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The universal minimal flow of a topological group

Given a topological group G , a G-flow is a compact space X
together with a continuous action of G on X . A G-flow is minimal
if each of its orbits is dense, or equivalently, if it contains no proper
subflows. If X ,Y are two G-flows a continuous map f : X → Y is a
G-map if it commutes with the action. If Y is minimal then f has
to be onto.

Fact (Ellis ’60)
For each topological group G there exists a universal minimal flow
M(G) which is unique up to isomorphism.
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First facts on the UMF

If G is compact, then M(G) is G itself with the natural action by
translation. Indeed, G is minimal and if X is a minimal G-flow, the
map ρx (g) = g · x , with x ∈ X , is a G-map.

If G is infinite discrete then it acts freely on M(G), which is a
non-metrizable subset of the space βG of ultrafilters on G .

By a Theorem of Veech, also for G locally compact the action on
M(G) is free. If G is not compact then M(G) is again a
non-metrizable space.
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Extreme amenability

There are large groups G such that |M(G)| = 1. For example the
unitary group U(`2) with the strong operator topology
(Gromov-Milman). Such groups are called extremely amenable.

Recall: A topological group is amenable if every G-flow admits an
invariant probability measure.

extremely amenable M(G) metrizable locally cpt non cpt

GOOD DYNAMICS BAD DYNAMICS
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Polish groups and non-archimedean groups

A topological group is Polish if it is separable and completely
metrizable.

Examples: second countable locally compact groups, Homeo(X ) of
a compact metrizable space X , the group Sym(N) of all
permutations of a countable set.

Definition: A topological group is non-archimedean if the identity
has a basis consisting of open subgroups.

Fact: The Polish non-archimedean groups are exactly the closed
subgroups of Sym(N). They are also exactly the automorphism
groups of countable (ω-homogeneous) structures.

Examples: Aut(Q, <), Aut(R) of the Rado graph.

Fact: Aut(Q, <) is extremely amenable (Pestov ’98). This is
equivalent to the classic Ramsey theorem.
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The case of Aut(K)

For a relational structure K , let Age(K) be the class of finite
substructures of K . Then K is ω-homogeneous if any isomorphism
of finite substructures of K extends to an automorphism of K . A
countable ω-homogeneous structure is a Fraïssé structure.

Fact (Kechris-Pestov-Todorcevic)
Let K be a Fraïssé structure. Then Aut(K) is extremely amenable if
and only if Age(K) has the Ramsey property.

Fact (Zucker)
Let K be a Fraïssé structure. Then M(Aut(K)) is metrizable if and
only if each A ∈ Age(K) has finite Ramsey degrees if and only if
Age(K) admits an appropriate expansion class with the Ramsey
property. In such a case, M(Aut(K)) has a concrete representation
as a space of expansions of K .
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Metrizability of the UMF of Polish groups
Fact (Ben Yaacov-Melleray-Tsankov; Bartošová-Zucker;
Jahel-Zucker)
Let G be a Polish group. TFAE:
1. M(G) is metrizable.
2. The UEB metric on M(G) is compatible.
3. βN does not embed in M(G).
4. There is a closed extremely amenable subgroup H ≤ G such

that the completion of G/H is a minimal G-flow (equiv. is the
UMF).

5. For any G-flow X, the set AP(X ) is closed, thus a subflow.

Definition: If X is a G-flow, the set AP(X ) ⊆ X of almost periodic
points is the union of the minimal subflows of X .

Does there exist a meaningful extension of this dividing line
beyond Polish?
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The first step outside Polish

Fact (Zucker)
Let K be a Fraïssé structure. Then M(Aut(K)) is metrizable if and
only if Age(K) admits an appropriate expansion class with the
Ramsey property. In such a case, M(Aut(K)) has a concrete
representation as a space of expansions of K .

Fact (Bartošová)
Let K be a ω-homogeneous structure. If Age(K) admits an
appropriate expansion class with the Ramsey property then
M(Aut(K)) has a concrete representation as a space of expansions
of K .

Example: M(Sym(κ)) = LO(κ) is the space of linear orders on κ.

Theorem (B.-Zucker) Under the above conditions, AP(X ) is closed
for any Aut(K)-flow X .
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CAP groups

Definition (B.-Zucker)
A topological group G is CAP if AP(X ) is closed for every G-flow X .

Recall:
I AP(X ) is the union of the minimal subflows of X .
I A subflow Y ⊆ X is minimal if Gy = Y for all y ∈ Y .

Definition: Let x ∼AP(X) y ⇐⇒ Gx = Gy be the equivalence
relation on AP(X ) whose equivalence classes are the minimal flows
of which AP(X ) is composed.

Next goal: define a canonical uniformity on M(G).
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Uniform spaces

A uniform structure U on a set X is a filter of supersets of the
diagonal ∆ ⊆ X × X , called entourages, such that:
I for each U ∈ U there is V ∈ U with

V 2 = {(x , z) | ∃y (x , y), (y , z) ∈ V } ⊆ U,
I if U ∈ U , then U−1 = {(y , x) | (x , y) ∈ U} ∈ U ,
I
⋂

U∈U U = ∆.

