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SECOND ORDER THETA DIVISORS ON PRYMS

BY E. IZADI

ABSTRACT. — Van Geemen and van der Geer, Donagi, Beauville and Debarre
proposed characterizations of the locus of jacobians which use the linear system of
2G-divisors. We give new evidence for these conjectures in the case of Prym varieties.

RESUME. — DIVISEURS THETA DU SECOND ORDRE SUR LES VARIETES DE PRYM.
Van Geemen et van der Geer, Donagi, Beauville et Debarre out propose des caracteri-
sations du lieu des jacobiennes qui utilisent les diviseurs theta du second ordre. Nous
prouvons des resultats partiels en direction de ces conjectures dans Ie cas des varietes
de Prym.

The Schottky problem is the problem of finding necessary and sufficient
conditions for a principally polarized abelian variety (ppav) to be a
product of jacobians of smooth curves.

Let (P, 2) be an indecomposable ppav of dimension p ^ 4 with 5 a
symmetric theta divisor on P. The elements of

r=H°(P,2E)

are symmetric, hence their multiplicities at the origin are always even.
Let Fo C F be the subvector space of F of sections with multiplicity at
least 2 at the origin and let Foo C F be the subvector space of sections
with multiplicity at least 4 at the origin. Also let

|2Soo C |25o C |25|

be the linear systems of divisors of zeros of elements of Foo C TQ C r
respectively. It is well-known that the dimensions of F, Fo and Foo are
respectively 2^, 2^ - 1 and T - 1 - ^p(p + 1) (see [Ig, p. 188, Lemma 11]
and [GG, Prop. 1.1, p. 618]).
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2 E. IZADI

We have the linear map

T4:Foo ——> H°(PToP,OpToPW)

defined by sending a section s 6 Foo to the quartic term of its Taylor
expansion at the origin. Let Qoo denote the linear subsystem of \OpTop(^)\
which is the projectivization of the image ofr4. Let Voo and ^nf,oo denote
the base loci of |2S oo and Qoo respectively. In [GG], van Geemen and
van der Geer proposed a characterization of the locus of jacobians, made
more precise by Donagi [Dol, p. 110], in the following form:

CONJECTURE 1.
1) If (P,S) = (JC,0) is the jacobian of a smooth curve C of genus p,

then Voo ^ set-theoretically equal to the reduced surface

C-C: ={Oc(s-t):s,teC}.

2) J/(P,5) is (indecomposable and) not in the closure Jp of the locus
of jacobians in the moduli space of ppav of dimension p, then Voo = {0}
set-theoretically.

Beauville and Debarre proposed an infinitesimal version of Conjecture 1
(see [BD]):

CONJECTURE 2.
1) If (P,5) = (.7(7,9) is the jacobian of a smooth curve C of genus p,

then Vmf,oo ^ set-theoretically^ the canonical image K,C of C in |cjc|* =

PToJC where ujc is the dualizing sheaf of C (note that ^C is the
projectivized tangent cone to C — C at 0).

2) If (P,5) is (indecomposable and) not in Jp, then Vinf,oo ^ empty.

The first parts of Conjectures 1 and 2 have been proved (each with
one well-determined exception) by Welters [Wl], the author [Izl] and
Beauville and Debarre [BD]. In [Izl], we also determined the scheme-
structures of the base loci for jacobians. In [Iz2, Thm4, p. 95], we proved
the second parts of Conjectures 1 and 2 in the case p = 4. Beauville,
Debarre, Donagi and van der Geer proved part 2) of Conjecture 1 for
intermediate jacobians of cubic threefolds and the Prym varieties of "even"
etale double covers of smooth plane curves (see [BDDG]). Beauville and
Debarre proved parts 2) of Conjectures 1 and 2 for certain ppav isogenous
to a product ofp elliptic curves (see [BD, p. 35-38]). By semi-continuity,
Beauville and Debarre then deduce from their result that for a general
ppav Voo is finite and Vinf,oo is empty.

TOME 127 — 1999 — N° 1



SECOND ORDER THETA DIVISORS ON PRYMS 3

Let Ap be the moduli space of ppav of dimension p. In [Iz2], we proved
the second parts of Conjectures 1 and 2 for p = 4 by using the fact (proved
in [Iz2, Thm3.3, p. Ill]) that an element of A^ \ J^ is always the Prym
variety of an etale double cover of a smooth curve of genus 5. From now
on we will suppose that (P, 2) is the Prym variety of an etale double cover
of smooth curves

TT'.C-^C

with C non-hyperelliptic of genus g = p + 1 (then (P, 5) is automatically
indecomposable, see [M2, p. 344, Thm (d)]). There is a natural analogue
of the surface C — C for a Prym variety, namely, the reduced surface

S: =S(7r:(5-^C): = {0^(s+t-(7s-at):s,teC} C P C JC,

where a: C —> C is the involution of the cover TT: C —>• C. Let e: P —^ P be
the blow up of P at 0 with exceptional divisor £ and let S be the proper
transform of S in P. Let L be the linear system e*(22) — 4<f| on P. When
g = 5 there is an involution A acting on the moduli space of admissible
double covers of stable curves of genus 5 such that a double cover C —> C
and \(C —^ C) have the same Prym variety (see [Do2, P. 100] and [Iz2,
p. 119 and 126]). Furthermore, for any fixed (P,5) G Ai \ J^, there is an
etale double cover C —>• C of a smooth curve C such that

