Sofic entropy and the (relative) *f*-invariant

Chris Shriver (UCLA) – 24 November 2020

Entropy on integer lattices Entropy on free groups Relative *f*-invariant

1. Entropy on integer lattices

Setup

- \mathbb{Z}^d integer lattice w/ origin 0
- A = finite set, "alphabet"
 - ex. $\{\pm 1\}$
- $\mathbf{x} \in A^{\mathbb{Z}^d}$ is a microstate
- $\mu \in \operatorname{Prob}(\mathbb{A}^{\mathbb{Z}^d})$ is a state
 - system

• We'll assume μ shift-invariant i.e. $(\mathbb{A}^{\mathbb{Z}^d}, \mu, \mathbb{Z}^d)$ is a measure-preserving

Setup

- \mathbb{Z}^d integer lattice w/ origin 0
- A = finite set, "alphabet"
 - ex. $\{\pm 1\}$
- $\mathbf{x} \in A^{\mathbb{Z}^d}$ is a microstate
- $\mu \in \operatorname{Prob}(\mathbb{A}^{\mathbb{Z}^d})$ is a state
 - system

• We'll assume μ shift-invariant i.e. $(\mathbb{A}^{\mathbb{Z}^d}, \mu, \mathbb{Z}^d)$ is a measure-preserving

Entropy rate

- The state of a system is specified by $\mu \in \operatorname{Prob}(A^{\mathbb{Z}^d})$. How random is μ ?
- The Kolmogorov-Sinai entropy rate is defined by

$$h^{KS}(\mu) = \lim_{k \to \infty} h^{KS}(\mu)$$

Lemma 1 Shannon entropy and counting

Suppose $p \in Prob(A)$. Then the number of $\mathbf{x} \in A^n$ with $\frac{1}{n} | \{ i \in [n] : \mathbf{x}(i) = a \} | \approx p(\{a\})$

is about

for all $a \in A$

 $\exp \left| n \operatorname{H}(p) \right|.$

Lemma 1 Shannon entropy and counting

for all $a \in A$

 $\exp\left|n\operatorname{H}(p)\right|.$

Lemma 1 Shannon entropy and counting

for all $a \in A$

 $\exp\left|n\operatorname{H}(p)\right|.$

 $H(p) = \lim \lim \sup - \log |\{\mathbf{x} \in \mathbb{A}^n : || P_{\mathbf{x}}^0 - p ||_{TV} < \varepsilon\}|$

Entropy rate via counting

$$H(p) = \lim_{\epsilon \downarrow 0} \limsup_{n \to \infty} \frac{1}{n} \log \frac{1}{n}$$

The KS entropy can be expressed in a similar form: $h^{\text{KS}}(\mu) = \inf_{r,\varepsilon} \limsup_{n \to \infty} \frac{1}{|B(0,n)|} \log |\{\mathbf{x} \in \mathbb{A}^{B(0,n)} : \|P_{\mathbf{x}}^r - \mu^r\|_{TV} < \varepsilon\}|$

where

X is a "microstate on a finite subsystem" $P_{\mathbf{x}}^{r}$ is a "radius-r empirical distribution" to be defined.

This is a special case of the fact that (sofic entropy) = (KS entropy) for amenable groups, proven by Bowen [2010]

- $\operatorname{og} | \{ \mathbf{x} \in \mathbb{A}^n : || P_{\mathbf{x}}^0 p ||_{TV} < \varepsilon \} |$

Local statistics of microstates

Let $K \subseteq \mathbb{Z}^d$ be a large rectangle. Given a microstate $\mathbf{x} \in \mathbb{A}^K$ and a radius $r \in \mathbb{N}$, the depth-*r* neighborhood labeling \mathbf{x}^r is the element of $(\mathbb{A}^{B(0,r)})^K$ given by

 $\mathbf{x}^{r}(v) \stackrel{\cdot}{=} (\mathbf{x}(v))$

 $K \subset \mathbb{Z}^d$

$$(v+w)\Big)_{w\in B(0,r)}.$$

Local statistics of microstates

Let $K \subseteq \mathbb{Z}^d$ be a large rectangle. Given a microstate $\mathbf{x} \in \mathbb{A}^{K}$ and a radius $r \in \mathbb{N}$, the depth-*r* neighborhood labeling \mathbf{x}^{r} is the element of $(\mathbb{A}^{B(0,r)})^{K}$ given by

