Topological dynamics beyond Polish groups

Gianluca Basso Joint with Andy Zucker

UC San Diego Group Actions Seminar

February 23, 2021

The universal minimal flow of a topological group

Given a topological group G, a G-flow is a compact space X together with a continuous action of G on X. A G-flow is minimal if each of its orbits is dense, or equivalently, if it contains no proper subflows. If X, Y are two G-flows a continuous map $f : X \to Y$ is a G-map if it commutes with the action. If Y is minimal then f has to be onto.

Fact (Ellis '60)

For each topological group G there exists a universal minimal flow M(G) which is unique up to isomorphism.

If G is compact, then M(G) is G itself with the natural action by translation. Indeed, G is minimal and if X is a minimal G-flow, the map $\rho_x(g) = g \cdot x$, with $x \in X$, is a G-map.

If G is *infinite discrete* then it acts freely on M(G), which is a non-metrizable subset of the space βG of ultrafilters on G.

By a Theorem of Veech, also for *G* locally compact the action on M(G) is free. If *G* is not compact then M(G) is again a non-metrizable space.

Extreme amenability

There are large groups G such that |M(G)| = 1. For example the unitary group $U(\ell^2)$ with the strong operator topology (Gromov-Milman). Such groups are called *extremely amenable*.

Recall: A topological group is *amenable* if every *G*-flow admits an invariant probability measure.

Polish groups and non-archimedean groups

A topological group is *Polish* if it is separable and completely metrizable.

Examples: second countable locally compact groups, Homeo(X) of a compact metrizable space X, the group $Sym(\mathbb{N})$ of all permutations of a countable set.

Definition: A topological group is *non-archimedean* if the identity has a basis consisting of open subgroups.

Fact: The Polish non-archimedean groups are exactly the closed subgroups of $Sym(\mathbb{N})$. They are also exactly the automorphism groups of countable (ω -homogeneous) structures.

Examples: Aut(\mathbb{Q} , <), Aut(R) of the Rado graph.

Fact: Aut(\mathbb{Q} , <) is extremely amenable (Pestov '98). This is equivalent to the classic Ramsey theorem.

The case of $Aut(\mathbf{K})$

For a relational structure K, let Age(K) be the class of finite substructures of K. Then K is ω -homogeneous if any isomorphism of finite substructures of K extends to an automorphism of K. A countable ω -homogeneous structure is a *Fraïssé* structure.

Fact (Kechris-Pestov-Todorcevic)

Let \mathbf{K} be a Fraïssé structure. Then Aut(\mathbf{K}) is extremely amenable if and only if Age(\mathbf{K}) has the Ramsey property.

Fact (Zucker)

Let K be a Fraïssé structure. Then $M(\operatorname{Aut}(K))$ is metrizable if and only if each $A \in \operatorname{Age}(K)$ has finite Ramsey degrees if and only if $\operatorname{Age}(K)$ admits an appropriate expansion class with the Ramsey property. In such a case, $M(\operatorname{Aut}(K))$ has a concrete representation as a space of expansions of K. Metrizability of the UMF of Polish groups

Fact (Ben Yaacov-Melleray-Tsankov; Bartošová-Zucker; Jahel-Zucker)

Let G be a Polish group. TFAE:

- 1. M(G) is metrizable.
- 2. The UEB metric on M(G) is compatible.
- 3. $\beta \mathbb{N}$ does not embed in M(G).
- 4. There is a closed extremely amenable subgroup $H \le G$ such that the completion of G/H is a minimal G-flow (equiv. is the UMF).
- 5. For any G-flow X, the set AP(X) is closed, thus a subflow.

Definition: If X is a G-flow, the set $AP(X) \subseteq X$ of almost periodic points is the union of the minimal subflows of X.

Does there exist a meaningful extension of this dividing line beyond Polish?

The first step outside Polish

Fact (Zucker)

Let K be a Fraïssé structure. Then $M(\operatorname{Aut}(K))$ is metrizable if and only if $\operatorname{Age}(K)$ admits an appropriate expansion class with the Ramsey property. In such a case, $M(\operatorname{Aut}(K))$ has a concrete representation as a space of expansions of K.

Fact (Bartošová)

Let **K** be a ω -homogeneous structure. If Age(**K**) admits an appropriate expansion class with the Ramsey property then $M(\operatorname{Aut}(\mathbf{K}))$ has a concrete representation as a space of expansions of **K**.

Example: $M(Sym(\kappa)) = LO(\kappa)$ is the space of linear orders on κ .

Theorem (B.-Zucker) Under the above conditions, AP(X) is closed for any Aut(K)-flow X.

CAP groups

Definition (B.-Zucker)

A topological group G is CAP if AP(X) is closed for every G-flow X.

Recall:

- AP(X) is the union of the minimal subflows of X.
- A subflow $Y \subseteq X$ is minimal if $\overline{Gy} = Y$ for all $y \in Y$.

Definition: Let $x \sim_{AP(X)} y \iff \overline{Gx} = \overline{Gy}$ be the equivalence relation on AP(X) whose equivalence classes are the minimal flows of which AP(X) is composed.

Next goal: define a canonical uniformity on M(G).

Uniform spaces

A uniform structure \mathcal{U} on a set X is a filter of supersets of the diagonal $\Delta \subseteq X \times X$, called *entourages*, such that:

Topological groups admit a canonical compatible uniform structure, the *right uniformity*, which is generated by

$$\big\{(g,h)\in G imes G\ \Big|\ gh^{-1}\in U\big\},$$

for U an open neighborhood of the identity.

