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1. Entropy on integer lattices



Setup

. 7% integer lattice w/ origin 0

« A = finite set, “alphabet” @
e ex. {1}

d ® ® ® ® o
e x € A isa

« 1 € Prob(AZY) is a ® o o

d
o We’ll assume u shift-invariant i.e. (AZ , U, Zd) IS @ measure-preserving
system
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Entropy rate

« The state of a system is specified by y & Prob(AZd).
How random is u?

* The Kolmogorov-Sinai entropy rate is defined by

|
h¥S(4) = lim ——H ().
r— 00 ‘B(O,I’)l ( )



Lemma 1

Shannon entropy and counting

Suppose p € Prob(4).

Then the number of X € A" with
~|{i € [n] : x() = a}| m p({a})  foralla € A
IS about
exp(nH(p)|.



Lemma 1

Shannon entropy and counting

Suppose p € Prob(4).

Then the number of X € A" with

Pl{ah)=—|{i€[n]:x() =a}| ~p({a}) foralla €A
IS about (\[\

exp(nH(p)|.



Lemma 1

Shannon entropy and counting

Suppose p € Prob(4).

Then the number of X € A" with

Pl{ah)=—|{i€[n]:x() =a}| ~p({a}) foralla €A
IS about (\[\

exp(nH(p)|.

Rearranged, and more precisely:

1
H(p) = limlim sup—log| {x € A" : ||PY — p||;v < €} |
el a0 N



Entropy rate via counting

1
H(p) = limlim sup—log| {x € A" : ||PY — p||;v < €} |
el .0 N

The KS entropy can be expressed in a similar form:
h®™ (1) = inf lim sup; log | {x € APOY - ||Pr — u"|| 7y < €} ]
e nooo ‘B(O,I‘l) ‘
where
X Is a “microstate on a finite subsystem”
P_ is a “radius-r empirical distribution” to be defined.

* This is a special case of the fact that (sofic entropy) = (KS entropy) for amenable
groups, proven by Bowen [2010]



Local statistics of microstates

Let K € Z¢ be a large rectangle.

Given a microstate X € AX and a radilu{s r € N, the depth-r

X' is the element of (AB(O”’ )) given by

x'(v) = (X(v + W))weB(o,r)'

-+
+ 4+
' : - T v
O ------------- poeaumemmmret T
‘ .
B(0,1) c Z*

A:{_I_a_}

I I I+ 1 + | I
+ | I I |l + + -+
+ + 1 + + 1 | I



Local statistics of microstates

Let K € Z¢ be a large rectangle.

Given a microstate X € AX and a radilu{s r € N, the depth-r
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Empirical distribution and good models

* The radius-r of x € A% is defined by

P} = P). € Prob(A%"").



Empirical distribution and good models

* The radius-r of x € A% is defined by
P} = P). € Prob(A%"").
e Say X is an for u € Prob(AZd) if
[Py —u'll <e.

o (K, u,r,e)isthe set of suchx & AKX



Summary

and some terminology

With 2 = (K,) ", a sequence of boxes which exhausts Z¢, we have

|
hy(u) = inf lim sup—log | Q(K,,, u, 7, )| = h*>(u)
r,E n

n—~oo

Y is a sofic approximation to Z¢ because

. . . d
1. we have approximately free approximate actions of Z“ on Kn

2. K _locally look like Z¢



2. Entropy for free-group
actions

Based on:

Lewis Bowen. “The Ergodic Theory of Free Group Actions: Entropy and the f-Invariant.” Groups,
Geometlry, and Dynamics (2010), pp. 419-432.



Free group setup

F.= (sy,...,s,) = rank-r free group with identity e

Let z be a A -valued r.v. with shift-invariant law u. The of u is defined
oy

- R R R
fw) = inf | H(z"(e)) ZI (e): 2% (s)))

s there a “counting good models” formula for f(z)?



Microstates lor Iree groups

. Forx € AB@R) we can’t make sense of the empirical distribution because
most sites are close to the edge.

« A large finite subgraph doesn’t locally look like [, 1

VS.




