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Correspondences with split polynomial equations
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Abstract. We introduce endomorphisms of special jacobians and show that they sat-
isfy polynomial equations with all integer roots which we compute. The eigen-abelian vari-
eties for these endomorphisms are generalizations of Prym-Tyurin varieties and naturally
contain special curves representing cohomology classes which are not expected to be repre-
sented by curves in generic abelian varieties.

Introduction

Let A be an abelian variety of dimension g and Y a divisor on A representing a prin-
cipal polarization. The minimal cohomology class for curves in A is

½Y�g�1

ðg� 1Þ! :

By a well-known result of Matsusaka [M] the minimal class is represented by a curve C in
A if and only if ðA;YÞ is the polarized jacobian of C. Welters [W2] classified the abelian
varieties in which twice the minimal class is represented by a curve. More generally,
Prym-Tyurin varieties of index m contain curves representing m times the minimal class.

A Prym-Tyurin variety P of index m is, by definition, the image of D� id in the
jacobian JC of a curve C where D is an endomorphism of JC satisfying the equation
ðD� idÞ

�
Dþ ðm� 1Þ id

�
¼ 0. The image of an Abel embedding of C in JC by the map

ðD� idÞ : JC ! P is a curve representing m times the minimal class in P [W2].

There are few explicit constructions of Prym-Tyurin varieties in the literature.

In this paper we consider the more general situation where the jacobian of a curve
admits endomorphisms satisfying polynomials of higher degree that can be decomposed
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into products of linear factors with integer coe‰cients which we compute. So our endomor-
phisms have integer eigen-values and, after isogeny, the jacobians of our curves split into
the product of the eigen-abelian varieties of the endomorphism. The images of Abel embed-
dings of our curves will, after isogeny (to obtain principally polarized abelian varieties),
give curves representing multiples of the minimal class in the eigen-abelian varieties. In a
future paper, we will compute the multiples of the minimal class that one obtains. As in
the case of Prym-Tyurin varieties, these multiples will be computable from the coe‰cients
of the polynomial equations of the endomorphisms.

The curves that we consider are immediate generalizations of constructions of Recillas,
Donagi and Beauville (see e.g. [R], [D], [B]). Roughly speaking, they are defined as follows
(for details see Section 1). Suppose given a ramified covering rn : X ! Y of degree n of
smooth projective curves and an étale double cover ~XX ! X . Then a covering ~CC ! Y of de-
gree 2n can be defined as the curve parametrizing the liftings of fibres of rn to ~XX . Moreover,
the involution on ~XX induces an involution s on the curve ~CC. Assuming the ramification of
rn is simple, we show that the curve ~CC is smooth and that it has either one or two connected
components. We concentrate on the case where ~CC consists of two smooth connected com-
ponents ~CC1 and ~CC2. The computations in the case where ~CC is irreducible yield polynomial
equations similar to those obtained for the case n odd below. We shall not address this case
in this paper.

To be more precise, suppose first that n ¼ 2k þ 1f 3. In this case s induces an iso-

morphism ~CC1 ! ~CC2 and we denote C ¼ ~CC1. Using the involution on ~XX we introduce a cor-
respondence D on C. Our first result is Theorem 2.4, which says that D satisfies an equation
of degree k, integral over the integers, whose coe‰cients are given by explicit recursion re-
lations. Denoting the induced endomorphism of the jacobian by the same letter, clearly any
integer zero of this equation yields an eigen-abelian subvariety of D on JC. Our main result
for odd n is that all zeros of this equation are integers. In fact, we have

Theorem 1. Suppose n ¼ 2k þ 1, kf 1. The correspondence D satisfies the equation

Qk
i¼0

�
X þ ð�1Þiþkþ1ð2i þ 1Þ

�
¼ 0

which obviously does not have any multiple root.

Suppose now n ¼ 2kf 2. Then the involution s induces an involution on each com-
ponent ~CCi for i ¼ 1 and 2, which we denote by the same letter. Hence J ~CCi decomposes up
to isogeny into the product of the Prym variety Ps

i :¼ imðs� idÞ of s and its complement
Bs
i :¼ imðsþ idÞ. In this case we introduce a correspondence ~DDi on the curve ~CCi which for

nf 6 decomposes the abelian varieties Bs
i and Ps

i further. Again we compute the equation
for the correspondence ~DDi. This is a polynomial equation in ~DDi and s ~DDi. Setting s ¼ 1, re-
spectively s ¼ �1, we obtain an equation for the endomorphism induced on Bs

i , respec-
tively Ps

i , the coe‰cients of which are given by explicit recursion relations (see Theorems
3.6 and 3.7). Again we prove that all zeros of these equations are integers and thus lead to
decompositions of the abelian varieties Bs

i and Ps
i for nf 6 into eigen-abelian subvarieties.

Theorem 2. (1) Suppose n ¼ 4k with kf 1. For i ¼ 1 and 2 the correspondence ~DDi

induces endomorphisms on Bs
i and Ps

i satisfying the equations
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� on Bs
i :

Qk
j¼0

�
X � 8ðk � jÞ2 þ 2k

�
¼ 0;

� on Ps
i :

Qk�1

j¼0

�
X þ 8ðk � jÞ2 � 10k þ 8j þ 2

�
¼ 0:

(2) Suppose n ¼ 4k � 2 with kf 2. For i ¼ 1 and 2 the correspondence ~DDi induces en-

domorphisms on Bs
i and Ps

i satisfying the equations

� on Bs
i :

Qk�1

j¼0

�
X � 8ðk � jÞ2 þ 10k � 8j � 3

�
¼ 0;

� on Ps
i :

Qk�1

j¼0

�
X þ 8ðk � jÞ2 � 18k þ 16j þ 9

�
¼ 0:

It is easy to see that the polynomials involved do not have multiple roots. The main
idea of the proofs of Theorems 1 and 2 is to identify the fibres of the coverings f : C ! Y

and fi : ~CCi ! Y with sub-vector spaces of the space of bit vectors of length n. This gives an
additional structure on the fibres, namely that of a Hamming scheme, as known from alge-
braic combinatorics and coding theory (not to be confused with a scheme in the algebro-
geometric sense). Using this we associate to D and ~DDi endomorphisms of vector spaces for
which we can explicitly determine the eigenvalues and eigenvectors.

The contents of the paper are as follows: In Section 1 we recall the n-gonal construc-
tion. In Section 2 we introduce the correspondence D and compute its equation in the odd-
degree case. Section 3 contains the analogous computations for even n. In section 4 we pro-
vide the combinatorial tools needed for the proofs of Theorems 1 and 2, which are given
in Section 5. In Section 6 we give a system of equations for the dimensions of the eigen-
abelian varieties involved. We use these equations to compute these dimensions explicitly
for ne 10. Finally, section 7 contains a combinatorial remark related to the situation of
Theorem 1 which is worth noting.

1. The n-gonal construction

1.1. The set up. Let Y be a smooth curve of genus gY , X a cover of degree n of Y of
genus gX and ~XX an étale double cover of X which is not obtained by base change from a
double cover of Y :

~XX !k X !rn Y :

Then Y embeds into the symmetric power X ðnÞ via the map sending a point y of Y to the
divisor obtained as the sum of its preimages in X . Let ~CCH ~XX n be the curve defined by the
fiber product diagram

~CC ���! ~XX ðnÞ???y
???ykðnÞ

Y ���! X ðnÞ:

ð1:1Þ

In other words, the curve ~CC parametrizes the liftings of points of Y to ~XX .
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Lemma 1.1. If rn is at most simply ramified, then the curve ~CC is smooth.

Proof. Since ~CC was defined by the fiber product diagram (1.1), the tangent space
to ~CC is the pull-back of the tangent space of Y . Away from the branch points of rn, the
map ~CC ! Y is étale and hence ~CC is smooth. The ramification points of ~CC over Y can
be described as follows. Let y A Y be a branch point of rn. Let x be the ramification
point of rn above y and let x1; . . . ; xn�2 be the remaining (distinct) points of X above
y. Then a point of ~CC above y is a ramification point if and only if it is of the
form xþ x 0 þ x1 þ � � � þ xn�2 A ~XX ðnÞ where x and x 0 are the two points of ~XX above
x and xi is a point of ~XX above xi for i ¼ 1; . . . ; n� 2. The tangent space to ~XX ðnÞ at
xþ x 0 þ x1 þ � � � þ xn�2 A ~XX ðnÞ can be canonically identified with

OxðxÞlOx 0 ðx 0Þ
Ln�2

i¼1

OxiðxiÞ

and the tangent space to X ðnÞ at 2xþ x1 þ � � � þ xn�2 can be canonically identified with

O2xð2xÞ
Ln�2

i¼1

OxiðxiÞ:

The di¤erential of kðnÞ sends OxiðxiÞ isomorphically to OxiðxiÞ and sends OxðxÞ and
Ox 0 ðx 0Þ both isomorphically to the subspace OxðxÞ of O2xð2xÞ. Its kernel is therefore one-
dimensional and it follows that ~CC is smooth at xþ x 0 þ x1 þ � � � þ xn�2 if and only if the
image of the tangent space OyðyÞ of Y at y is not contained in the subspace

OxðxÞ
Ln�2

i¼1

OxiðxiÞ:

Equivalently, if and only if the composite map

OyðyÞ ! O2xð2xÞ
Ln�2

i¼1

OxiðxiÞ ! Oxð2xÞð1:2Þ

where the second map is the quotient by the image of the tangent space of ~XX ðnÞ is not
zero.