Compact spaces admit a *unique* compatible uniform structure: all neighborhoods of the diagonal.

The Samuel compactification

A function $f : X \to Y$ is *uniformly continuous* if for each entourage V of Y there is an entourage U of X such that $(f(x), f(y)) \in V$ for all $(x, y) \in U$.

The Samuel compactification S(G) is a G-flow which densely embeds G and has the following universal property: if X is a uniform space, each uniformly continuous $f : G \to X$ uniquely extends to a continuous $\hat{f} : S(G) \to X$.

Suppose X is a minimal G flow and $f = \rho_x : g \mapsto g \cdot x$ for some $x \in X$. Then $\widehat{\rho_x}|_M$ is a G-map for any minimal subflow $M \subseteq S(G)$. Fact: Each minimal subflow of S(G) is isomorphic to M(G).

The UEB uniformity

A set H of functions $G \to [0, 1]$ is *uniformly equicontinuous* if for every $\epsilon > 0$ there is $U \ni_{op} 1_G$ so that for any $g, h \in G$ with $gh^{-1} \in U$, we have $|f(g) - f(h)| < \epsilon$ for each $f \in H$.

Definition: The UEB uniformity on S(G) is given by the basic entourages, for $H \subseteq C(G, [0, 1])$ uniformly equicontinuous and $\epsilon > 0$:

$$[H,\epsilon] = \Big\{(p,q) \in S(G) \times S(G) : |\widehat{f}(p) - \widehat{f}(q)| < \epsilon \text{ for all } f \in H \Big\}.$$

The restriction of this uniformity to $M(G) \subseteq S(G)$ does not depend on the choice of minimal subflow.

When G is Polish, the UEB uniformity is actually a metric which is lower semi-continuous on M(G). We can define it directly as:

$$d(p,q) = \sup \left\{ |\widehat{f}(p) - \widehat{f}(q)| : f \in Lip(G) \right\}$$

In general the UEB uniformity on M(G) is not compatible with the compact topology.

Theorem (B.-Zucker)

The space $(M(G), \tau)$ together with the UEB uniformity form a topo-uniform space, that is:

- each (τ × τ)-open neighborhood of the diagonal is an entourage,
- the uniformity has a basis of $(\tau \times \tau)$ -closed entourages.

Characterization theorem

Theorem (B.-Zucker)

Let G be a topological group. TFAE:

- 1. G is CAP.
- 2. *G* is CAP and $x \sim_{AP(X)} y \iff \overline{Gx} = \overline{Gy}$ is closed for each *G*-flow *X*.
- 3. The UEB uniformity on M(G) is compatible with the compact topology.
- 4. $M(G \times G) \cong M(G) \times M(G)$.

Question: Are the above equivalent to "AP(S(G)) is closed"?

It would follow from a positive answer to the ambitability/unique amenability question (Pachl):

If G admits a *unique* G-invariant probability measure on any flow with a dense orbit, is G precompact?

Which groups are CAP?

Theorem (B.-Zucker)

- 1. Every precompact group is CAP.
- 2. Every group with metrizable UMF is CAP.
- 3. The class of CAP groups is closed under quotients, group extensions, inverse limits and products.
- If K is a ω-homogeneous structure, then Aut(K) is CAP if and only if Age(K) has finite Ramsey degrees.
- 5. Locally compact not compact groups are not CAP.

Theorem (B.-Zucker)

If G_i is CAP for all $i \in \mathcal{I}$, then

$$M\left(\prod_{i\in\mathcal{I}}G_i\right)=\prod_{i\in I}M(G_i).$$

A topological space is *scattered* if it does not contain any nonempty perfect subspace.

Fact (Gheysens '20+)

If X is scattered the topology of pointwise convergence agrees with the topology of discrete pointwise convergence on Homeo(X).

Therefore Homeo(X) embeds in Sym(|X|).

Any ordinal with the order topology is scattered, in particular ω_1 .

Homeo(ω_1) and its UMF

Fact (Gheysens '20+)

Homeo(ω_1) is amenable, Roelcke-precompact, not Baire, and admits no nontrivial homomorphism to any metrizable group.

Fact (Gheysens '20+)

The closure of Homeo(ω_1) in Sym(ω_1) is isomorphic to Sym(ω_1)^{ω_1}.

Theorem (B.-Zucker)

Homeo(ω_1) is CAP and M(Homeo(ω_1)) = $LO(\omega_1)^{\omega_1}$.

Missing converses

Theorem (B.-Zucker)

If G is not CAP then $\beta \mathbb{N}$ embeds in M(G). If G is CAP, then there is a \supseteq -monotone and cofinal map from \mathcal{N}_G to $\mathrm{Nbhd}(\Delta_{M(G)})$.

Question: Is there a condition on the "size" of M(G) which is equivalent to being CAP?

Theorem (B.-Zucker)

If G admits a closed extremely amenable subgroup H such that the completion of G/H is a minimal G-flow, then G is CAP and M(G) is the completion of G/H.

Question: Does the converse hold for complete groups *G*?

For instance: if **K** is an uncountable, ω -homogeneous graph which embeds every finite graph, does there exist a linear order on **K** so that $(\mathbf{K}, <)$ is also ω -homogeneous? Here: $G = \operatorname{Aut}(\mathbf{K}), H = \operatorname{Aut}(\mathbf{K}, <)$.

Thank you!