(Cx^Cx): =\(C-.C)

is also an etale double cover of a smooth curve C\ (see [Iz2 p. 136]). In
such a case, put

SA: =^(Cx^Cx)

and let S^ be the proper transform of SA in P. With these hypotheses,
we proved in [Iz2] that (recall g — 1 == p = 4):

• there,is exactly a pencil of elements of L containing S (see [Iz2, 5.7,
p. 134 and 6.23, p. 148]);

• the base locus of this pencil is equal to S U Tj\ as a set, as a scheme
if (C ->C)^ (Cx -> Cx) (follows from [Iz2, 5.7, p. 134]);

• the base locus of the restriction L|^ (and, similarly, L\^^) is empty
(see [Iz2, p. 139 and p. 146-147]).

We generalize this third result to higher-dimensional Prym varieties
and calculate the dimension of the linear subsystem of L consisting of
elements containing S.

In Section 4 we prove:

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



4 E. IZADI

THEOREM 3. — If C is non-trigonal of genus > 5, then the base locus
of L[g is empty.

For C trigonal, the support of the base locus of L\^ is determined in
Proposition 4.8 below.

To prove the theorem, we use divisors in the linear system |22|oo which
are obtained as^ intersections with P C JC of translates of the theta
divisor 9 of JC (see Section 3 below). To our knowledge such divisors
have not been used before in the litterature.

The Prym-canonical curve \C is the image of C in \ujc 0 o^l* by
the natural morphism C —^ \LJC 00 '* where a is the square-trivial
invertible sheaf associated to the double cover TT:C -^ C. Under the
natural isomorphism PT()P ^ \ujc ® o|*, the curve \C is the tangent
cone to S at 0. Therefore the Theorem implies:

COROLLARY 4. — Suppose that C is not trigonal, then:

1) the only base point of |22|oo on S is 0;

2) the linear system Qoo has no base points on \C'.

Our approach leads us to consider the vector space

roo: = { 5 e r o o : 5 | s = o }
with projectivization

|22|oo: ={De\2Eoo:D3^}.

Then 22 oo can be identified with the linear subsystem of elements of L
containing S. Let Qoo be the linear subsystem of Qoo consisting of quartic
tangent cones at 0 to elements of |25|oo. On a Prym variety, second order
theta divisors which contain S can be thought of as natural generalizations
of 26-divisors on JC containing C — C. It is well-known (see [F, Thm 2.5,
p. 120] and [GG, p. 625] or [Wl, Prop. 4.8, p. 18]) that, on a jacobian
(JC, 6), a 26-divisor contains C — C if and only if it has multiplicity at
least 4 at the origin. This does not generalize to Prym varities: Corollary 4
implies that |25|oo and <3oo are proper linear subsystems of |25|oo and Qoo
respectively. More precisely, we prove (see Section 4):

PROPOSITION 5. — The dimension of Fgo is 2^ - 2 - p(p - 1). The
codimension of QQQ in Qoo ^ at least g — 3.

Note that when p = 4, we have another proof of the result of [Iz2,
p. 148]) saying that the dimension of |25|oo is 1. We pose:

TOME 127 — 1999 — ?1



SECOND ORDER THETA DIVISORS ON PRYMS 5

CONJECTURE 6. — Suppose that (P,5) is not a jacobian. Then:

1) the base locus VQQ of [22 go is ̂  as a set ifp > 6;

2) the base locus V-^ oo °f O-oo ls xC as a set if p ̂  6.

By Corollary 4, this conjecture implies the second parts of Conjec-
ture 1 and 2 for Prym varieties. We have the following evidence for this
conjecture.

Results of Welters and Debarre (see [W2] and [De], see also Section 1
below) imply:

PROPOSITION 7. — The base locus VQQ is the set-theoretical union
of S and^ possibly^ some curves and points for a general Prym variety
of dimension p ^ 16.

Combined with Corollary 4 this implies:

COROLLARY 8.—7/(P,5) is a general Prym variety of dimension > 16,
then VQQ has dimension < 1.

Results of Debarre imply (see Section I):

PROPOSITION 9. — For a general Prym variety of dimension p ^ 8, the
base locus V-^ go ls set-theoretically equal to \C'.

Combined with Corollary 4 this implies (see Section 1 below):

COROLLARY 10. — Part 2) of Conjecture 2 is true for general Prym
varieties of dimension p = g — 1 >, 8.