Now choose a general map Y ! P1 of degree m with simple ramification disjoint
from the branch locus of rn. Let p A P1 be the image of y by this map. Define ĈC by the
pull-back diagram

ĈC ���! ~XX ðmnÞ???y
???ykðmnÞ

P1 ���! X ðmnÞ:

By [W1], 8.13, a) p. 107, the curve ĈC is singular exactly above the ramification of the map
Y ! P1. In particular, it is smooth above p. Applying our analysis above to this case, this
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means that the composite map

OpðpÞ ! O2xð2xÞ
Lmn�2

i¼1

OxiðxiÞ ! Oxð2xÞ

is an isomorphism. Here xi, i ¼ n� 2; . . . ;mn� 2 are the other points of X above p. It is
now easy to see that after identifying OpðpÞ with OyðyÞ via the di¤erential of Y ! P1, this
map is equal to the map (1.2) which is therefore also an isomorphism. This shows that ~CC is
smooth. r

Now we investigate the number of connected components of the curve ~CC. We first
have

Lemma 1.2. If rn is unramified, then the curve ~CC is a union of 2n disjoint copies of Y.

Proof. This follows immediately from the fact that, locally, a small loop in Y will
lift to n disjoint loops in X and 2n disjoint loops in ~XX . r

So the case where rn is unramified is uninteresting from the point of view of construc-
tion of abelian subvarieties of jacobians. From now on we will assume that rn is ramfied with

simple ramification.

Recall that the Norm map Nm : Picnð ~XXÞ ! PicnðXÞ is defined as O ~XX ðDÞ 7! OX ðk�DÞ
and that its kernel has two connected components that are translates of the Prym variety P

of the double cover k : ~XX ! X . Therefore the fibers of the induced map

NmjY : Nm�1ðYÞ ! Y HX ðnÞ ! PicnðX Þ

are disjoint unions of two translates of P. Let ~YY ! Y be the étale double cover parametriz-
ing the components of the fibers of NmjY . Then, by the definition of ~CC, the composite map

~CC ,! ~XX ðnÞ ! Picnð ~XX Þ

induces a map ~CC ! ~YY whose composition with ~YY ! Y is the natural map ~CC ! Y from
(1.1). We have

Lemma 1.3. The curves ~CC and ~YY have the same number of connected components.

Proof. As in the proof of [W1], Proposition 8.8, p. 100 (also see [I], p. 109), it can be
seen that any two points in a fiber of ~CC ! ~YY can be joined by a path in ~CC. r

From now on we make the following assumption.

Hypothesis 1.4. The map rn is simply ramified and the double cover ~YY ! Y is
trivial.

By the above lemmas, this is equivalent to the fact that ~CC is smooth with two con-
nected components. Note that when Y GP1, the double cover ~YY ! Y is always trivial.

187Izadi, Lange and Strehl, Correspondences with split polynomial equations

Brought to you by | University of Georgia Libraries
Authenticated | 128.192.114.19

Download Date | 6/27/13 5:06 PM



One situation (see [D], Section 2.2) in which ~YY ! Y is trivial is when ~XX ! X ! Y is
simple of type Dn, i.e., has the following properties.

Definition 1.5. We say that the covering ~XX !k X !rn Y is a simple covering of type
Dn if:

(i) rn : X ! Y is simply ramified of degree n with branch divisor D3j and
k : ~XX ! X an étale double covering.

(ii) rn : X ! Y is a primitive covering.

(iii) The monodromy map of the covering rn � k : ~XX ! Y can be decomposed as

p1ðYnD; y0Þ ! W ðDnÞ ,! S2n:

Here y0 A YnD is a base point, WðDnÞ denotes the Weyl group of type Dn and
WðDnÞ ,! S2n the standard embedding. Recall that a covering is called primitive if it is
not the composition of two coverings of degreef 2. The simply ramified covering rn is
primitive if and only if the canonical map p1ðX ; �Þ ! p1ðY ; �Þ is surjective. According to

[D], Corollary 2.4, any covering ~XX !k X !rn P1 satisfying (i) and (ii) is a simple covering of
type WðDnÞ.

In general the curve ~CC can be irreducible. For examples see [KL] and use, in par-
ticular, Remark 2.10.

The involution s exchanging complementary liftings of the same point of Y acts on
~CC and we let C be the quotient of ~CC by this involution. This means the following. Let
z :¼ x1 þ � � � þ xn be the sum of the points in a fiber of rn, and, for each i, let xi and x 0

i be
the two preimages of xi in ~XX . Then

z :¼ x1 þ � � � þ xn

is a point of ~CC and

sðzÞ ¼ x 0
1 þ � � � þ x 0

n:

The degrees of the maps ~CC ! Y and C ! Y are 2n and 2n�1 respectively. Since the rami-
fication of rn is simple, it is easily seen that s is fixed-point-free if nf 3. Also, we can see
that for each ramification point x1 ¼ x2 of rn there are 2n�2 ramification points in a fiber
of ~CC ! Y obtained as x1 þ x 0

1 þDn�2 where Dn�2 is one of the 2n�2 divisors on ~XX lifting
x3 þ � � � þ xn.

Let ~CC1 and ~CC2 be the two connected components of ~CC. Then half of the divisors
x1 þ x 0

1 þDn�2 lie in ~CC1 and the other half lie in ~CC2.

Writing the degree of the ramification divisor of rn as

degðRX=Y Þ ¼ 2gX � 2 � nð2gY � 2Þ;

this shows that the genus of ~CC1 and ~CC2 is

g ~CCi
¼ 2n�3

�
gX � 1 � ðn� 4ÞðgY � 1Þ

�
þ 1:
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If n is odd, the involution s exchanges the two components of ~CC, hence induces iso-
morphisms

~CC1 G ~CC2 GC:

So we have the following diagram

~CC1 W ~CC2
~XX

2:1

???y
???y2:1

C ¼ ~CC1 ¼ ~CC2 X???yn:1

Y :

ð1:3Þ �������!2n�1:1

If n is even, the involution s acts on each component of ~CC hence C also has two con-
nected components, say C1 and C2. For nf 4, since s is fixed-point-free, we compute the
genus of C1 and C2 to be

gCi
¼ 2n�4

�
gX � 1 � ðn� 4ÞðgY � 1Þ

�
þ 1:

In this case we obtain the diagram

~CC1
~XX ~CC2

2:1

???y
???y2:1

???y2:1

C1 X C2???yn:1

Y :

������!2n�2:1

������! 2n�2:1

If n ¼ 2, the degree of each component Ci over Y is 1 so

C1 GC2 GY :

1.2. Notation. For each k A f0; . . . ; ng, we denote by

½k þ ðn� kÞ0�ðzÞ

the sum of all the points where k of the xi are added to ðn� kÞ of the x 0
i , the indices i being

all distinct. For instance

½1 þ ðn� 1Þ0�ðzÞ ¼
P

1eien

x 0
1 þ � � � þ x 0

i�1 þ xi þ x 0
iþ1 þ � � � þ x 0

n:

and

½2 þ ðn� 2Þ0�ðzÞ ¼
P

1ei<jen

x 0
1 þ � � � þ x 0

i�1 þ xi þ x 0
iþ1 þ � � � þ x 0

j�1 þ xj þ x 0
jþ1 þ � � � þ x 0

n:
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2. The correspondence for n odd

2.1. Definition of D. For i ¼ 1 or 2, we define a correspondence Di on ~CCi as the re-
duced curve

Di :¼ fðx1 þ � � � þ xn; x1 þ x 0
2 þ � � � þ x 0

nÞgH ~CCi � ~CCi

and we define

DHC � C

as the image of Di in C � C. Note that the image of D1 in C � C is equal to the image
of D2. The correspondence D defines an endomorphism of the jacobian JC whose ‘‘ei-
genspaces’’ are proper abelian subvarieties of JC. We call these the eigen-abelian varieties
of D. The aim of this section is to determine the polynomial equation satisfied by this
endomorphism. To study this correspondence, we work on the curve C which we consider
as C1.

For any z ¼ x1 þ � � � þ xn A C we define as usual

DðzÞ ¼ p2�

�
ðp�

1zÞ �D
�

as divisors on C, where p1 and p2 are the first and second projections. The points of C in
the support of DðzÞ are sums of xi or x 0

i . It is immediate that

DðzÞ ¼ ½1 þ ðn� 1Þ0�ðzÞð2:1Þ

and

D2ðzÞ ¼ nzþ 2½2 0 þ ðn� 2Þ�ðzÞð2:2Þ

where Di is the composition of D with itself i times.