Topological groups admit a canonical compatible uniform structure,
the right uniformity, which is generated by{

(g , h) ∈ G × G
∣∣∣ gh−1 ∈ U

}
,

for U an open neighborhood of the identity.

Compact spaces admit a unique compatible uniform structure: all
neighborhoods of the diagonal.
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The Samuel compactification
A function f : X → Y is uniformly continuous if for each entourage
V of Y there is an entourage U of X such that (f (x), f (y)) ∈ V for
all (x , y) ∈ U.

The Samuel compactification S(G) is a G-flow which densely
embeds G and has the following universal property: if X is a
uniform space, each uniformly continuous f : G → X uniquely
extends to a continuous f̂ : S(G)→ X .

S(G)

G X

f̂

f
Suppose X is a minimal G flow and f = ρx : g 7→ g · x for some
x ∈ X . Then ρ̂x |M is a G-map for any minimal subflow M ⊆ S(G).

Fact: Each minimal subflow of S(G) is isomorphic to M(G).
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The UEB uniformity
A set H of functions G → [0, 1] is uniformly equicontinuous if for
every ε > 0 there is U 3op 1G so that for any g , h ∈ G with
gh−1 ∈ U, we have |f (g)− f (h)| < ε for each f ∈ H.

Definition: The UEB uniformity on S(G) is given by the basic
entourages, for H ⊆ C(G , [0, 1]) uniformly equicontinuous and ε > 0:

[H, ε] =
{

(p, q) ∈ S(G)× S(G) : |f̂ (p)− f̂ (q)| < ε for all f ∈ H
}
.

The restriction of this uniformity to M(G) ⊆ S(G) does not depend
on the choice of minimal subflow.

When G is Polish, the UEB uniformity is actually a metric which is
lower semi-continuous on M(G). We can define it directly as:

d(p, q) = sup
{
|f̂ (p)− f̂ (q)| : f ∈ Lip(G)

}
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UEB topo-uniformity

In general the UEB uniformity on M(G) is not compatible with the
compact topology.

Theorem (B.-Zucker)
The space (M(G), τ) together with the UEB uniformity form a
topo-uniform space, that is:
I each (τ × τ)-open neighborhood of the diagonal is an

entourage,
I the uniformity has a basis of (τ × τ)-closed entourages.
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Characterization theorem

Theorem (B.-Zucker)
Let G be a topological group. TFAE:
1. G is CAP.
2. G is CAP and x ∼AP(X) y ⇐⇒ Gx = Gy is closed for each

G-flow X.
3. The UEB uniformity on M(G) is compatible with the compact

topology.
4. M(G × G) ∼= M(G)×M(G).

Question: Are the above equivalent to “AP(S(G)) is closed”?

It would follow from a positive answer to the ambitability/unique
amenability question (Pachl):

If G admits a unique G-invariant probability measure on any flow
with a dense orbit, is G precompact?
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Which groups are CAP?

Theorem (B.-Zucker)
1. Every precompact group is CAP.
2. Every group with metrizable UMF is CAP.
3. The class of CAP groups is closed under quotients, group

extensions, inverse limits and products.
4. If K is a ω-homogeneous structure, then Aut(K) is CAP if and

only if Age(K) has finite Ramsey degrees.
5. Locally compact not compact groups are not CAP.

Theorem (B.-Zucker)
If Gi is CAP for all i ∈ I, then

M
(∏

i∈I
Gi

)
=
∏
i∈I

M(Gi ).
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Scattered spaces

A topological space is scattered if it does not contain any nonempty
perfect subspace.

Fact (Gheysens ’20+)
If X is scattered the topology of pointwise convergence agrees with
the topology of discrete pointwise convergence on Homeo(X ).

Therefore Homeo(X ) embeds in Sym(|X |).

Any ordinal with the order topology is scattered, in particular ω1.
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Homeo(ω1) and its UMF

Fact (Gheysens ’20+)
Homeo(ω1) is amenable, Roelcke-precompact, not Baire, and
admits no nontrivial homomorphism to any metrizable group.

Fact (Gheysens ’20+)
The closure of Homeo(ω1) in Sym(ω1) is isomorphic to Sym(ω1)ω1 .

Theorem (B.-Zucker)
Homeo(ω1) is CAP and M(Homeo(ω1)) = LO(ω1)ω1 .
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Missing converses
Theorem (B.-Zucker)
If G is not CAP then βN embeds in M(G). If G is CAP, then there is a
⊇-monotone and cofinal map from NG to Nbhd(∆M(G)).

Question: Is there a condition on the “size” of M(G) which is equivalent
to being CAP?

Theorem (B.-Zucker)
If G admits a closed extremely amenable subgroup H such that the
completion of G/H is a minimal G-flow, then G is CAP and M(G) is the
completion of G/H.

Question: Does the converse hold for complete groups G?

For instance: if K is an uncountable, ω-homogeneous graph which
embeds every finite graph, does there exist a linear order on K so that
(K , <) is also ω-homogeneous? Here: G = Aut(K), H = Aut(K , <).

Thank you!