We explain why we make Conjecture 6 only for p > 6 and only
set-theoretically. Let T^p be the space parametrizing etale double covers
C —> C where C is a smooth (non-hyperelliptic) curve of genus g = p + 1.
The Prym map is the morphism Tig —> Ap which to a double cover C —> C
associates its Prym variety. Recall (see above) that in case p = 4, we
proved in [Iz2, 5.7, p. 134] that VQQ = E U SA. Since the Prym map is
generically injective for g > 7 (see [FS]), we expect that Vg'o = ^ as sets-
Now an argument analogous to [Izl, (2.9), p. 196] shows that, if VQQ = E
as sets, then VQQ is not reduced at 0 and hence is not equal to E as a
scheme. If the morphism p:C^ —> E, where C^ is the second symmetric
power of (7, is birational, then, by analogy with the case of jacobians
(see [Izl]), we can expect VQQ to be reduced at the generic point of S. If,
on the other hand, the morphism p is not birational, then, by a standard
semi-continuity argument, the scheme VQQ is not reduced anywhere on E.
Note that, using a refinement of a theorem of Martens by Mumford (see
[ACGH, Thm 5.2, p. 193]), one can easily see that if C is neither bielliptic,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



6 E. IZADI

trigonal, nor a smooth plane quintic, then p is birational. Similarly, we
can expect V^ oo to ^e e(lualto xC as schemes if C ^ \C but V^ oo wm

not be equal to \C as a scheme if the morphism C —> \C is not (at least)
birational.

On the other hand, Donagi and Smith proved (see [DS]) that the generic
fibers of the Prym map have cardinality 27 when g = 6 and Donagi proved
(see [Do2, Thm 4.1, p. 90]) that the Galois group of the Prym map is
isomorphic to the Galois group of the 27 lines on a cubic surface. So there
could be nontrivial automorphisms acting in the fibers of the Prym map.
If there is an automorphism /^:7^6 —> ^6 acting in the fibers of the Prym
map, then, as in the case p = 4, the base locus Vg'o ^^Id ̂ e the union of
S = S(C -^ C) and the surfaces ̂ (C -> C)), S(/?((5 -^ C7)), etc.

ACKOWLEDGEMENTS. — I wish to thank E. Colombo, C. Pauly and
P. Pirola for helpful discussions and the referee for helpful comments.

Notation and conventions
All varieties and schemes are over the field C of complex numbers.

All ppav are indecomposable and all curves are smooth, complete, irredu-
cible and non-hyperelliptic.

For any section s of an invertible sheaf C, on a variety X, denote by Z{s)
the divisor of zeros of s. Let /^(X, C) denote the dimension of H^(X^ C).

For a divisor D on C (resp. (7), denote by (D) the span of D in the
canonical space of C (resp. (7).

For any subset Y of a group G and any element a G G, denote by Ya
the translate of Y by a.

1. Preliminaries
Let TT : C —>• C be an etale double cover of a smooth (non-hyperelliptic)

curve C of genus g . Let a be the point of order 2 in Pic° C associated to
the double cover TT so that we have

TT^O^ ^ Oc C a.

Choose an element f3 of Pic° C such that /?02 ^ a and a theta-character-
istic K on C such that h°(C, K,) and ^°((7,7r*(^0/3)) are even. Symmetric
principal polarizations on JC == Pic° C and JC == Pic° C can be defined

TOME 127 — 1999 — ?1



SECOND ORDER THETA DIVISORS ON PRYMS 7

as the reduced divisors Q: = G7/ ^^\-i and ©: = ©/ _i where^KQ<)p) K

6': = { D € Pic ̂ -^/i0 (<?,£)) >0},

6': ={DePic9~lC:ho(C,D) >0}.

With these definitions, the inverse image of 9 by the morphism TT* : JC -^
JC is the divisor 0/3 + Qp-i. The Prym variety (P, 5) of the double
cover TT:C —^ C is defined by the reduced varieties P: = ^,(g)/3)-1 an(^
5: ^O^/?)-! with

P': = [E € Pic29--2 C: Nm(E) ^ a;c, ̂ (C, £Q = 0 mod 2},

S7: = {EeP'^G.E) >0},

where
Nm : Pic C —^ Pic C

is the Norm map (see [M2, p. 331-333 and p. 340-342]). As divisors we
have

25 = P • 6.

For any E € P'\ since Nm(^) ^ cc;<7, we have uj- 0 E~1 ^ a^E.
By the theorem of the square, the divisor 5^_i + 2^^_i is in the linear
system |2S[ and, by Wirtinger Duality (see [M2, p. 335-336]), such divisors
span |2S . Furthermore, if E € 5', then 2^_i + '^a*E-1 ls m l^^lo ana

such divisors span |25 o (by Wirtinger duality, the span of such divisors is
the span of (^>(S) where (f):P —> |25|* is the natural morphism, this span
is a hyperplane in |25|* which can therefore be identified with |2S|o by
Wirtinger duality, also see [Wl, p. 18]).

We now explain how Proposition 7 follows from results of Welters and
Debarre and how Proposition 9 follows from results of Debarre.

In this paragraph only, suppose that (P, 2) is a general Prym variety.
Then E is an element of the singular locus Sing (5') of 5' if and only

if h°(C,E) > 4 (see [W2, p. 168]). Therefore, for every E G Sing(S') and
(p^q) € C2, we have

^(C.E^O^p+q-ap-aq)) > 0.