2.2. The general equation for n odd. Applying D to successive equations, we can find
polynomial equations for D for any n odd. First we have

Proposition 2.1. (1) For any even integer k, 0e ke
n� 2

2
, there are integers al

j sat-

isfying an equation

DkðzÞ ¼ ak
0zþ ak

2D
2ðzÞ þ � � � þ ak

k�2D
k�2ðzÞ þ k!½k 0 þ ðn� kÞ�ðzÞ:ð2:3Þ

(2) For any odd integer 1e ke
n� 2

2
, there are integers al

j satisfying an equation

DkðzÞ ¼ ak
1DðzÞ þ ak

3D
3ðzÞ þ � � � þ ak

k�2D
k�2ðzÞ þ k!½k þ ðn� kÞ0�ðzÞ:ð2:4Þ

Note that the integers al
j are defined only for l1 j mod 2, 0e j < le

n� 2

2
.
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Proof. According to equations (2.1) and (2.2) the proposition is valid for k ¼ 0; 1
and 2. Applying D to (2.3), we obtain

Dkþ1ðzÞ ¼ ak
0DðzÞ þ ak

2D
3ðzÞ þ � � � þ ak

k�2D
k�1ðzÞ

þ k!ðn� k þ 1Þ½ðk � 1Þ þ ðn� k þ 1Þ0�ðzÞ þ ðk þ 1Þ!½ðk þ 1Þ þ ðn� k � 1Þ0�ðzÞ:

Using (2.4) to substitute for ½ðk � 1Þ0 þ ðn� k þ 1Þ�ðzÞ, this becomes

Dkþ1ðzÞ ¼
�
ak

0 � kðn� k þ 1Þak�1
1

�
DðzÞð2:5Þ

þ
�
ak

2 � kðn� k þ 1Þak�1
3

�
D3ðzÞ þ � � �

þ
�
ak
k�4 � kðn� k þ 1Þak�1

k�3

�
Dk�3ðzÞ

þ
�
ak
k�2 þ kðn� k þ 1Þ

�
Dk�1ðzÞ

þ ðk þ 1Þ!½ðk þ 1Þ þ ðn� k � 1Þ0�ðzÞ:

Similarly, applying D to (2.4) and using (2.3) to substitute for

½ðk � 1Þ0 þ ðn� k þ 1Þ�ðzÞ;

we obtain

Dkþ1ðzÞ ¼ �kðn� k þ 1Þak�1
0 zþ

�
ak

1 � kðn� k þ 1Þak�1
2

�
D2ðzÞ þ � � �ð2:6Þ

þ
�
ak
k�4 � kðn� k þ 1Þak�1

k�3

�
Dk�3ðzÞ

þ
�
ak
k�2 þ kðn� k þ 1Þ

�
Dk�1ðzÞ

þ ðk þ 1Þ!½ðk þ 1Þ0 þ ðn� k � 1Þ�ðzÞ:

By induction this completes the proof. r

The proof of the proposition gives the following recursion relations for the integers al
j .

Corollary 2.2. Setting al
l ¼ �1 for 0e le

n� 4

2
and a�1

1 ¼ al
�1 ¼ 0 for odd l, we

have for all i1 k þ 1 mod 2 and 0e ie k � 1,

akþ1
i ¼ ak

i�1 � kðn� k þ 1Þak�1
i :ð2:7Þ

Using this we obtain

Proposition 2.3. With the above notation we have

ak
k�2i ¼ ð�1Þiþ1 Pk�2iþ1

j1¼j0þ2

j1ðn� j1 þ 1Þ �
Pk�2iþ3

j2¼j1þ2

j2ðn� j2 þ 1Þ � . . . �
Pk�1

jiþ1¼jiþ2

jiþ1ðn� jiþ1 þ 1Þ

for 0e ie
k þ 1

2
and ke

n� 2

2
, where we set j0 ¼ �1.
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Proof. We prove the formula by induction. The formula holds trivially for k ¼ 0

and 1. Assume now that it holds for all le k � 1 and all i, 0e ie
lþ 1

2
. We need to

prove it for l ¼ k and all i, 0e ie
k þ 1

2
. From (2.7) we deduce

ak
k�2i ¼ ak�1

k�2i�1 � ðk � 1Þðn� k þ 2Þak�2
k�2i

¼ ð�1Þiþ1 Pk�2i

j1¼1

j1ðn� j1 þ 1Þ �
Pk�2iþ2

j2¼j1þ2

j2ðn� j1 þ 1Þ � . . . �
Pk�2

jiþ1¼jiþ2

jiþ1ðn� jiþ1 þ 1Þ

þ ð�1Þiþ1ðk � 1Þðn� k þ 2Þ
Pk�2iþ1

j1¼1

j1ðn� j1 þ 1Þ

�
Pk�2iþ3

j2¼j1þ2

j2ðn� j1 þ 1Þ � . . . �
Pk�1

ji¼ji�1þ2

jiðn� ji þ 1Þ:

Note that in the expression in the proposition, if we remove the last term, i.e.,
ðk � 1Þðn� k þ 2Þ, all the upper bounds of the former sums go down by 1. This gives us
the second line above. The rest will then be the third line above, which proves the proposi-
tion. r

2.3. The final equations for n odd. With these coe‰cients al
j the following theorem

gives the equation for the correspondence D.

Theorem 2.4. Suppose n ¼ 2k þ 1.

(1) For k even D satisfies the equation

X k þ ðk þ 1Þ
Pk�2

i¼0

ak
i X

i �
Pk�1

i¼1

akþ1
i X i ¼ 0:ð2:8Þ

(2) For k odd D satisfies the equation

X k þ ðk þ 1Þ
Pk�1

i¼0

ak
i X

i �
Pk
i¼1

akþ1
i X i ¼ 0:ð2:9Þ

Proof. (1) If n ¼ 2k þ 1 with k even, then

½ðk þ 1Þ þ ðn� k � 1Þ0�ðzÞ ¼ ½k 0 þ ðn� kÞ�ðzÞ

and we can use (2.3) to substitute in equation (2.5) which then becomes

Dkþ1ðzÞ ¼ �ðk þ 1Þak
0zþ

�
ak

0 � kðk þ 2Þak�1
1

�
DðzÞ þ � � �

� ðk þ 1Þak
k�4D

k�4ðzÞ þ
�
ak
k�4 � kðk þ 2Þak�1

k�3

�
Dk�3ðzÞ

� ðk þ 1Þak
k�2D

k�2ðzÞ þ
�
ak
k�2 þ kðk þ 2Þ

�
Dk�1ðzÞ þ ðk þ 1ÞDkðzÞ:

From the recursion relations (2.7) we see that this equation is just (2.8).
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(2) If n ¼ 2k þ 1 with k odd, then ½ðk þ 1Þ0 þ ðn� k � 1Þ�ðzÞ ¼ ½k þ ðn� kÞ0�ðzÞ and
we can use (2.4) to substitute in equation (2.6) which then becomes (2.9), again using the
recursion relations (2.7). r

3. The correspondence ~DDi for nk 4 even

3.1. Definition of ~DDi. For i ¼ 1 or 2, we define a correspondence ~DDi on ~CCi as the
reduced curve

~DDi :¼ fðx1 þ � � � þ xn; x1 þ x2 þ x 0
3 þ � � � þ x 0

nÞgH ~CCi � ~CCi:

For nf 6 the map from ~DDi onto its image in Ci � Ci is of degree 2 and we define

Di HCi � Ci

as the reduced image of ~DDi in Ci � Ci. For n ¼ 4, the map from ~DDi onto its image in
Ci � Ci is of degree 4 and we define

Di HCi � Ci

to be twice the reduced image of ~DDi in Ci � Ci.

The correspondences Di and ~DDi define endomorphisms of the jacobians JCi and J ~CCi

whose eigen-abelian varieties are proper abelian subvarieties of JCi and J ~CCi. The aim of
this section is to determine the polynomial equations satisfied by these endomorphisms.

As before, for any z ¼ x1 þ � � � þ xn A ~CCi write

~DDiðzÞ ¼ p2�

�
ðp�

1zÞ � ~DDi

�
as divisors on ~CCi, where p1 and p2 are the first and second projections. With the notation of
Section 1.2, we have

~DDiðzÞ ¼ ½2 þ ðn� 2Þ0�ðzÞð3:1Þ

and

~DD2
i ðzÞ ¼

n

2

� �
zþ 2ðn� 2Þ½2 0 þ ðn� 2Þ�ðzÞ þ 6½4 0 þ ðn� 4Þ�ðzÞ;

which can be rewritten as

~DD2
i ðzÞ ¼

n

2

� �
zþ 2ðn� 2Þs ~DDiðzÞ þ 6½4 0 þ ðn� 4Þ�ðzÞ:ð3:2Þ

Remark 3.1. If n ¼ 2, then the correspondences ~DDi are just the diagonals of ~CC1 � ~CC1

and ~CC2 � ~CC2. So D1 and D2 are the diagonals of C1 and C2.
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3.2. Splitting of the jacobians. The involution s splits the jacobians of ~CCi into their
þ1 and �1 eigen-abelian varieties, i.e., the respective images of sþ 1 and s� 1. We denote

Ps
i :¼ Imðs� 1ÞH J ~CCi; Bs

i :¼ Imðsþ 1ÞH J ~CCi:

Note that Bs
i is the image of JCi by the pull-back map of ~CCi ! Ci.

It is immediate from the definitions that the endomorphisms s and ~DDi commute on
J ~CCi. Hence ~DDi induces endomorphisms on Ps

i and Bs
i which we denote again by ~DDi.

