contains at least one \(x \); and also integrate \(N(=\psi_y) \) with respect to \(y \), which would recover every term of \(\psi \) that contains at least one \(y \). Together, we can then recover every non-constant term of \(\psi \).

Note 4: In the context of multi-variable calculus, the solution of an exact equation gives a certain level curve of the function \(z = \psi(x,y) \).
Example: Solve the equation

\[(y^4 - 2) + 4xy^3 y' = 0\]

First identify that \(M(x,y) = y^4 - 2\), and \(N(x,y) = 4xy^3\).

Then make sure that it is indeed an exact equation:

\[\frac{\partial M}{\partial y} = 4y^3 \quad \text{and} \quad \frac{\partial N}{\partial x} = 4y^3\]

Finally find \(\psi(x,y)\) using partial integrations. First, we integrate \(M\) with respect to \(x\). Then integrate \(N\) with respect to \(y\).

\[
\psi(x, y) = \int M(x, y) \, dx = \int (y^4 - 2) \, dx = xy^4 - 2x + C_1(y),
\]

\[
\psi(x, y) = \int N(x, y) \, dy = \int 4xy^3 \, dy = xy^4 + C_2(x).
\]

Combining the result, we see that \(\psi(x,y)\) must have 2 non-constant terms: \(xy^4\) and \(-2x\). That is, the (implicit) general solution is:

\[xy^4 - 2x = C.\]

Now suppose there is the initial condition \(y(-1) = 2\). To find the (implicit) particular solution, all we need to do is to substitute \(x = -1\) and \(y = 2\) into the general solution. We then get \(C = -14\).

Therefore, the particular solution is \(xy^4 - 2x = -14\).
Example: Solve the initial value problem

\[(y \cos(xy) + \frac{y}{x} + 2x)\,dx + (x \cos(xy) + \ln x + e^y)\,dy = 0, \quad y(1) = 0.\]

First, we see that \(M(x, y) = y \cos(xy) + \frac{y}{x} + 2x\) and \(N(x, y) = x \cos(xy) + \ln x + e^y\).

Verifying:

\[
\frac{\partial M}{\partial y} = -xy \sin(xy) + \cos(xy) + \frac{1}{x} = \frac{\partial N}{\partial x} = -xy \sin(xy) + \cos(xy) + \frac{1}{x}
\]

Integrate to find the general solution:

\[
\psi(x, y) = \int \left(y \cos(xy) + \frac{y}{x} + 2x \right)\,dx = \sin(xy) + y \ln x + x^2 + C_1(y),
\]

as well,

\[
\psi(x, y) = \int \left(x \cos(xy) + \ln x + e^y \right)\,dy = \sin(xy) + y \ln x + e^y + C_2(x).
\]

Hence,

\[
\sin xy + y \ln x + e^y + x^2 = C.
\]

Apply the initial condition: \(x = 1\) and \(y = 0\):

\[
C = \sin 0 + 0 \ln (1) + e^0 + 1 = 2
\]

The particular solution is then

\[
\sin xy + y \ln x + e^y + x^2 = 2.
\]
Example: Write an exact equation that has general solution
\[x^3 e^y + x^4 y^4 - 6y = C. \]

We are given that the solution of the exact differential equation is
\[\psi(x,y) = x^3 e^y + x^4 y^4 - 6y = C. \]

The required equation will be, then, simply
\[M(x,y) + N(x,y) y' = 0, \]

such that \[\frac{\partial \psi}{\partial x} = M(x,y) \quad \text{and} \quad \frac{\partial \psi}{\partial y} = N(x,y). \]

Since
\[\frac{\partial \psi}{\partial x} = 3x^2 e^y + 4x^3 y^4, \quad \text{and} \]
\[\frac{\partial \psi}{\partial y} = x^3 e^y + 4x^4 y^3 - 6. \]

Therefore, the exact equation is:
\[(3x^2 e^y + 4x^3 y^4) + (x^3 e^y + 4x^4 y^3 - 6) y' = 0. \]
Summary: Exact Equations

\[M(x,y) + N(x,y) \frac{dy}{dx} = 0 \]