Hence S C 5^_i and 5^_i + S^^_i is in |25 oo- Since 5 is symmetric,
the tangent cones at 0 to S^,_i and 2^^_i are equal. It follows from
these facts and the irreducibility of Sing(S/) for p > 6 (see [De, Thm

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



8 E. IZADI

1.1, p. 114]) that VQQ is set-theoretically contained in f^| 2^_i and
EeSmg^)

V^f,oo ls set-theoretically contained in the intersection of the tangent cones
at 0 to 5^_i for E a point of multiplicity 2 on 5'. This latter can be
rephrased as: V^ oo ls set-theoretically contained in the intersection of
the tangent cones to 5' at its points of multiplicity 2. It is proved in [W2,
Thm 2.6, p. 169]) that, for p > 16, the intersection f] 5^_i is the

EeSmg^)

set-theoretical union of S and, possibly, some curves and points. This
proves Proposition 7. By [De, Thm 1.1, p. 114], the tangent cones to S'
at its points of multiplicity 2 generate the space of quadrics containing
\C for p > 6 and, for p > 8 (see [De, Cor. 2.3, p. 129], also see [L]
and [LS]), the Prym-canonical curve \C is cut out by quadrics. This
proves Proposition 9.

2. Pull-backs of divisors to C2

Let p:C2 —> P C JC be the morphism

p: (5, t) i—> [s, t]: = 0^(s + t - as - at)

so that S is the image of C2 by p. The morphism p lifts to a morphism

p:C2 — ^ S c P .

We have:

LEMMA 2.1. — Let E (E 57 be such that h°(C,E) = 2 and let B he the
base divisor of \E\. Then the inverse image o/2^_i in C2 is the divisor

p*5^ = D,.E + A7

with

DE = DEW^(-B) +^B +^B

where pi:C2 —-> C is the projection onto the i-th factor^ the divisor
DEW-{-B) fls reduced and equal to

DEW^-BY^ ={(p^:h°(C^E^O^-B-p-q))>0}

and A' is the "pseudo-diagonal" of C72, i.e.^ the reduced curve

A': ^(p^eG2}^-1^).

Furthermore^ the divisor p*5^,_i is in the linear system

p^E ® pyE 0 ̂ (-A + A') |.

TOME 127 — 1999 — N° 1



SECOND ORDER THETA DIVISORS ON PRYMS 9

Proof. — We have the equality of sets

p^E-. = {{p^q):E^^q} €2'} = {^q):h°{C^E^[p^q}) > 0}.

This first implies that p*2^_i is a divisor: for general points p and q in (7,
we have

h°{C,E(S)Og(p+q)) = 2 and /i°(G,^ 0 C^(-ap - ag)) = 0.

Therefore p and g are base points for

\E^O^{p +^)|

and _
/i°(C, E (g) 0^(p +q-ap- aq)) = 0.

Secondly, if [p, ^] = 0~, z.e., p = cr^, or if

h° (C, E 0 0^-B -ap- aq)) > 0,

then \p,q\ C p*5^_i. So p*2^_i - D^E^o-(-aB) - ̂  is effective.

Now, if J3 is zero, an easy degree computation on the fibers of C2 over C
by the two projections shows that p*2^_i = D^^E + A' as divisors.

Restricting to fibers of pi and p^ and using the See-Saw Theorem, we
see that D^*E<s>o-(-aB) ls m the linear system

\p\(^E 0 0^{-aB))(S)p^E 0 O^(-aB)) ̂  C^(-A)|

where A is the diagonal of C2.
Therefore p*2^_i is in the linear system

| p^E 0 p^E 0 0^(-A + A') |

when B is zero, and, by continuity, also when B is non-zero.
So p^^'^-i—D^E^o^-aB} ~ A' is linearly equivalent to

p^B)+p^aB)

and is effective. Since, by the Kiinneth isomorphism, the linear system
\p\(o'B) + p^(aB)\ has only one element, it follows that

y0*5^-i - D^E00^(-aB) - A' = R^B) + P^O-B)
C

as divisors. []

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



10 E. IZADI

REMARK 2.2. — Suppose that E as above can be written as

E=^M^)O^(B)

where M is an invertible sheaf on C with h°(C, M) = 2. Then

D^E=^ +D'

for some effective divisor D ' . Therefore

p*5^_, = D' + 2A'

which agrees with the fact that in such a case E e Singf^S') so that 5^_i
is singular at 0 (see [M2, p. 342-343]).

Let uj^ be the canonical sheaf of C2. Then

^2 ^P^^^P^^

and we have Kunneth's isomorphism H0^2,^^) ̂  HQ(C,uJ-)w. Letc c

h(C) C ̂ °(C^) c ̂ °(^^)02 = H\C\u^)

be the vector space of quadratic forms vanishing on the canonical image
^C of C. Fix an embedding H°{C2^^ 0 (9^(-2A)) C H0^2^^)
obtained by multiplication by a nonzero global section of 0 ̂  (2A) (note
that h°(C2, 0^ (2A)) = 1 because A has negative self-intersection, hence
any two such embeddings differ by multiplication by a constant). Then it
is easily seen that

I^(C) = ̂ °(C^) nH°(C2^^ 0(^(-2A)) c H\C2^).

Similarly fix embeddings

H°(C2^^ ^(^(^A-^A')) c H°{C2^^ 0(9^(-2A))

C H°(C2^^ 0 ̂ (-2A + 2A')).