As the double cover ~CCi ! Ci is étale, the map JCi ! Bs
i which is obtained from pull-

back of line bundles from Ci to ~CCi has degree 2. The endomorphism of JCi obtained from
Di and that of Bs

i obtained from ~DDi fit into the commutative diagram

JCi ���!Di
JCi???y
???y

Bs
i ���!~DDi

Bs
i :

3.3. The general equation for n even. We proceed as in the case n odd to find the
general equation for ~DDi, for i ¼ 1 or 2. In order to formulate it, we define

fkg :¼
Qk
i¼1

2i

2

� �
:

Proposition 3.2. For i ¼ 1 and 2 and any integer k, 2e ke
n� 2

4
, there are integers

bk
j , 0e je k satisfying an equation

~DDk
i ðzÞ ¼

Pk�1

j¼0

bk
j s

kþj ~DDj
i ðzÞ þ fkgsk½ð2kÞ0 þ ðn� 2kÞ�ðzÞ:ð3:3Þ

Note that sl ¼ id for l even and sl ¼ s for l odd.

Proof. Suppose first k ¼ 2. Then

~DD2
i ðzÞ ¼

n

2

� �
zþ 2ðn� 2Þ½2 0 þ ðn� 2Þ�ðzÞ þ 6½4 0 þ ðn� 4Þ�ðzÞ

¼ n

2

� �
zþ 2ðn� 2Þs ~DDiðzÞ þ 6½4 0 þ ðn� 4Þ�ðzÞ

which is of the form (3.3). For 2e ke
n� 4

4
we apply ~DDi to (3.3) to obtain

~DDkþ1
i ðzÞ ¼ bk

0s
k ~DDiðzÞ þ bk

1s
kþ1 ~DD2

i ðzÞ þ � � � þ bk
k�1s

2k�1 ~DDk
i ðzÞð3:4Þ

þ fkg n� 2k þ 2

2

� �
skþ1½ð2k � 2Þ0 þ ðn� 2k þ 2Þ�ðzÞ
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þ fkg2kðn� 2kÞskþ1½ð2kÞ0 þ ðn� 2kÞ�ðzÞ

þ fkg 2k þ 2

2

� �
skþ1½ð2k þ 2Þ0 þ ðn� 2k � 2Þ�ðzÞ:

First assume kf 3. Then, using (3.3) to substitute for ½ð2k � 2Þ0 þ ðn� 2k þ 2Þ�ðzÞ and
½ð2kÞ0 þ ðn� 2kÞ�ðzÞ, we can write

fkg n� 2k þ 2

2

� �
skþ1½ð2k � 2Þ0 þ ðn� 2k þ 2Þ�ðzÞ

¼ 2k

2

� �
n� 2k þ 2

2

� ��
~DDk�1
i ðzÞ �

Pk�2

j¼0

bk�1
j sk�1þj ~DDj

i ðzÞ
�

and

fkg2kðn� 2kÞskþ1½ð2kÞ0 þ ðn� 2kÞ�ðzÞ ¼ 2kðn� 2kÞ
�
s ~DDk

i ðzÞ �
Pk�1

j¼0

bk
j s

kþ1þj ~DDj
i ðzÞ

�
:

Inserting these into (3.4) we obtain

~DDkþ1
i ðzÞ ¼

 
� 2k

2

� �
n� 2k þ 2

2

� �
bk�1

0 sk�1 � 2kðn� 2kÞbk
0s

kþ1

!
zð3:5Þ

þ
 
ak

0s
k � 2k

2

� �
n� 2k þ 2

2

� �
bk�1

1 sk

� 2kðn� 2kÞbk
1s

kþ2

!
~DDiðzÞ þ � � �

þ
 
bk
k�3s

2k�3 � 2k

2

� �
n� 2k þ 2

2

� �
bk�1
k�2s

2k�3

� 2kðn� 2kÞbk
k�2s

2k�1

!
~DDk�2
i ðzÞ

þ
 
bk
k�2s

2k�2 þ 2k

2

� �
n� 2k þ 2

2

� �

� 2kðn� 2kÞbk
k�1s

2k

!
~DDk�1
i ðzÞ

þ
�
bk
k�1s

2k�1 þ 2kðn� 2kÞs
�
~DDk
i ðzÞ

þ fk þ 1gskþ1½ð2k þ 2Þ0 þ ðn� 2k � 2Þ�ðzÞ:
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For k ¼ 2 we only need to replace 6½4 þ ðn� 4Þ0�ðzÞ which is

6½4 þ ðn� 4Þ0�ðzÞ ¼ s ~DD2
i �

n

2

� �
s� 2ðn� 2Þ ~DDi

and we obtain the equation

~DD3
i ¼ �4ðn� 4Þ n

2

� �
sþ

 
n

2

� �
þ 6

n� 2

2

� �
� 4ðn� 4Þ2ðn� 2Þ

!
~DDi

þ
�
2ðn� 2Þ þ 4ðn� 4Þ

�
s ~DD2

i þ 6 � 15½6 þ ðn� 6Þ0�:

This proves the existence of (3.3) for all ke
n� 2

4
. r

3.4. The recursion relations between the coe‰cients for n even. Using equations (3.2)
and (3.3) we obtain the following initial values

b2
0 ¼ n

2

� �
and b2

1 ¼ 2ðn� 2Þ:

Using equations (3.3) and (3.5) we obtain, for 2e ke
n� 2

4
, the recursion relations for

the integers bl
j .

Corollary 3.3. Setting bk
�1 ¼ bk�1

k ¼ 0 and bk
k ¼ �1 for 1e ke

n� 2

2
, we have for

all 0e je k

bkþ1
j ¼ bk

j�1 �
2k

2

� �
n� 2k þ 2

2

� �
bk�1
j � 2kðn� 2kÞbk

j :

3.5. The final equations for n even. Suppose first that n ¼ 4k � 2, kf 2. Then we
have

½ð2kÞ0 þ ðn� 2kÞ� ¼ ½ð2kÞ0 þ ð2k � 2Þ� ¼ s½ð2k � 2Þ0 þ 2k� ¼ s:½ð2k � 2Þ0 þ ðn� 2k þ 2Þ�:

So, combining (3.3) for k and k � 1, we obtain

Proposition 3.4. Suppose n ¼ 4k � 2, kf 2. Then ~DDi satisfies the following equation

X k �
Pk�1

j¼0

 
bk
j s

kþj � 2k

2

� �
bk�1
j skþj�1

!
X j ¼ 0;ð3:6Þ

where the bl
j are the integers of Subsection 3.4.

Now suppose n ¼ 4k, kf 2. Here we apply ~DDi to (3.3) for k ¼ n=4 to obtain

~DDkþ1
i ¼

Pk�1

j¼0

bk
j s

kþj ~DDjþ1
i þ fkgsk ~DDi½ð2kÞ0 þ 2k�

¼
Pk�1

j¼0

bk
j s

kþj ~DDjþ1
i
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þ fkgsk

 
2k þ 2

2

� ��
½ð2k þ 2Þ0 þ ð2k � 2Þ�

þ ½ð2k � 2Þ0 þ ð2k þ 2Þ�
�
þ 4k2½ð2kÞ0 þ 2k�

!
:

Now we use equation (3.3) for k � 1 and its image by s to replace

½ð2k þ 2Þ0 þ ð2k � 2Þ� þ ½ð2k � 2Þ0 þ ð2k þ 2Þ�

and equation (3.3) for k to replace ½ð2kÞ0 þ 2k� and obtain

Proposition 3.5. Suppose n ¼ 4k, kf 2. Then ~DDi satisfies the following equation:

X kþ1 þ
Pk
j¼0

 
2k

2

� �
2k þ 2

2

� �
bk�1
j � bk

j�1

!
skþj�1X jð3:7Þ

þ
Pk
j¼0

 
2k

2

� �
2k þ 2

2

� �
bk�1
j þ 4k2bk

j

!
skþjX j ¼ 0

where the bl
j are the integers of Subsection 3.4.

3.6. The equations in Bs
i and Ps

i . According to Subsection 3.2 the correspon-
dences ~DDi induce endomorphisms on the abelian subvarieties Bs

i ¼ Imðsþ 1ÞH J ~CCi and
Ps
i ¼ Imðs� 1ÞH J ~CCi which we denote by the same letter.

On Bs
i we have s ¼ 1. Inserting this into Propositions 3.4 and 3.5 we finally obtain

the following result.

Theorem 3.6. On the abelian variety Bs
i the endomorphism ~DDi satisfies the following

equation:

(1) For n ¼ 4k � 2, kf 2,

X k þ
Pk�1

j¼0

 
bk
j � 2k

2

� �
bk�1
j

!
X j ¼ 0:ð3:8Þ

(2) For n ¼ 4k, kf 2,

X kþ1 þ
Pk
j¼0

 
2

2k

2

� �
2k þ 2

2

� �
bk�1
j þ 4k2bk

j � bk
j�1

!
X j ¼ 0:ð3:9Þ

On Ps
i we have s ¼ �1. Here we obtain

Theorem 3.7. On the abelian variety Ps
i the endomorphism ~DDi satisfies the following

equation:
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(1) For n ¼ 4k � 2, kf 2,

X k þ
Pk�1

j¼0

ð�1Þkþj

 
bk
j þ 2k

2

� �
bk�1
j

!
X j ¼ 0:ð3:10Þ

(2) For n ¼ 4k, kf 2,

X k �
Pk�1

j¼0

bk
j X

j ¼ 0:ð3:11Þ

Note that after proving Theorem 2 we can conclude that equation (3.11) means
that the eigen-abelian variety of one of the roots of equation (3.7) on Ps

i has dimen-
sion 0.