 $A = \{ +, - \}$

$$\mathbf{x}^{r}(v) \doteq \left(\mathbf{x}(v+w)\right)_{w \in B(0,r)}.$$

 $K \subset \mathbb{Z}^d$

Empirical distribution and good models

- The radius-*r* empirical distribution of $\mathbf{x} \in A^K$ is defined by

$P_{\mathbf{x}}^r = P_{\mathbf{x}^r}^0 \in \operatorname{Prob}(A^{B(0,r)}).$

Empirical distribution and good models

• The radius-*r* empirical distribution of $\mathbf{x} \in A^K$ is defined by $\in \operatorname{Prob}(A^{B(0,r)}).$

$$P_{\mathbf{x}}^{r} = P_{\mathbf{x}^{r}}^{0}$$

- Say **x** is an (r, ε) -good model for $\mu \in \operatorname{Prob}(A^{\mathbb{Z}^a})$ if
- $\|P_{\mathbf{x}}^r \mu^r\| < \varepsilon.$
- $\Omega(K, \mu, r, \varepsilon)$ is the set of such $\mathbf{x} \in \mathbb{A}^{K}$.

Summary and some terminology

With
$$\Sigma = (K_n)_{n=1}^{\infty}$$
 a (Følner) sequence

$$h_{\Sigma}(\mu) = \inf_{\substack{r, \varepsilon \\ n \to \infty}} \lim_{n \to \infty} \frac{1}{n}$$

 Σ is a sofic approximation to \mathbb{Z}^d because

1. we have approximately free approximate actions of \mathbb{Z}^d on K_n

2. K_n locally look like \mathbb{Z}^d

- e of boxes which exhausts \mathbb{Z}^d , we have
- $\log |\Omega(K_n, \mu, r, \varepsilon)| = h^{KS}(\mu)$

2. Entropy for free-group actions

Based on:

Lewis Bowen. "The Ergodic Theory of Free Group Actions: Entropy and the f-Invariant." Groups, Geometry, and Dynamics (2010), pp. 419-432.

Free group setup

 $\mathbb{F}_r = \langle s_1, \ldots, s_r \rangle = \operatorname{rank} r$ free group with identity e Let z be a $A^{\mathbb{F}_r}$ -valued r.v. with shift-invariant law μ . The *f*-invariant of μ is defined by $f(\mu) = \inf_{R} \left(H(\mathbf{z}^{R}(e)) \right)$ where $I(\mathbf{x}; \mathbf{y}) = H(\mathbf{x}) + H(\mathbf{y}) - H(\mathbf{x}, \mathbf{y})$

Is there a "counting good models" formula for $f(\mu)$?

$$(r) - \sum_{i=1}^{r} I(\mathbf{z}^{R}(e); \mathbf{z}^{R}(s_{i}))).$$

(v) & \mathbf{z}^{R} is a $(A^{B(e,R)})^{\mathbb{F}_{r}}$ -valued r.v. with law μ^{R}

Microstates for free groups

- For $\mathbf{x} \in A^{B(e,R)}$ we can't make sense of the empirical distribution because most sites are close to the edge.
- A large finite subgraph doesn't locally look like \mathbb{F}_2

• A random regular graph G"locally looks like \mathbb{F}_r " in that:

For any R, the fraction of vertices $v \in G$ with $B^G(v, R) \cong B^{\Gamma}(e, R)$ converges in prob. to 1 as size of $G \to \infty$.

• But how do we make sense of \mathbf{x}^R and $P^R_{\mathbf{x}}$?

• A random regular graph G"locally looks like \mathbb{F}_r " in that:

For any R, the fraction of vertices $v \in G$ with $B^G(v, R) \cong B^{\Gamma}(e, R)$ converges in prob. to 1 as size of $G \to \infty$.

• But how do we make sense of \mathbf{x}^R and $P^R_{\mathbf{x}}$?

• A random regular graph G"locally looks like \mathbb{F}_r " in that:

For any R, the fraction of vertices $v \in G$ with $B^G(v, R) \cong B^{\Gamma}(e, R)$ converges in prob. to 1 as size of $G \to \infty$.

• But how do we make sense of \mathbf{x}^R and $P^R_{\mathbf{x}}$?

• A random regular graph G"locally looks like \mathbb{F}_r " in that:

For any R, the fraction of vertices $v \in G$ with $B^G(v, R) \cong B^{\Gamma}(e, R)$ converges in prob. to 1 as size of $G \to \infty$.

• But how do we make sense of \mathbf{x}^R and $P^R_{\mathbf{x}}$? Ino canonical choice!