For E € E/ such that h°(C,E) = 2, it is well-known (see, e.^ [ACGH,
p. 261]) that

te:= ijw- U w
D^\E\ De\a-E\

is a quadric of rank < 4 whose ruling(s) cut(s) the divisors of the moving
parts of \E\ and \(J*E\ on C. We need the following:

TOME 127 — 1999 — N° 1



SECOND ORDER THETA DIVISORS ON PRYMS 11

LEMMA 2.3.

1) We have

/9*0p(23) ̂  ̂  ® Oc2(-2A + 2A'),

/9*ro C h{C) c H°(C2^ ® 0^(-2A))

C ff° (<52,^ ® C>^(-2A + 2A')),

;o*roo C l2(C) n H°(C2^ ® 0^(-2A - 2A'))

C H°(C2^ ® C^(-2A + 2A')).

2) For any f € J2((5) C H°(C2^ ® 0^ (-2A + 2A')), let q(f)

be the quadric in \^^\* with equation f. Then, in C2, the zero locus of
f € H°{C2^ ® 0^(-2A + 2A')) is

Z(f) = Z,(f) + 2A'

where 'Zq(f) is a divisor with support

{ ( P ^ ^ C 2 : ( p + q ) C q ( f ) } .
For any s G Fo, put

q(s) = q(p"s).

For a general s 6 Fo, the divisor Zq^ is reduced. In particular, for f
general, the divisor Zq^ is reduced. If Z(s) = S^_i + S^_i for some
E C 5' such thath°(C,E) = 2, then q(s) = qa: = \J (D).

D^\E\
3) Ifsero\roo, then

q(s) H (PToP = \ujc ^ o-l*) C PToJC = |̂ |*

is the projectivized tangent cone T^) to Z(s) C P at 0.

4) For any s € Fo, ^e multiplicity of p*s at the generic point of A7

%5 e^en ^ 2 anrf %/p*5 vanishes on A' w^/i multiplicity ^ 4, ^/ien ez^/ier
5 C FOO 0^ rz{s) contains the Prym-canonical curve \C.

Proof.^— 1) Let E be an invertible sheaf of degree 2g - 2 on C such
that ^°(C\ E) = 2 and E 0 a*£; ̂  ̂ . Then, by Lemma 2.1, we have

p*(5^+2^_.)

^D^+D^^^A'

C I p^cr*^ 0 ̂ a*£; (g) ̂ £1 0 p^E 0 (9^(-2A + 2A') |

=|^0^(-2A+2A /)|.

This proves the first assertion.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



12 E. IZADI

Now, let si and 53 be two general sections of E. Then

Sl 0 52 - 52 0 5i € A2^0^, E) C ^°(C, ̂ )02

and, as in the the proof of Lemma 2.1, it is easily seen that

Z(S^ 0 S2 - S2 0 Si) = DE + A.

From the natural map

^E^H\C^E)^H\C^^E) — — H ° ( C ^ ^ )

we obtain the map

H°(C^E)^ 0 H°(C^^E)^ —— H°(C^^2 ̂  ^°(C2,^),

tl 0 ^2 ̂  CT*^1 0 CT*^2 '——> ^E(t\ ̂  Or*ni) 0 ̂ E^ 0 O-*^),

which induces the map

^:A2^0(C,^)0A27:^0(G,(7*^)—^^(C.o;-).o

Put
^: = (si (g) S2 - S2 0 Si) 0 (a*si 0 cr*S2 - 0*52 0 o-*Si);

then Z((f)E(t)) is equal to D£; + A + D^E + A.
If s C Fo is such that Z(s) = 5^_i + 5^-i, then, by Lemma 2.1, we

have
Z(p^s)=DE+D^E+<2^f.

So Z(p*s) - 2A' == Z((j)E(t)} - 2A and the section p*s of

p*(9p(25) 0 ̂ (-2^) ^ ̂  0 ̂ (-2A)

is a nonzero constant multiple of

^E(f} e S^H^C^^nH^C2^^ 00^(-2A))

= J2(5) C ̂ °(C2,^ 0 (9^(-2A)).

Since such s generate Fo, this proves that pTo C ^2(^). The rest of
part 1) easily follows now.
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SECOND ORDER THETA DIVISORS ON PRYMS 13

2) First think of / as an element of S^H0^^^) C H°(C2^^). We
can write

f =^P^i^P"2
i=l

'^

for some ̂  G H°(C,UJ-). Then, as sets,o
r

Z(f)=[(p,q):^i(p^i(q)=o}.
i=l

Since / e ^(<?), we have E ̂ (?)2 = 0 for every p e C. Therefore
i=l

Z(f) D A. Furthermore, for any two distinct points p and q of G, the
equations

^ r r

^^(p)2 = ̂ ^(p)^(^) = ̂ ^(g)2 = o
1=1 1=1 i=l

mean that the line (p + 9) is in q(f). Therefore
Z(f)={(P.q^(p+q)Cq(f)}uA

as sets. Since / e ̂ ^(C,^), it vanishes with even multiplicity on A.
So Z(/) = Z^f) + 2A where Z^(j) has support {(p,q):(p -{-q) C q{f)}.
Finally, if we think of / as a section of c^ (g) (^^(-2A + 2A'), then
Z(/)=Z^)+2A' .