Proof. (1) is a direct consequence of Proposition 3.4. For n ¼ 4k, nf 2 we obtain
an equation of degree k by noting that ½ð2kÞ0 þ 2k� ¼ s½ð2kÞ0 þ 2k�. Subtracting equation
(3.3) from its own image by s and dividing by �2 we obtain the equation (3.11) on Ps

i after
replacing s by �1. r

4. Combinatorial preliminaries

In order to find the zeros of (2.8), (2.9), (3.8), . . . , (3.11) we need some combinatorial
properties relating our set up to the Hamming scheme from algebraic graph theory (see
[MS], [G] for background information). In particular, we shall use the fact that the eigen-
values of the distance–k transform are given by values of the Krawtchouk polynomials. For
convenience, we will keep the presentation self-contained. Note that for the proofs of
Theorems 1 and 2 only the cases k ¼ n� 1 and k ¼ n� 2 below are relevant.

4.1. The distance–k transform and its eigenvalues. Consider the group

Bn ¼ Zn
2 ¼ ðf0; 1gn;lÞ

of bitvectors of length n with componentwise addition mod 2. For x ¼ ðx1; . . . ; xnÞ A Bn

and y ¼ ðy1; . . . ; ynÞ A Bn let

kxk ¼
P

1eien

xi and dðx; yÞ ¼ kx� yk

denote their Hamming weight and distance. Let Bn
k denote the set of bitvectors of length n

and weight k where 0e ke n.

For any field F (below we assume that the characteristic of F is3 2), let

Rn ¼ F ½Bn�

denote the vector space over F with Bn as a basis. We consider the following endomor-
phisms of Rn:
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� The Hadamard transform is the endomorphism of Rn defined on basis elements
x A Bn by

x 7! x̂x ¼
P

y ABn

ð�1Þx�yy ¼
P
y A Bn

wxðyÞy;

where x � y is the scalar product, i.e., wx : y 7! ð�1Þx�y denotes the character of Bn belong-
ing to x.

� For 0e ke n the distance–k transform Gn;k is the endomorphism of Rn defined on
basis elements x A Bn by

x 7! Gn;kðxÞ ¼
P

y ABn
k

xl y:

In other words Gn;k associates to x A Bn the sum of all basis elements at Hamming distance
k from x (changing k coordinates from 0 to 1 or vice versa).

Proposition 4.1. For 0e ke n, and for x A Bn
l ð0e le nÞ, the Hadamard transform

x̂x is an eigenvector of Gn;k with eigenvalue

ln;k;l ¼ wxðBn
kÞ ¼

P
i

ð�1Þ i l

i

� �
n� l

k � i

� �
:

Proof. First note that all the operators Gn;k ð0e ke nÞ commute, hence they have
a common system of eigenvectors. Write

Gn;kðx̂xÞ ¼
P

y ABn

ð�1Þx�yGn;kðyÞ ¼
P

y ABn

ð�1Þx�y
P

z ABn
k

yl z

¼
P

y ABn

P
z ABn

k

ð�1Þx�ðylzÞ
y ¼

P
y ABn

ð�1Þx�y
� P

z ABn
k

ð�1Þx�z
�
y

¼ wxðBn
kÞ � x̂x;

where we have used ð�1Þx�ðylzÞ ¼ ð�1Þx�yð�1Þx�z.

It is clear that the eigenvalue

ln;kðxÞ ¼
P

z ABn
k

ð�1Þx�z ¼ wxðBn
kÞ

corresponding to x depends only on the weight kxk ¼ l of x, so that one can write ln;k;l for
it. Now for x A Bn

l :

Pn
k¼0

ln;k;lt
k ¼

P
z ABn

ð�1Þx�ztkzk ¼ ð1 � tÞlð1 þ tÞn�l;

from which the above expression for ln;k;l follows by comparison of coe‰cients of
tk. r

199Izadi, Lange and Strehl, Correspondences with split polynomial equations

Brought to you by | University of Georgia Libraries
Authenticated | 128.192.114.19

Download Date | 6/27/13 5:06 PM



Remark 4.2. For n A N the Krawtchouk polynomials Pkðx; nÞ ð0e ke nÞ are de-
fined by

P
0eken

Pkði; nÞzk ¼ ð1 � zÞ ið1 þ zÞn�i;

or equivalently,

Pkðx; nÞ ¼
Pk
j¼0

ð�1Þ j x

j

� �
n� x

k � j

� �
;

so that ln;k;l ¼ Pkðl; nÞ. We note the following well known and easily proved properties of
these eigenvalues:

ln;k;l ¼ ð�1Þk � ln;k;n�l;

ln;k;l ¼ ð�1Þl � ln;n�k;l;

n

l

� �
� ln;k;l ¼

n

k

� �
� ln;l;k:

4.2. Sn-symmetry. Since the Hadamard transform and the distance–k transforms
are compatible with the natural action of the symmetric group Sn on Bn and on Rn, one
can take quotients and consider the vector space

~RRn ¼ Rn=Sn:

It is convenient to take a polynomial model for this space, i.e., let

Hn ¼ HnðX ;Y Þ

denote the vector space of homogeneous polynomials in variables X , Y of degree n. Take
the monomials

xl ¼ X lY n�l; 0e le n;

as a basis, where xl is taken as the image of the elements of Bn
k . Then the quotient action of

the distance–k transform has the matrix representation Gn;k ¼ ½gl; i�0el; ien, where

gl; i ¼
l
j

� �
n� l
k � j

� �
if i ¼ k þ l� 2j;

0 otherwise:

8><
>:

The quotient action of the distance–k transform may also be represented as a di¤erential
operator

Dk ¼
1

k!

Pk
j¼0

k

j

� �
X jY k�jD

k�j
X D

j
Y
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on Hn. Then the eigenvectors take the convenient form

vn;l ¼ vn;lðX ;YÞ ¼ ðX � YÞlðX þ Y Þn�l ð0e le nÞ:

These polynomials vn;l form a basis of Hn adapted to the operators Dk, with eigenvalues
ln;k;l ð0e k; le nÞ.

Remark 4.3. In terms of the Krawtchouk polynomials

vn;l ¼
Pl
k¼0

Pkðl; nÞX kY n�k ¼
Pn
k¼0

ln;k;lX
kY n�k:

The remarkable fact that the ln;k;l appear both as coe‰cients of the eigenpolynomials vn;l
and as their eigenvalues corresponding to Dk:

Dkvn;l ¼ ln;k;l � vn;l ð0e k; le nÞ;

can be written equivalently as

Pn
l¼0

n

l

� �
ln;k;lln; j;l ¼ 2n n

k

� �
dk; j;

which is the orthogonality relation for the polynomials Pkðx; nÞ ð0e ke nÞ.

4.3. More symmetry. Let Hþ
n , respectively H�

n , denote the subspace of symmetric,
respectively antisymmetric, polynomials in Hn, i.e.

HG
n ¼ fp A Hn j pðX ;Y Þ ¼GpðY ;X Þg:

Then obviously fvn;2l j 0e 2le ng is a basis of Hþ
n , and fvn;2lþ1 j 0e 2lþ 1e ng is a

basis of H�
n . Since the operators Dk are symmetric with respect to X , Y , the subspaces

Hþ
n and H�

n are Dk-invariant.

Let He
n , respectively Ho

n , denote the subspace of polynomials in Hn where the vari-
able Y appears only with even, respectively odd, powers, i.e.

He
n ¼ fp A Hn j pðX ;YÞ ¼ pðX ;�YÞg; Ho

n ¼ fp A Hn j pðX ;YÞ ¼ �pðX ;�YÞg:

Let

peðX ;YÞ ¼
�
pðX ;YÞ þ pðX ;�YÞ

�
=2 and poðX ;Y Þ ¼

�
pðX ;YÞ � pðX ;�YÞ

�
=2

denote the even and odd part of pðX ;YÞ. We have vn;lðX ;�Y Þ ¼ vn;n�lðX ;YÞ, hence

ve
n;l ¼ ðvn;l þ vn;n�lÞ=2;

vo
n;l ¼ ðvn;l � vn;n�lÞ=2;
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so that the 2-dimensional subspace spanned by fvn;l; vn;n�lg has also fve
n;l; v

o
n;lg as a ba-

sis. A degenerate situation occurs for n even and l ¼ n=2, where vn;n=2 itself is an even
polynomial, hence ve

n;n=2 ¼ vn;n=2 and vo
n;n=2 ¼ 0, and we only have a one-dimensional sub-

space.

From ln;k;l ¼ ð�1Þk � ln;k;n�l it follows that

Dkv
e
n;l ¼

ln;k;l � ve
n;l if k is even;

ln;k;l � vo
n;l if k is odd;

�

and similarly

Dkv
o
n;l ¼

ln;k;l � vo
n;l if k is even;

ln;k;l � ve
n;l if k is odd:

�

Hence, if k is odd, then the subspaces He
n and Ho

n are not Dk-invariant, they are
rather D2

k-invariant with

D2
kv

e
n ¼ l2

n;k;l � ve
n and D2

kv
o
n ¼ l2

n;k;l � vo
n :

Moreover, if k is even and n is odd, then fve
n;l j 0e l < n=2g is a basis of He

n , and
fvo

n;l j 0e l < n=2g is a basis of Ho
n .