Edges of a Cayley graph naturally come directed and labeled by generators.

• Write 2r-regular G as union of r permutations, and label edges

• Write 2r-regular G as union of r permutations, and label edges

• Write 2r-regular G as union of r permutations, and label edges

• Write 2r-regular G as union of r permutations, and label edges

• Now whenever $B^{\Gamma}(e, R) \cong B^{G}(v, R)$ there is exactly one isomorphism which respects edge labels and directions, which gives a canonical defn. of \mathbf{x}^{R}

Permutation model

- Pick a random regular graph with vertex set $[n] = \{1, ..., n\}$ by picking *r* permutations $\sigma_1, ..., \sigma_r$ uniformly at random.
- Write $\sigma = (\sigma_1, ..., \sigma_r)$. Can be thought of as a random homomorphism $\mathbb{F}_r \to \operatorname{Sym}(n)$
- Let ζ_n be the law of σ (r is implicit)

The *f*-invariant via counting good models

 $f(\mu) = \inf_{R,\varepsilon} \lim_{n \to \infty} f(\mu) = \inf_{R,\varepsilon} f(\mu)$

In other words

 $f(\mu)$

where $\Sigma = (\zeta_n)_{n=1}^{\infty}$ is a random sofic approximation.

$$\max_{n \to \infty} \frac{1}{n} \log \mathbb{E}_{\sigma \sim \zeta_n} |\Omega(\sigma, \mu, R, \varepsilon)|$$

$$h(\mu) = h_{\Sigma}(\mu)$$

Idea of proof first attempt

- Want to estimate $|\Omega(\sigma, \mu, R, \varepsilon)|$, i.e. the number of $\mathbf{x} \in \mathbb{A}^n$ with $\|P_{\mathbf{x}}^{\sigma,R} - \mu^R\|_{\mathrm{TV}} < \varepsilon$.

• For any such **x**, by definition $\mathbf{x}^R \in (\mathbb{A}^{B(e,R)})^n$ satisfies $\|P_{\mathbf{x}^R}^{\sigma,0} - \mu^R\|_{\mathrm{TV}} < \varepsilon$

Idea of proof first attempt

- Want to estimate $|\Omega(\sigma, \mu, R, \varepsilon)|$, i.e. the number of $\mathbf{x} \in A^n$ with $||_A$
- For any such **x**, by definition $\mathbf{x}^R \in$
- By Lemma 1, the number of $\mathbf{X} \in (A \exp[n \operatorname{H}(\mu^R)])$. So

$$\begin{split} &P_{\mathbf{x}}^{\sigma,R} - \mu^{R} \|_{\mathrm{TV}} < \varepsilon. \\ &(A^{B(e,R)})^{n} \text{ satisfies } \|P_{\mathbf{x}^{R}}^{\sigma,0} - \mu^{R} \|_{\mathrm{TV}} < \varepsilon \\ &A^{B(e,R)})^{n} \text{ with this property is about} \end{split}$$

Idea of proof first attempt

- Want to estimate $|\Omega(\sigma, \mu, R, \varepsilon)|$, i.e. the number of $\mathbf{x} \in A^n$ with ||A
- For any such **x**, by definition $\mathbf{x}^R \in \mathbf{C}$
- By Lemma 1, the number of $\mathbf{X} \in (\mathbb{A} \exp[n \operatorname{H}(\mu^{R})]]$. So $\inf_{n \to \infty} \lim_{n \to \infty} \sup_{n \to \infty} \frac{1}{n} \log \mathbb{E}_{\sigma \sim 0}$

$$P_{\mathbf{x}}^{\sigma,R} - \mu^{R} \|_{\mathrm{TV}} < \varepsilon.$$

 $(A^{B(e,R)})^{n}$ satisfies $\|P_{\mathbf{x}^{R}}^{\sigma,0} - \mu^{R}\|_{\mathrm{TV}} < \varepsilon$
 $(A^{B(e,R)})^{n}$ with this property is about

$$|\zeta_n| \Omega(\sigma, \mu, R, \varepsilon)| \leq \mathrm{H}(\mu^R).$$

What if we instead require

What if we instead require

$$\frac{1}{n} \# \left\{ j \in [n] : \frac{\mathbf{X}(j) = \mathbf{a}}{\mathbf{X}(\sigma_i j) = \mathbf{a}'} \right\} \approx \mu$$

What if we instead require

$$\frac{1}{n} # \left\{ j \in [n] : \frac{\mathbf{X}(j) = \mathbf{a}}{\mathbf{X}(\sigma_i j) = \mathbf{a}'} \right\} \approx \mu$$

for all $i \in [r]$?