Let s and E be as in 1). With the notation of 1), let Xi, X^, ̂ 3, ̂ 4 be
the images of, respectively,

5i (g) 0"*Si, S2 ̂  CT*SI, 5i (g) CT*S2, S2 0 0"*S2

by the map ̂ . Then 0£;(t) = ^1X4 - X^X^. By, e.^. [ACGH, p. 261],
the polynomial X\X^ — X^X-^ is an equation for ̂ . Therefore, since p*5
is a constant nonzero multiple of (^(<0, we have q(s) = qa. Hence

DE + D^E = Zq^ = Zq^.

The subvariety of C^9-^ parametrizing divisors D such that 0-{D) e 5'
maps dominantly to \ujc\ via D ̂  TT^D. Therefore, for E general in 2', the
linear systems \E\ and |cr*^| contain reduced divisors and DE and D^.E
are reduced. Furthermore, the base loci B and aB have no points in
common (because TT^\E\ contains reduced divisors). Therefore, if the
moving parts of \E\ and \^E\ are distinct, the divisors DE and D^E have
no common components and their sum is reduced. If this is not the case,
then E = TT*M (S)O^(B) for some effective line bundle M on C. Counting
dimensions, we see that this does not happen for a general E e S'. Thus,
if Z(s) = S^_i + 2^_i for E <£ 5' general, then Zq^ is a reduced
divisor. Hence Zq^ is reduced for general s 6 Fo.
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14 E. IZADI

3) When E is a smooth point of 2', the intersection QE H P7oP =
2P^£;5/ is the projectivized tangent cone at 0 to S^_i +5^^_i (see [M2,
p. 342-343]). Now 3) follows by linearity.

4) This immediately follows from the facts that

p*5 € h{C) C S2^^^^) C H°(C2^^)

and that \C is the tangent cone at 0 to E. []

3. More divisors in |2S|oo
For any M G Pic^""1 C we have:

PROPOSITION 3.1.— The divisor P'0^^_i is in the linear system 22 .
It is in |25|o if h°(C^M) is positive.

Proof. — We first prove that all the divisors P • Q^^-i are linearly
equivalent as M varies in Pic^~1 C. Let ^: JC —^ Pic° P be the morphism
of abelian varieties which sends M 0 K~1 0 f3~1 to

<9p(P-e^-i-p-e)epic°p.

Then the map ^ is the dual of the zero map P ̂  JC —m- J C . Hence
the image of ^ is Op. Since P - © = 25, all the divisors P • ©/ ^jur-i are
linearly equivalent to 25. The second assertion is now immediate. \\

PROPOSITION 3.2. — The divisor P • 9^^_i is an element of |25|oo if
h°(C,M) ̂  2.

Proof. — If ^°(C^7r*M) > 2, then Q^^-i has multiplicity at least
three at the origin whence so has its restriction P • ©^^-i- Since this
multiplicity is even, it is at least 4.

Suppose therefore that h°(C,^M) = 2. By, e.g. [ACGH, p.261], the
tangent cone to Q^^-i at 0 is the quadric

q^M'' == \J W
<$e|7r*M|

in |o;^[* = PToJC. Let TT also denote the projection

PToJC = |o;~|* —. |^c|* = PToJC
0
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with center \ujc ^ o^l* = PToP. Since

^M=7T*(gM)=7r*( (J ((5)),

(?C|M|

^M contains PFo? C PToJC and the multiplicity of P . O^^-i at 0 is
at least 3. Since this multiplicity is even, we have P- Q^^-i e [2S oo. D

4. The base locus of L\^
In this section we prove Proposition 5 and Theorem 3. We will use the

divisors of |25|oo that we constructed in Section 3. We have:

PROPOSITION 4.1. — If M C Pic^"1 C is such that

^(n i\/r\ — t^(n ^*h°(C,M) = h°(C^M) = 2 ,

then

P^ • ©^M-i) = D^M + ̂ ~0^M-i + 2A'

where D^M is defined as in Lemma 2.1. Furthermore, the divisors
DTT*M ~ A' and D^^^^j^-i — A' are effective with respective supports

C

and
{(p^:h°(C,M^Oc(-7rp-7rq))>0}

{(p,q):h°(C,ujc ^ M~1 0 Oc(-7rp - Tvq)) > 0}

Proof. — First note that P • ©^^-i does not contain S. Indeed, for
general points p and q in (7, we have

^(C^*M00^(p+g)) = 2 and h°

Therefore p and q are base points for

h°(C,^M00^p+q)) =2 and h°(C^M 0 0^-ap - aq)) = 0.

7r*M(g)C^(p+(7

and
h°(C,^M(S)0^(p+q-ap-aq)) =0.

Restricting to fibers of pi and p^ and using the See-Saw Theorem, we
see that

D^M + A^o^M-i + 2A' G | ̂ (-2A + 2A')!.
C 1 U / I
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16 E. IZADI

Hence, by Lemma 2.3 and Proposition 3.1, the divisor

D^*M + ^^—(^-n-^M-1 + 2A'
c

is linearly equivalent to p*(P • ©^^-i). Let B and B' be the respec-
tive base loci of \M\ and \ujc ^ M~l\. By definition the support of
/^•^M-i) is the set

{(p, q): h°{C, TT*M 0 ̂ (p + q - ap - aq)) > 0}

which, by Riemann-Roch and Serre Duality is equal to the set

{(p, q): h°(C, uj^ 0 7r*M-1 0 0^((Tp + 0-9 - p - q)) > 0}.