Finally, if k and n are even, then a basis of He
n is fve

n;l j 0e l < n=2gW fvn;n=2g,
and a basis for Ho

n is the same as for n odd. Note that in this case ve
n;2l A Hþ

n and
ve
n;2lþ1 A H�

n , and, similarly, vo
n;2l A Hþ

n and vo
n;2lþ1 A H�

n , because n and n� l have the
same parity.

As a consequence we obtain

Proposition 4.4. (1) If n is odd and k is even, then the actions of Dk on the four invari-

ant subspaces Hþ
n , H�

n , He
n , Ho

n of dimension ðnþ 1Þ=2 are isomorphic, as they all a¤ord

the ln;k;l with 0e l < n=2 as eigenvalues.

(2) If n and k are both even, then the invariant subspaces Hþ
n and H�

n (of dimension

n=2) are not only di¤erent in dimension ðdimHþ
n ¼ n=2 þ 1; dimH�

n ¼ n=2Þ, but the actions
of Dk on these subspaces have complementary subsets of eigenvalues: fln;k;2l j 0e 2le n=2g
for Hþ

n and fln;k;2lþ1 j 0e 2lþ 1e n=2g for H�
n . All of these are double eigenvalues, ex-

cept ln;k;n=2, which is simple.

In the case of Proposition 4.4 (2) one can use He
n , Ho

n to separate the eigenvalues as
follows. Consider the invariant subspaces

Hþe
n ¼ Hþ

n XHe
n ; Hþo

n ¼ Hþ
n XHo

n ; H�e
n ¼ H�

n XHe
n ; H�o

n ¼ H�
n XHo

n :

Then we have the following:
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� If n1 0 mod 4:

dim eigenvalues eigenvectors range

Hþe
n n=4 þ 1 ln;k;2l ve

n;k;2l 0e le n=4
Hþo

n n=4 ln;k;2l vo
n;k;2l 0e l < n=4

H�e
n n=4 ln;k;2lþ1 ve

n;k;2lþ1 0e l < n=4
H�o

n n=4 ln;k;2lþ1 vo
n;k;2lþ1 0e l < n=4

� If n1 2 mod 4:

dim eigenvalues eigenvectors range

Hþe
n ðnþ 2Þ=4 ln;k;2l ve

n;k;2l 0e l < n=4
Hþo

n ðnþ 2Þ=4 ln;k;2l vo
n;k;2l 0e l < n=4

H�e
n ðnþ 2Þ=4 ln;k;2lþ1 ve

n;k;2lþ1 0e l < n=4
H�o

n ðn� 2Þ=4 ln;k;2lþ1 vo
n;k;2lþ1 0e l < ðn� 2Þ=4

5. Proofs of the main theorems

5.1. Proof of Theorem 1. Let the situation be as in Theorem 1, i.e., suppose
n ¼ 2k þ 1f 3 and consider the coverings of smooth projective curves ~XX !k X !rn Y with
rn of degree n and k étale of degree 2, satisfying Hypothesis 1.4. Let f : C ! Y denote
the associated covering of degree 2n�1. For a point y A Y let r�1

n ðyÞ ¼ fx1; . . . ; xng and
k�1ðxiÞ ¼ fxi; x 0

ig. Then

f �1ðyÞ ¼ fxe1

1 þ � � � þ xen
n j e ¼ 0 or no 0; even number of 0sg:ð5:1Þ

Since the correspondence D is independent of the point y A Y , we can identify f �1ðyÞ
with the set of bitvectors of length n with an even number of components di¤erent
from 0:

f �1ðyÞ ¼ Bn; e :¼ fðe1; . . . ; enÞ j ei ¼ 0 or 1;
P

ei eveng:ð5:2Þ

This gives us two additional structures on f �1ðyÞ, namely the addition l and the Ham-
ming distance on Bn:e. Denote by Re

n the corresponding subspace of Rn:

Re
n :¼ F ½Bn; e�;

and define He
n as in Section 4. Using these identifications the correspondence D on C in-

duces the distance–ðn� 1Þ transform Gn;n�1 on the vector spaces Re
n as well as the di¤eren-

tial operator Dn�1 on the vector space He
n . Now, according to Theorem 2.4, the correspon-

dence D satisfies an equation of degree k. Hence to complete the proof of Theorem 1 it
su‰ces to show that Dn�1 admits the k eigenvalues ð�1Þkþjð2j þ 1Þ, 0e je k. This follows
immediately from Proposition 4.4, since the only nonzero terms of

ln;n�1;l ¼
P
j

ð�1Þ j l

j

� �
n� l

n� 1 � j

� �
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are those where j ¼ l� 1 and j ¼ l as nonzero summands, so that

ln;n�1;l ¼ ð�1Þl
 

l

0

� �
n� l

1

� �
� l

1

� �
n� l

0

� �!

¼ ð�1Þlðn� 2lÞ

¼ ð�1Þkþl�2ðk � lÞ þ 1
�

for 0e le n:

Setting i ¼ k � l, this finishes the proof. r

5.2. Proof of Theorem 2. Let the situation be as in Theorem 2, i.e., suppose
n ¼ 2kf 4 and consider the coverings of smooth projective curves ~XX !k X !rn Y with rn
of degree n and k étale of degree 2, satisfying Hypothesis 1.4. For i ¼ 1; 2 let fi : ~CCi ! Y

denote the associated covering of degree 2n�1. For a point y A Y the fibre f �1
i ðyÞ is given as

in (5.1) and will be identified with Bn; e as in (5.2). Defining Re
n and He

n as in Section 5.1
and using these identifications, the correpondence ~DDi on ~CCi induces the distance–ðn� 2Þ
transform Gn;n�2 on the vector space Re

n as well as the di¤erential operator Dn�2 on the vec-
tor space He

n . Since s ¼ 1 on the abelian subvariety Bs
i and s ¼ �1 on Ps

i , this implies that
under the assumption s ¼ 1 the correspondence ~DDijBs

i
induces the operator Dn�2 on the sub-

space Hþe
n , and, similarly, under the assumption s ¼ �1 the correspondence ~DDijPs

i
induces

the operator Dn�2 on the subspace H�e
n .

Suppose first that n ¼ 4kf 4. According to Theorems 3.6 and 3.7, ~DDijBs
i
, respectively

~DDijPs
i
, satisfies an equation of degree k þ 1, respectively k. Hence it su‰ces to show that

Dn�2 admits the k þ 1 distinct eigenvalues 8ðk � lÞ2 � 2k, 0e le k on the vector space
Hþe

n and the k distinct eigenvalues �8ðk � lÞ2 þ 10k � 8l� 2, 0e le k � 1 on the vec-
tor space H�e

n .

According to the table at the end of Section 4, the eigenvalues of Dn�2 are ln;n�2;2l,
0e le k, on Hþe

n , and ln;n�2;2lþ1, 0e le k � 1, on H�e
n .

In the formula

ln;n�2;l ¼
P
j

ð�1Þ j l

j

� �
n� l

n� 2 � j

� �
ð5:3Þ

only the three terms for j ¼ l� 2; l� 1; l are nonzero. So, for 0e le n, we obtain

ln;n�2;l ¼ ð�1Þl
 

l

2

� �
n� l

0

� �
� l

1

� �
n� l

1

� �
þ l

0

� �
n� l

2

� �!

¼ ð�1Þl
 

n� 2l

2

� �
� l

!
:
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Hence

ln;n�2;2l ¼
4k � 4l

2

� �
� 2l ¼ 8ðk � lÞ2 � 2k;

ln;n�2;2lþ1 ¼ �
 

4k � 4l� 2

2

� �
� 2l � 1

!
¼ �8ðk � lÞ2 þ 10k � 8l� 2

which completes the proof for n ¼ 4k.

The proof for n ¼ 4k � 2 is essentially the same. We have to compute the eigenvalues
of Dn�2 on Hþe

n and H�e
n . According to the last table in Section 4 and (5.3) they are

ln;n�2;2l ¼
4k � 2 � 4l

2

� �
� 2l ¼ 8ðk � lÞ2 � 10k þ 8l þ 3;

ln;n�2;2lþ1 ¼ �
 

4k � 4l� 4

2

� �
� 2l � 1

!
¼ �8ðk � lÞ2 þ 18k � 16l� 9:

This completes the proof of Theorem 2. r

5.3. The correspondences associated to the distance–k transform for kj nC 3. For
ke n� 3 the associated correspondences are:

� When n is odd,

~DDi;k :¼ fðx1 þ � � � þ xn; x
0
1 þ � � � þ x 0

k þ xkþ1 þ � � � þ xnÞgH ~CCi � ~CCi

with image Dk in C � C. Then the equations in Proposition 2.1 show that the eigenvalues
of the associated endomorphism of JC can be computed from those of D and the eigen-
abelian varieties are the same as those of D.