What if we instead require

$$\frac{1}{n} \# \left\{ j \in [n] : \frac{\mathbf{X}(j) = \mathbf{a}}{\mathbf{X}(\sigma_i j) = \mathbf{a}'} \right\} \approx \mu$$

for all $i \in [r]$?

If we take $\mathbf{X} = \mathbf{x}^R$, as a condition on the between $P_{\mathbf{x}}^{\sigma,R} \approx \mu^R$ and $P_{\mathbf{x}}^{\sigma,R+1} \approx \mu^R$

$$\left\{ \begin{array}{c} \mathbf{z}^{R}(e) = \mathbf{a} \\ \mathbf{z}^{R}(s_{i}) = \mathbf{a}^{\prime} \end{array} \right\}$$

$$\mathbf{x} \text{ this is} \\ \mathbf{x} \text{ this is} \\ \mathbf{$$

What if we instead require

$$\frac{1}{n} \# \left\{ j \in [n] : \frac{\mathbf{X}(j) = \mathbf{a}}{\mathbf{X}(\sigma_i j) = \mathbf{a}'} \right\} \approx \mu$$

for all $i \in [r]$?

If we take $\mathbf{X} = \mathbf{x}^R$, as a condition on \mathbf{x} between $P_{\mathbf{x}}^{\sigma,R} \approx \mu^R$ and $P_{\mathbf{x}}^{\sigma,R+1} \approx \mu^R$. So it doesn't affect our notion of "goo we're still looking at "local statistics"

Weights recording "one-step statistics"

For $\tau \in \text{Sym}(n)$, $\mathbf{x} \in \mathbb{A}^n$ let $W_{\mathbf{x},\tau} \in \mathbb{P}_1$ $W_{\mathbf{x},\tau}(\mathbf{a},\mathbf{a}') = \frac{1}{n} \# \left\{ j \right\}$

Note both marginals of $W_{\mathbf{x},\tau}$ are equal to $P_{\mathbf{x}}^{0}$.

$$\begin{aligned} \operatorname{Prob}(A \times A) & \text{be given by} \\ j \in [n] : & \mathbf{x}(j) = a \\ \mathbf{x}(\tau j) = a' \end{aligned}$$

$$A = \{\bullet, \bullet\} \qquad W(\bullet, \bullet) = \frac{1}{5}$$
$$W(\bullet, \bullet) = \frac{2}{5}$$
$$W(\bullet, \bullet) = 0$$
$$p(\bullet) = \frac{2}{5} \qquad W(\bullet, \bullet) = \frac{2}{5}$$

Lemma 2 mutual information and counting

Suppose $p \in Prob(A)$ and that $\lambda \in I$ Suppose $\mathbf{x} \in A^n$ has $P^0_{\mathbf{x}} \approx p$.

Then the **proportion** of $\tau \in \text{Sym}(n)$ with $W_{\mathbf{x},\tau} \approx \lambda$ is about $\exp\left[-n I(\lambda)\right]$.

Suppose $p \in Prob(A)$ and that $\lambda \in Prob(A \times A)$ is a coupling of p with itself.

More weights

For
$$\sigma = (\sigma_1, ..., \sigma_r)$$
, $\mathbf{x} \in \mathbb{A}^n$ let $W_{\mathbf{x},\sigma} \in \operatorname{Prob}(\mathbb{A} \times \mathbb{A})^r$ be given by
 $W_{\mathbf{x},\sigma}(\mathbf{a}, \mathbf{a}'; i) = \frac{1}{n} \# \left\{ j \in [n] : \begin{array}{c} \mathbf{x}(j) = \mathbf{a} \\ \mathbf{x}(\sigma_i j) = \mathbf{a}' \end{array} \right\}.$
For each $i \in [r]$, both marginals of $W_{\mathbf{x},\sigma}(\cdot, \cdot; i)$ are equal to $P_{\mathbf{x}}^0$.