Therefore the support of p*(P • ©^^-i) contains the sets

{(p,g):/^o(Cr,7^*M0^(-7^*B-p-9))>0}=D^M0^(-^B),

{(p, g):^°(C7,^ (g) 7r*M-1 0 ̂ (-TT*^ - TTJ? - Trg)) > 0}
= ^a;~(g)7^*M-l(g)0~(-7^*5/)

c c /

and the support of J^TT* B + ̂ TT* B + J^TT* B' + J^TT* B'. Therefore, when B
and B' are reduced, we have

P (P • ©^^--i) = ̂ 7r*M00~(-7r*B) + ̂ ^—(^TT^M-^O-r-Tr^Bn
c c c

+ 2A' + p^B + ̂ 7r*B + ̂ Tr*^7 + pyB'.

When B or B/ is not reduced, choose a (flat) one-parameter family of
divisors {Bf + £^}^r whose general member is reduced and which has a
special member BQ + BQ, 0 € T with BQ = B and BQ = Bf. Then the two
families of divisors p*(P • B^M-W^B-^^)) and

^7r*M(g)0—(-7r*B) + ̂ ^-(^Tr^M-^C^-Tr^B')

+ 2A7 + ?yBt + P^TT*^ + pyB[ + P^TT*^

define two divisors on C2 x T which are equal because they do not contain
C2 x {0} and are equal outside it.

The other assertions of the proposition are immediate. Q

TOME 127 — 1999 — ?1



SECOND ORDER THETA DIVISORS ON PRYMS 17

PROPOSITION 4.2. — Let M e Pic9'1 C be such that

h°(M) = /i°(7r*M) = 2.

Let s € Foo be such that Z(s) = P ' Q^^-r Then, with the notation of
Lemma 2.3 we have

q(s) = 7r*gM-

Proof. — We have, by Proposition 4.1, that

^(p • ©^M-i) = ̂ *M + D^^M-^ + 2A'.

Noting that

D^M^D^^.M-^ = {(u,v):(7ru-^-7rv) C qM} U A'

= {(n,v):(n4-v) C 7r*gM}

as sets, it follows from Lemma 2.3 that TT^QM = q(s). []

Let
T2:ro — H°(PWOpTopW)

be the map which to s G Fo associates the quadric term of its Taylor
expansion at 0. Then r^ is onto because, since (P, 5) is indecomposable,
every quadric of rank 1 can be obtained as the tangent cone at the origin
to a divisor 5^ 4- 5^-i for some 7 € P. We have:

LEMMA 4.3. — For s C Fo,

s € Foo <^ q(s) D PToP.

Proof. — By Lemma 2.3 part 3) and with the notation there, if
s 6 ro\roo, then rz(s) = q(s)nPToP. So the projectivizations of the two
maps T2 and s i—^ (p"s)\pToP ^ ^(^lipToP are equal. Hence, there exists
A € C* such that, for every s G Fo, we have \r^(s) = (p*s)\p^p. So

s e Foo ̂  r^s) = 0 ̂  (p*5)|pTo? = 0 ̂  q(s) D PToP. D

Let I^(C^a) be the subvector space of l2{C) consisting of elements
which vanish on PToP. By the above lemma and because all elements
of FO are even, the map p* sends Foo into the subspace I^C^a)^ of a-
invariant elements of 1^(0^ a). We have:
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LEMMA 4.4. — The subspace I^(C\a}^ is equal to I^(C) ^ h{C).

Proof. — The a-invariant and a-anti-invariant parts of H°(C^-) are,
respectively, H°(C^c) and H°(C^c^^). Therefore, in the decomposi-
tion

^°(C,^)

= S^^C^c) C H°{C^c) ̂  H\C^c ^ a) e S^H^C^c ^ a),

the space ^^(C^c) C S^H^^C^c ^ oQ is the cr-invariant part of
S2H°{C^^). So S^H^^C.ujc) is the subspace of a-invariant elements
of S^H^^C^^) which vanish on PToP. Therefore I^C.a)^ is contained
inS'2^0^,^) andJ2(C',a)+ is the subspace of elements of S^H^^^c)
which vanish on K,C. This is precisely I^C). []

Let W^_^ be the subvariety of Pic9'1 C parametrizing invertible
sheaves M with /i°(C, M) > 2. We have:

COROLLARY 4.5. — T/^e pull-back

?*:roo———J2(C7)(^J2(^))

z5 onto.

Proof. — Since all quadrics of rank four containing KC are of the form
QM for some M G W^_^ and a general such M has the properties required
in Proposition 4.2, this follows from Proposition 4.2 and the fact that
quadrics of rank four generate \I^{C)\ (see [G] and [SV]). \\

Note that, since all elements of YQ are even, the^nap p* sends Fo into
the subspace ^(C)^ of a-invariant elements of h{C). We have:

COROLLARY 4.6. — The pull-back

^ro-^c^cW))
is surjective.

Proof. — Take the a-invariants of the exact sequence

0 -^ I^C) — S^H^C^^} — H°{C^^2) -^ 0
o
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to obtain the exact sequence

0 -^ h{C}^ —— S^H\C^c) C S^^C^c ̂  a) —— H°(C^^2) -. 0.