� When k and n are even,

~DDi;k :¼ fðx1 þ � � � þ xn; x
0
1 þ � � � þ x 0

k þ xkþ1 þ � � � þ xnÞgH ~CCi � ~CCi

with reduced image Di in Ci � Ci. Then the equations in Proposition 3.2 show that the ei-
genvalues of the associated endomorphisms of J ~CCi can be computed from those of ~DDi and
the eigen-abelian varieties are the same as those of ~DDi.

Note that odd values of k will give us correspondences between ~CCi and ~CC3�i.

So, using Propositions 2.1 and 3.2 and the calculations following them, we obtain yet
more combinatorial identities.

6. The dimensions of the eigen-abelian varieties

Let nf 3 be an integer. In order to have a unified statement, we consider, for odd n,
the curve C as ~CCi and the correspondence D as ~DDi (see diagram (1.3)). We will write sys-
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tems of linear equations whose solutions are the dimensions of the eigen-abelian varieties of
~DDi. These equations will be obtained by computing the analytic traces of the powers of ~DDi

in two di¤erent ways. Finally, we use these equations to compute the dimensions for ne 10.
First we see that the eigen-abelian varieties can be parametrized explicitly.

6.1. Geometric description of eigen-abelian varieties. Choose a point y of Y where
rn is not branched and, let x1; . . . ; xn be the points of r�1

n ðyÞ and x1; x
0
1; . . . ; xn; x

0
n their in-

verse images in ~XX . Fix i ¼ 1 or 2 and assume that x1 þ � � � þ xn A ~CCi. As in (5.1) we identify
the fiber m�1ðyÞ when n is odd, resp. ðmitiÞ

�1ðyÞ when n is even, with the set Bn; e of bit-
vectors of length n with an even number of components di¤erent from 0. Conversely, let
tðe1;...; enÞ ¼ xe1

1 þ � � � þ xen
n denote the point of C corresponding to ðe1; . . . ; enÞ A Bn:e where

xeii ¼ xi if ei ¼ 0 and xeii ¼ x 0
i if ei ¼ 1.

As in Section 5, the correspondence ~DDi on the curve ~CCi induces the distance–k trans-
form Gn;k on the vector space Re

n where k ¼ n� 1 if n is odd and k ¼ n� 2 if n is even.

According to Proposition 4.1, for each l A f0; . . . ; ng and x A Bn
l the Hadamard

transform

x 7! x̂x ¼
P

y ABn

ð�1Þx�yy;

is an eigenvector for Gn;k with eigenvalue

ln;k;l ¼ wxðBn
kÞ ¼

P
i

ð�1Þ i l

i

� �
n� l

k � i

� �
:

Under the identification of Bn; e with m�1ðyÞ, resp. ðmitiÞ
�1ðyÞ, the Hadamard trans-

form x̂x corresponds to the divisor

P
y ABn

ð�1Þx�yty

on ~CCi. Recall that k ¼ n� 1 if n is odd and k ¼ n� 2 if n is even. We have proved

Proposition 6.1. The eigen-abelian subvariety of J ~CCi for the eigenvalue ln;k;l is gener-

ated by divisors of the form
P

y ABn

ð�1Þx�yty where x A Bn
l is fixed, after substracting a fixed

divisor of the correct degree.

The map

~XX ,! Div0 ~CCi;

p 7! ðpþ ~XX ðn�1ÞÞX ~CCi � ðspþ ~XX ðn�1ÞÞX ~CCi

induces a map from the Prym variety Pð ~XX ! XÞ of ~XX ! X to J ~CC which is easily seen to be
an isogeny to its image. For n odd, let dl be the dimension of the eigen-abelian variety of
the eigenvalue l of ~DD1. For n even, let dl, resp. el, be the dimension of the eigen-abelian
variety of the eigenvalue l of ~DDi in Ps

i , resp. Bs
i . For the special values l ¼ 0 and l ¼ 1

we obtain
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Corollary 6.2. (1) For n odd the eigen-abelian subvariety of J ~CCi for the eigenvalue

n is m�JY. The eigen-abelian subvariety of J ~CCi for the eigenvalue �nþ 2 is the image of

Pð ~XX ! XÞ. In particular, dn ¼ gY and d�nþ2 ¼ gX � 1.

(2) If n is even the eigen-abelian subvariety of J ~CCi for the eigenvalue
n

2

� �
is ðmitiÞ

�JY.

The eigen-abelian subvariety of J ~CCi for the eigenvalue �ðn� 1Þðn� 4Þ
2

is the image of

Pð ~XX ! XÞ. In particular, e n
2ð Þ ¼ gY and d�ðn�1Þðn�4Þ

2

¼ gX � 1.

6.2. The case nF 2kB 1 odd. Recall that dl is the dimension of the eigen-abelian
variety of the eigenvalue l of ~DD1. Our first equation is

Pk
j¼0

dð�1Þ jþkð2jþ1Þ ¼ g ~CC1
:

Since we already know dn and d�nþ2 from Corollary 6.2, we now need k � 2 independent
linear equations.

An endomorphism D of an abelian variety A naturally acts on the tangent space T0A

of A at the origin as well as on H 1ðA;QÞ. We denote by traðDÞ the analytic trace of D,
i.e., the trace of D as an endomorphism of T0A, and by trrðDÞ the rational trace of D,
i.e., the trace of D as an endomorphism of H 1ðA;QÞ. Then, for every l ðe k � 2Þ, we
have

trað ~DDl
1 Þ ¼

Pk
j¼0

�
ð�1Þ jþkð2j þ 1Þ

�l
dð�1Þ jþkð2jþ1Þ:

Now

trað ~DDl
1 Þ ¼

1

2
trrð ~DDl

1Þ ¼ degð ~DDl
1Þ �

1

2
D ~CC1

� ~DDl
1

by [BL], p. 334, Proposition 11.5.2. Since degð ~DDl
1 Þ ¼

�
degð ~DD1Þ

�l ¼ nl, it remains to com-
pute the intersection number D ~CC1

� ~DDl
1 in order to obtain a complete system of equations.

For this we use induction on l and the equations of Proposition 2.1, namely

l even ~DDl
1 ðzÞ ¼ al

0zþ al
2
~DD2

1ðzÞ þ � � � þ al
l�2

~DDl�2
1 ðzÞ þ l!½l 0 þ ðn� lÞ�ðzÞ;ð6:1Þ

l odd ~DDl
1ðzÞ ¼ al

1
~DD1ðzÞ þ al

3
~DD3

1ðzÞ þ � � �ð6:2Þ

þ al
l�2

~DDl�2
1 ðzÞ þ l!½lþ ðn� lÞ0�ðzÞ;

where the coe‰cients al
l�2m are as in Proposition 2.3.

To compute the trace of ½l 0 þ ðn� lÞ�, we need to count the points z ¼ x1 þ � � � þ xn
such that, after possibly renumbering the xi, we have

z ¼ x 0
1 þ � � � þ x 0

l þ xlþ1 þ � � � þ xn:
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This happens only when l ¼ 2 and x2 ¼ x 0
1, so that kðx1Þ is a ramification point of rn. Each

such ramification point gives 2n�3 points of ½2 0 þ ðn� 2Þ� � D ~CC1
. So we obtain

½l 0 þ ðn� lÞ� � D ~CC1
¼ 0

for l3 2 and

½2 0 þ ðn� 2Þ� � D ~CC1
¼ 2n�3 � degðRX=Y Þ ¼ 2n�3

�
2gX � 2 � 4ð2gY � 2Þ

�
:

6.3. The case n even. We will treat the case n ¼ 4k, the case n ¼ 4k � 2 is similar.
Recall that dl, resp. el, is the dimension of the eigen-abelian variety of the eigenvalue l of
~DDi in Ps

i , resp. Bs
i . Here we first have the two equations

Pk�1

j¼0

d�8ðk�jÞ2þ10k�8j�2 ¼ gCi
� 1;

Pk
j¼0

e8ðk�jÞ2�2k ¼ gCi
:

Since we already know d�ðn�1Þðn�4Þ
2

and e n
2ð Þ from Corollary 6.2, we now need 2k � 1 indepen-

dent linear equations.

Here we compute the analytic traces of Di and ~DDi in two di¤erent ways. For every
le k � 1 we have

traðDl
i Þ ¼

Pk
j¼0

�
8ðk � jÞ2 � 2k

�l
e8ðk�jÞ2�2k

and

trað ~DDl
i Þ ¼

Pk�1

j¼0

�
�8ðk � 1Þ2 þ 10k � 8j � 2

�l
d�8ðk�1Þ2þ10k�8j�2

þ
Pk
j¼0

�
8ðk � jÞ2 � 2k

�l
e8ðk�jÞ2�2k:

On the other hand

traðDl
i Þ ¼

1

2
trrðDl

i Þ ¼ degðDl
i Þ �

1

2
DCi

�Dl
i

and

trað ~DDl
i Þ ¼

1

2
trrð ~DDl

i Þ ¼ degð ~DDl
i Þ �

1

2
D ~CCi

� ~DDl
i

by [BL], p. 334, Proposition 11.5.2. Since

degðDl
i Þ ¼

�
degðDiÞ

�l ¼ n

2

� �l
and degð ~DDl

i Þ ¼
�
degð ~DDiÞ

�l ¼ n

2

� �l
;
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it remains to compute the intersection numbers DCi
�Dl

i and D ~CCi
� ~DDl

i in order to obtain a
complete system of equations. For this we use induction on l and the equations of Propo-
sition 3.2 which are in this situation

~DDl
i ðzÞ ¼

Pl�1

j¼0

bl
j s

lþj ~DDj
i ðzÞ þ flgsl½2l 0 þ ðn� 2lÞ�ðzÞ:ð6:3Þ

On JCi they become

Dl
i ðzÞ ¼

Pl�1

j¼0

bl
j
~DDj
i ðzÞ þ flg½2l 0 þ ðn� 2lÞ�ðzÞ:ð6:4Þ

Here the coe‰cients bl
j are given by Corollary 3.3. The trace of ½2l 0 þ ðn� 2lÞ� is the same

as in the case n odd.