Where there exists a function \(\psi(x,y) \) such that

\[\frac{\partial \psi}{\partial x} = M(x,y) \quad \text{and} \quad \frac{\partial \psi}{\partial y} = N(x,y). \]

1. Verification of exactness: it is an exact equation if and only if

\[\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}. \]

2. The general solution is simply

\[\psi(x,y) = C. \]

Where the function \(\psi(x,y) \) can be found by combining the result of the two integrals (write down each distinct term only once, even if it appears in both integrals):

\[\psi(x,y) = \int M(x,y) \, dx, \quad \text{and} \]

\[\psi(x,y) = \int N(x,y) \, dy. \]

© 2008, 2012 Zachary S Tseng
Exercises A-2.2:

1 – 2 Write an exact equation that has the given solution. Then verify that the equation you have found is exact.
1. It has the general solution \(x^2 \tan y + x^3 - y^2 - 3x^4 y^2 = C \).
2. It has a particular solution \(2xy - \ln xy + 5y = 9 \).

3 – 10 For each equation below, verify its exactness then solve the equation.
3. \(2x + 2x \cos(x^2) + 2y y' = 0 \)

4. \(4x^3 y^4 - \frac{2x}{y} - 2x + (4x^4 y^3 + \frac{x^2}{y^2} + 5)y' = 0 \)
5. \((2x - 2y) + (2y - 2x)y' = 0 \), \(y(10) = -5 \)
6. \((3x^2 y + y^3 + 4 - ye^{xy}) + (x^3 + 3xy^2 - xe^{xy})y' = 0 \), \(y(2) = 0 \)
7. \((5 - 2y^2 e^{2x}) + (-5 - 2ye^{2x})y' = 0 \), \(y(0) = -4 \)
8. \(\left(\frac{\sin x}{y^2} + \frac{2x}{y} \right) + \left(\frac{2 \cos x}{y^3} - \frac{x^2}{y^2} \right)y' = 0 \), \(y(0) = 1 \)
9. \(\left(\frac{2xy}{x^4 + 1} + \frac{1}{y^2} \right) + (\arctan(x^2) - \frac{2x}{y^2})y' = 0 \), \(y(1) = 2 \)
10. \(-\sin(x)\sin(2y) + y\cos(x) + (2\cos(x)\cos(2y) + \sin(x))y' = 0 \), \(y(\pi/2) = \pi \)

11 – 13 Find the value(s) of \(\lambda \) such that the equation below is an exact equation. Then solve the equation.
11. \((2\lambda x^5 y^3 - \frac{1}{x^2}) + (3x^6 y^2 - \lambda)y' = 0 \)
12. \((\lambda y \sec^2(2xy) - \lambda xy^2) + (2x \sec^2(2xy) - \lambda x^2 y)y' = 0 \)
13. \((10y^4 - 6xy + 6x^2 \sin(x^3)) + (40xy^3 - 3x^2 + \lambda \cos(x^3))y' = 0 \)
Answers A-2.2:

1. \((2x \tan y + 3x^2 - 12x^3y^2) + (x^2 \sec^2 y - 2y - 6x^4y)\ y' = 0\)

2. \((2y - \frac{1}{x}) + (2x - \frac{1}{y} + 5)\ y' = 0\)

3. \(x^2 + y^2 + \sin(x^2) = C\)

4. \(x^4 y^4 - \frac{x^2}{y} - x^2 + 5y = C\)

5. \(x^2 - 2xy + y^2 = 225\)

6. \(x^3 y + xy^3 + 4x - e^{xy} = 7\)

7. \(5x - 5y - y^2 e^{2x} = 4\)

8. \(-\frac{\cos x}{y^2} + \frac{x^2}{y} = -1\)

9. \(y \arctan(x^2) + \frac{x}{y^2} = \frac{2\pi + 1}{4}\)

10. \(\cos(x)\sin(2y) + y\sin(x) = \pi\)

11. \(\lambda = 3; \quad x^6 y^3 + x^{-1} - 3y = C\)

12. \(\lambda = 2; \quad \tan(2xy) - x^2 y^2 = C\)

13. \(\lambda = 0; \quad 10xy^4 - 3x^2 y - 2\cos(x^3) = C\)