$$A = \{ \bullet, \bullet \} \qquad W(\bullet, \bullet; \uparrow) = \frac{1}{5} \qquad W(\bullet, \bullet; \uparrow) = \frac{3}{10}$$
$$W(\bullet, \bullet; \uparrow) = \frac{2}{5} \qquad W(\bullet, \bullet; \uparrow) = \frac{3}{10}$$
$$W(\bullet, \bullet; \uparrow) = \frac{2}{5} \qquad W(\bullet, \bullet; \uparrow) = \frac{3}{10}$$
$$W(\bullet, \bullet; \uparrow) = 0 \qquad W(\bullet, \bullet; \uparrow) = \frac{1}{10}$$
$$p(\bullet) = \frac{2}{5} \qquad W(\bullet, \bullet; \uparrow) = \frac{2}{5} \qquad W(\bullet, \bullet; \uparrow) = \frac{3}{10}$$

More weights

- For $\mathbf{z} \sim \mu \in \operatorname{Prob}(\mathbb{A}^{\mathbb{F}_r})$ we use a slightly different notation:
- let $W_z \in \operatorname{Prob}(A \times A)^r$ be given by

 $W_{z}(a, a'; i) =$

- So:
 - $W_{\mathbf{z}}(\cdot,\cdot;i) = \operatorname{Law}(\mathbf{z}(e),\mathbf{z}(s_i))$

• For each *i*, both marginals of $W_{\mathbf{z}}(\cdot, \cdot; i)$ are μ^0 .

$$= \mu \left\{ \begin{array}{l} \mathbf{z}(e) = \mathbf{a} \\ \mathbf{z}(s_i) = \mathbf{a}' \end{array} \right\}$$

Similarly, write

 $W_{\mathbf{z}^{R}}(\cdot,\cdot;i) = \operatorname{Law}(\mathbf{z}^{R}(e),\mathbf{z}^{R}(s_{i}))$

Corollary of Lemma 2

- Let $\mathbf{X} \in (A^{B(e,R)})^n$ be such that $P_{\mathbf{x}}^0$
- Again write $\mathbf{z} \sim \mu$.

 $i \in [r]$

independent when τ is chosen uniformly

$$\approx \mu^R$$
.

• Then the proportion of $\tau = (\tau_1, \dots, \tau_r) \in \text{Sym}(n)^r$ with $W_{\mathbf{X},\tau} \approx W_{\mathbf{z}^R}$ is about $\exp\left[-n\,\mathrm{I}\left(\mathbf{z}^{R}(e);\,\mathbf{z}^{R}(s_{i})\right)\right].$

• *Proof*: let $\lambda_i = W_{\mathbf{z}^R}(\cdot, \cdot; i)$ and apply Lemma 2. The key is that τ_1, \ldots, τ_r are

Idea of proof upper bound sketch

 $\mathbb{E}_{\sigma} \left| \# \left\{ \mathbf{x} \in \mathbb{A}^{n} : W_{\mathbf{x}^{R},\sigma} \approx W_{\mathbf{z}^{R}} \right\} \right| \leq \mathbb{E}_{\sigma}$ $= \sum \mathbb{P}_{\sigma} \left[W_{\mathbf{X},\sigma} \approx W_{\mathbf{z}^{H}} \right]$ **X**: $P_{\mathbf{x}}^{0} \approx \mu^{R}$ $\approx \sum \left[-n \right]$ **X**: $P_{\mathbf{X}}^{0} \approx \mu^{R} i \in [r]$ $\approx \exp(n \operatorname{H}(\mu^R)) \times$ $i \in [r]$ $i \in [r]$

$$\begin{bmatrix} \# \{ \mathbf{X} \in (\mathbb{A}^{B(e,R)})^n : W_{\mathbf{X},\sigma} \approx W_{\mathbf{Z}^R} \} \end{bmatrix} \quad \mathbf{x} \hookrightarrow \mathbf{x}^R$$

$$\begin{bmatrix} W_{\mathbf{Z}^R} \end{bmatrix}$$
 linearity of expectation

$$I(\mathbf{z}^{R}(e); \mathbf{z}^{R}(s_{i}))]$$
 Corollary

$$\exp\left[-n\,\mathrm{I}\left(\mathbf{z}^{R}(e);\mathbf{z}^{R}(s_{i})\right)\right]$$
 Lemma 1

 $\Rightarrow f(\mu) \le H(\mathbf{z}^{R}(e)) - \sum I(\mathbf{z}^{R}(e); \mathbf{z}^{R}(s_{i})).$ Taking the inf over *R* gives upper bound.

3. Relative f-invariant

Based on: C. Shriver. "The Relative f-Invariant and Non-Uniform Random Sofic Approximations." Mar. 2, 2020. arXiv: 2003.00663 [math].