6.4. The case nF 3. For n ¼ 3 the correspondence ~DD1 has two eigenvalues: �1 and
3. By Corollary 6.2 the eigen-abelian varieties are the images of the Prym variety of ~XX ! X

and of JY respectively.

6.5. The case nF 4. For n ¼ 4 the correspondence ~DDi has three eigenvalues: 0 on
Ps
i , �2 and 6 on Bs

i . By Corollary 6.2, the eigen-abelian variety for 0 is the image of the
Prym Pð ~XX ! X Þ and the eigen-abelian variety for 6 is the image of JY . To compute e�2 we
use the equation

e�2 þ e6 ¼ gCi
¼ gX

from which it follows that e�2 ¼ gX � gY .

In particular, in this case the three Prym varieties Ps
1 , Ps

2 and Pð ~XX ! XÞ are iso-
geneous.

6.6. The case nF 5. When n ¼ 5 the correspondence ~DD1 has the three eigenvalues
�3, 1, 5. From Corollary 6.2 we deduce that d�3 ¼ gX � 1 and d5 ¼ gY . Now we have the
equation

d�3 þ d1 þ d5 ¼ g ~CC1
¼ 4ðgX � gY Þ þ 1

which gives d1 ¼ 3ðgX � 1Þ � 5ðgY � 1Þ.

6.7. The case nF 6. For n ¼ 6 the correspondence ~DDi has the eigenvalues �5, 3 on
Ps
i and the eigenvalues �1, 15 on Bs

i . We already know that d�5 ¼ gX � 1 and e15 ¼ gY . In
addition we have the two equations

d�5 þ d3 ¼ gCi
� 1 ¼ 4

�
gX � 1 � 2ðgY � 1Þ

�
;

e�1 þ e15 ¼ gCi
¼ 4
�
gX � 1 � 2ðgY � 1Þ

�
þ 1

which give

d3 ¼ 3ðgX � 1Þ � 8ðgY � 1Þ; e�1 ¼ 4ðgX � 1Þ � 9ðgY � 1Þ:
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6.8. The case nF 7. For n ¼ 7 the eigenvalues of ~DD1 are �5, �1, 3, 7. We know
d�5 ¼ gX � 1 and d7 ¼ gY . To compute d�1 and d�3 we use the equations

d�5 þ d�1 þ d3 þ d7 ¼ g ~CC1
¼ 16

�
gX � 1 � 3ðgY � 1Þ

�
þ 1;

�5d�5 � d�1 þ 3d3 þ 7d7 ¼ 7

to obtain

d�1 ¼ 10ðgX � 1Þ � 35ðgY � 1Þ; d3 ¼ 5ðgX � 1Þ � 14ðgY � 1Þ:

6.9. The case nF 8. For n ¼ 8 the endomorphism ~DDi has the eigenvalues �14, 2 on
Ps
i and �4, 4, 28 on Bs

i . We know d�14 ¼ gX � 1 and e28 ¼ gY . Here the additional equa-
tions are

d�16 þ d�14 þ d2 þ e�4 þ e4 þ e28 ¼ g ~CCi
¼ 25

�
gX � 1 � 4ðgY � 1Þ

�
þ 1;

e�4 þ e4 þ e28 ¼ gCi
¼ 24

�
gX � 1 � 4ðgY � 1Þ

�
þ 1;

�16d�16 � 14d�14 þ 2d2 � 4e�4 þ 4e4 þ 28e28 ¼ 28;

and we obtain

d2 ¼ 15ðgX � 1Þ � 64ðgY � 1Þ; e�4 ¼ 10ðgX � 1Þ � 45ðgY � 1Þ;

e4 ¼ 6ðgX � 1Þ � 20ðgY � 1Þ:

6.10. The case nF 9. For n ¼ 9 the eigenvalues of ~DD1 are �7, �3, 1, 5, 9. We have
d�7 ¼ gX � 1 and d9 ¼ gY . We have the equations

d�7 þ d�3 þ d1 þ d5 þ d9 ¼ 26
�
ðgX � 1Þ � 5ðgY � 1Þ

�
þ 1;

�7d�7 � 3d�3 þ d1 þ 5d5 þ 9d9 ¼ 9;

49d�7 þ 9d�3 þ d1 þ 25d5 þ 81d9 ¼ 7 � 26ðgX � 1Þ � 3 � 9 � 26ðgY � 1Þ þ 81

which give

d�3 ¼ 21ðgX � 1Þ � 105ðgY � 1Þ; d1 ¼ 35ðgX � 1Þ � 189ðgY � 1Þ;

d5 ¼ 7ðgX � 1Þ � 27ðgY � 1Þ:

6.11. The case nF 10. Here the eigenvalues of ~DDi are �27, �3, 5 on Ps
i , �3, 13, 45

on Bs
i and d�27 ¼ gX � 1, e45 ¼ gY . The equations are

d�27 þ d�3 þ d5 þ e�3 þ e13 þ e45 ¼ 27
�
ðgX � 1Þ � 6ðgY � 1Þ

�
þ 1;

e�3 þ e13 þ e45 ¼ 26
�
ðgX � 1Þ � 6ðgY � 1Þ

�
þ 1;

�27d�27 � 3d�3 þ 5d5 � 3e�3 þ 13e13 þ 45e45 ¼ 45;

�3e�3 þ 13e13 þ 45e45 ¼ 45 � 26
�
ðgX � 1Þ � 10ðgY � 1Þ

�
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and we have

d�3 ¼ 28ðgX � 1Þ � 160ðgY � 1Þ; d5 ¼ 35ðgX � 1Þ � 224ðgY � 1Þ;

e�3 ¼ 56ðgX � 1Þ � 350ðgY � 1Þ; e13 ¼ 8ðgX � 1Þ � 35ðgY � 1Þ:

7. A remark for the distance–(nC 1) transform for n odd

In this particular case the action of Gn;n�1 on Hþ
n (or on any of H�

n or He
n or Ho

n )
has the characteristic polynomial

Cþ
n ðXÞ ¼

Qm
l¼1

�
X � ð�1Þlþmð2l� 1Þ

�
;

where m ¼ ðnþ 1Þ=2. In terms of this action this means that,

Cþ
n ðX Þ ¼ det

X �1 0 0 � � � 0 0 0

�n X �2 0 � � � 0 0 0

0 �nþ 1 X �3 � � � 0 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 0 � � � X �mþ 2 0

0 0 0 0 � � � �m� 2 X �mþ 1

0 0 0 0 � � � 0 �m� 1 X �m

2
666666666664

3
777777777775
:

Note that the eigenvectors fln;n�1;2l j 0e l < mg span the space under consideration. The
fact that this determinant factors as mentioned before can be proved directly using elemen-
tary row and column operations with induction. On the other hand, there is a standard eval-
uation of the determinant of a tridiagonal matrix: let a1; a2; . . . and b1; b2; . . . be variables
and define, for mf 0, the ðmþ 1Þ � ðmþ 1Þ matrix MðmÞ ¼ MðmÞða1; a2; . . . ; b1; b2; . . .Þ by

MðmÞ ¼

X a1 0 0 � � � 0 0 0

b1 X a2 0 � � � 0 0 0

0 b2 X a3 � � � 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 0 � � � X am�1 0

0 0 0 0 � � � bm�1 X am

0 0 0 0 � � � 0 bm X

2
666666666664

3
777777777775
:

Then

detMðmþ1Þ ¼ X � detMðmÞ � ambm detMðm�1Þ;

which by induction gives

detMðmÞ ¼
P

0e2jem

ð�1Þ jcðmÞ
j X m�2j;
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where

c
ðmÞ
j ¼

P
1ei1fi2f���fijem

ai1bi1ai2bi2 � � � aij bij ;

the notation xf y meaning that xþ 1 < y. We note in passing that this sum has a combi-
natorial interpretation in terms of ‘‘matchings’’, and the determinant evaluation as a sec-
ond order recurrence points to a relation to orthogonal polynomials (see e.g. [G]).

Now

Cþ
n ðXÞ ¼ ðX �mÞ � detMðm�1Þ � ðm2 � 1Þ � detMðm�2Þ;

where ða1; a2; a3; . . .Þ ¼ ð�1;�2;�3; . . .Þ and ðb1; b2; b3; . . .Þ ¼ ð�n;�nþ 1;�nþ 2; . . .Þ.

The fact that Cþ
n ðX Þ factors into very simple linear factors leads to a surprisingly sim-

ple recurrence for the coe‰cients c
ðmÞ
j in this particular situation, which is not at all obvious

from its definition, nor from its combinatorial interpretation.
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