Taking the quotient of this sequence by I^C), we obtain

0 -. w)- —— H°(C^^) C S^H\C^c 0 a) -^ H°(C,^2) -^ 0
l'2\c)

or _

^-^S^C^c^a)
l2(^)

where the isomorphism is obtained from the restriction to PToP. By
Corollary 4.5, we have the equality pToo == l2(C) and hence the embed-
ding ^-'m^-^
which is equal to the map s i—^ P*(s)\p^p. The projectivization of this map
is equal to the projectivization of r^ (see Lemmas 2.3 and 4.3). Since r^

is surjective, we have ——— = 2 .^ and pTo = 1^{CY. \\
12{(^) 12((^)

REMARK 4.7 (C.Pauly). — Counting dimensions, one easily deduces
from the above two corollaries that FQQ is in fact the subspace of elements
of r (and not just Foo) vanishing on E.

The following implies Theorem 3.

PROPOSITION 4.8. — The inverse image by /? of the support of the
base locus of L\^ is the set of elements (p^q) of C2 such that (Trp + Tvq)
is contained in the intersection of the quadrics containing the canonical
curve K,C. In particular, ifC is not trigonal, then the base locus of L does
not intersect S.

Proof. — By Proposition 3.2 and Corollary 4.5, the base locus of L\^
is supported on

sn( n ^(P.e^-,))
MCW^_,

where
e^(P • 9^-0 = e*(P . 6^-0 - 4£.
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We have

E. IZADI

r^\p. e^-o) = p*(p. e^-o - 4A'.
Since (Trp + Ti-g) C ^M is equivalent to h°(C, M 0 Oc(-7rp - Trq)) > 0 or
h°(C,ujc ^ M-1 0 ̂ c'(-7rp - Trq)) > 0, it follows from Proposition 4.1
that the inverse image

p*( H ^(P.e^-o)
M€^_,

is supported on the set of elements (p, q) of C2 such that (TTR + TT^) is
contained in QM for all M e ^_i. Since the quadrics of the form QM
generate \I-2(C)\ (see [G] and [SV]) and the base locus of \l2(C)\ in the
canonical space |cc;c'|* does not contain any secants to K,C for C non-
trigonal (see [ACGH, p. 124]), the proposition follows. Q

COROLLARY 4.9. — The dimension of F^ is equal to 2^ - 2 - p2 + p.
The codimension of Qgo m Qoo is at least g - 3.

Proof. — By Lemma 4.4, we have

Foo = Ker(p*:Foo -^ h{C) ^ h(C)}.

Since /?* maps Foo onto I^C) by Corollary 4.5, the dimension of I^o is
equal to

dim(roo) - dim(J2(C7)) = ̂  - 1 - jp(p + 1) - j (^ - 2)(^ - 3)

=2^- l -^+ l ) - j (p - l ) (^ -2 )
= 2 p - 2 - p 2 + p .

The linear system p*L contains the divisors p*(P • 6\.._i) - 4A' for
M e W^-i. From now on we suppose that

/i°(C7,M)=^°(C,7r*M)=2.

By Proposition 4.1, we have

p*(P • 6^-0 - 4A' - ̂ ,.M - A7 + A^.^-i - A'.
C

Therefore the restriction of p * L to A' ^ G contains the divisors

(Ar*M - A')|A/ + (A^(g)7r*M-i - A'))^.
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We will prove that the map M ̂  (p*(-P'©^^-i) -4A')|^ is generically
finite. This will imply that the set of such divisors on A7 ^ C has
dimension g - 4 and the codimension of QQQ in <3oo is at least ^ - 4 + 1 =
^ - 3. We let R and J?' be the ramification divisors of the natural maps
C -^ |M|* ^ P1 and C -^ \^c ^ M-1]* ^ P1 respectively

First suppose C non-trigonal. If C is bielliptic and g > 6, we choose M
in the component of W^_^ whose general elements are base-point-free. For
M general, the linear systems |M| and \ujc ^ M~1} have no base points
and

(D^M - A')|^ = TT*^ (A^^M-i - A')^ = ̂ R ' .\i\,,, _ ^*p ^n - ,, , _ \'\-'a;~(g)7r*
c'r<

It follows that the map M ̂  (p*(P . O^^-i) - 4A /)|A / is generically
finite.

Now suppose C trigonal. Since g > 5, the curve C has a unique linear
system of degree 3 and dimension 1 and we denote the associated invertible
sheaf of degree 3 by MQ. Choose a general effective divisor N of degree
g — 4 on C and put M = MQ (g) Oc(N). We have

p*(P • e^-0 - 4A' = D^M, - A7 +J^*AO
+p^*AO + A^^M-I - A',

c

(p*(P • e,.^-.) - 4A')|^' = (Ar.Mo - AQi^'
+ 27T-W + (l̂ ^_, - AQiA-

c'

(where we identify A' with C). Since N is general, the linear system
ujc ^) M~l\ has no base points and

(A^^M-i-A'))^^*^.
c

It follows once more that the map M \-^ (p*(-P • €)^*M-1) — ^A'))^ is
generically finite. Q
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