Conditional entropy

- We can define a relative *f*-invariant:
 - suppose we have two finite alphabets A, B and shift-invariant $\mu_{A} \in \operatorname{Prob}(A^{\mathbb{F}_{r}}), \ \mu_{B} \in \operatorname{Prob}(B^{\mathbb{F}_{r}}).$
 - suppose $\mu \in \operatorname{Prob}((A \times B)^{\mathbb{F}_r})$ is a joining of μ_A, μ_B . Then

• Given two coupled random variables x, y, the conditional Shannon entropy is $H(\mathbf{x} \mid \mathbf{y}) = H(\mathbf{x}, \mathbf{y}) - H(\mathbf{y}).$

 $f(\mu | B) = f(\mu) - f(\mu_B).$

Relative *f*-invariant via good models

Theorem
[S '20]
$$f(\mu \mid B) = \inf_{R,\varepsilon} \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{E}_{\sigma \sim SBM_n} \left[\# \left\{ \mathbf{x} \in A^n : \|P_{(\mathbf{x},\mathbf{y}_n)}^{\sigma,R} - \mu^R\|_{TV} < \varepsilon \right\} \right]$$
new objects:SBM_n is a type of stochastic block model with a planted partition \mathbf{y}_n
This encodes the 'already known' information from B

- SBM_n will be such that \mathbf{y}_n is a good model for $\mu_{\rm B}$
- we're counting the expected number of good models for μ_A which extend \mathbf{y}_n to μ , a particular joining of $\mu_{\rm A}, \mu_{\rm B}$

Permutation stochastic block models

k = 0

- → standard SBM
 - more precise local statistics

Theorem
[S '20]
$$f(\mu \mid B) = \inf_{R,\varepsilon} \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{E}_{\sigma \sim \text{SBM}_n} \left[\# \left\{ \mathbf{x} \in A^n : \|P_{(\mathbf{x},\mathbf{y}_n)}^{\sigma,R} - \mu^R\|_{\text{TV}} < \varepsilon \right\} \right]$$

What parameters work?

- pick $m_n = o(\log \log n)$ pick $\mathbf{y}_n \in \mathbf{B}^n$ with $P_{\mathbf{y}_n}^0 \approx \mu_{\mathbf{B}}^0$
- let $\text{SBM}_n = \text{SBM}(\tau_n, \mathbf{y}_n, m_n)$.

For \approx 's, precise estimates are needed, but best choices always work.

(individual letter frequencies are correct) • pick τ_n so that $W_{\mathbf{y}_n^{m_n}, \tau_n} \approx W_{\mathbf{z}_B^{m_n}}$ (here $\mathbf{z}_B \sim \mu_B$; the radius- m_n weight of \mathbf{y}_n is correct)

Good models over an SBM

What is

$\inf_{n} \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{E}_{\sigma \sim \text{SBM}_{n}} |\Omega(\sigma, \mu_{A}, R, \varepsilon)|?$ $R, \varepsilon \quad n \to \infty$

- Let $\mathbf{y}_n \in \mathbf{B}^n$ be the planted good model for $\mu_{\mathbf{B}}$ from SBM_n .
 - of μ_A , μ_B maybe not μ .

• If x is any good model for μ_A then (x, y_n) is a good model for some joining

Good models over an SBM

• Let $\mathscr{J}(\mu_A, \mu_B) \subset \operatorname{Prob}((A \times B)^{\mathbb{F}_r})$ denote the set of joinings of μ_A, μ_B

Theorem [S '20]	$\inf_{R,\varepsilon} \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{E}_{\sigma}$
--------------------	--

• Write LHS as $h_{\Sigma}(\mu_A)$, with $\Sigma = (SBM_n)_{n=1}^{\infty}$ a random sofic approximation.

$$\sum_{A \in \mathcal{J}(\mu_{A}, \mu_{B})} |\Omega(\sigma, \mu_{A}, R, \varepsilon)| = \sup_{\lambda \in \mathcal{J}(\mu_{A}, \mu_{B})} f(\lambda \mid B)$$

Summary and future work

- We have formulas for entropy over two types of random sofic approximations:
 - uniform $\rightarrow f$ -invariant
 - stochastic block model \rightarrow optimum over relative *f*-invariants
- Different entropy values for *nonrandom* sofic approximations?
 - "degenerate" case of no good models is known to occur
- SBM's can avoid degeneracy by ensuring the existence of some good models.
 - need to understand optimization better. Some progress for when $\mu_{\rm A}, \mu_{\rm B}$ are Gibbs measures for a nearest-neighbor interaction (like Ising).