Partial fix

» A random regular graph G
“locally looks like [-” in that:

For any R, the fraction of
vertices v € G with
B°(v,R) =~ B' (e, R)
converges in prob. to 1 as
size of G — 0.

e But how do we make sense
of X" and PX?
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Partial fix

» A random regular graph G
“locally looks like [-” in that:

For any R, the fraction of
vertices v € G with
B®(v,R) = ﬂr(e, R)
converges in'prob. to 1 as
size of G — 0.

e But how do we make sense

of XR and P)I;? Nno canonical
choicel




Extra graph data

infinite systems

Edges of a Cayley graph naturally come directed and labeled by generators.

L.

® ®
®

*
i $ .1




Extra graph data

finite systems
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» Write 2r-regular G as union of r

permutations, and label edges '
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Extra graph data

finite systems

» Write 2r-regular G as union of r
permutations, and label edges

. Now whenever B' (¢, R) =~ B%(v, R)
there Is exactly one isomorphism which
respects edge labels and directions,

which gives a canonical defn. of xX




Permutation model

* Pick a random regular graph
with vertex set [n] = {1,...,n}
by picking r permutations
oy, ..., 0, Uniformly at random.

e Write 0 = (0¢, ..., 0,). Can be
thought of as a random
homomorphism [F. = Sym(n)

» Let {, be the law of & (r is
implicit)




The f-invariant via counting good models

Theorem f(u) = 1nt Iim sup L] log = ol | (0, 1, R, €) |
[Bowen ’10] Re pooo :
In other words
Jf(u) = hg(p)

where 2 = ((,)._ is a random sofic approximation.,



Idea of proot

first attempt

» Want to estimate | (o, 4, R, €) |,
.e. the number of x € A" with ||[PZF — u|| v < e.

. For any such X, by definition xX € (AB©R) satisfies HP"O — Uy < €



Idea of proot

first attempt

» Want to estimate | (o, 4, R, €) |,
.e. the number of x € A" with ||[PZF — u|| v < e.

. For any such X, by definition xX € (AB©R) satisfies HP"O — Uy < €

. By Lemma 1, the number of X € (AB&R) with this property is about
exXp [n H(,uR)] . SO



Idea of proot

first attempt

» Want to estimate | (o, 4, R, €) |,
.e. the number of x € A" with ||[PZF — u|| v < e.

. For any such X, by definition xX € (AB©R) satisfies HP"O — Uy < €

. By Lemma 1, the number of X € (AB&R) with this property is about
exXp [n H(,uR)] . SO

1
inf lim sup—1log E,_; |Q(o, u, R, )| < H(u").

0 , 0 N




Idea of proot

continued — duplication of information
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Idea of proot

continued — duplication of information

What if we instead require

l# ienl X(j)=a

forall1 € |r]?

If we take X = X", as a condition on X this is

o,R ~ ;KR o, R+1  , R+1
between P;"" ~ u™ and P} SR
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Idea of proot

continued — duplication of information

What if we instead require

. X()=a ) Jz(e)=a
;# ] € [n] : X(Gl]) — 9 ~ H ZR(Si) _ g

forall1 € |r]?

If we take X = X", as a condition on X this is
between PZR ~ pf and PORH! ~ R,

So it doesn’t affect our notion of “good model” —
we’'re still looking at “local statistics™

A

e

$
——F

A

I

e




Weights

recording “one-step statistics

For z € Sym(n), x € A" let W, . € Prob(A X A) be given by
L. X(J) = a
Wila,a) =—#4j € [n] : .

n X(z7) = a
Note both marginals of W, _ are equal to PY.

Example

A:{Q,.} W(.,
W(e,

3
5 W('
p(e) == |
‘\ 5 W(e,

N N N N’

wnln O

N | —



Lemma 2

mutual information and counting

Suppose p € Prob(A) and that 4 € Prob(A X A) is a coupling of p with itself.
Suppose X € A" has P,? 7]

Then the proportion of 7 € Sym(n) with W, . ~ 4 is about

exp [ —n I(/I)] .



More weights

Foro = (64, ...,0,), X € A" let W, - € Prob(A X A)" be given by
Ny X(J) =a
W, (a,a’ji)=—#<j€ [n] : , 0

For each i € [r], both marginals of W, (-, - ;1) are equal to P,?.

Example

P A={o,e) W('-T)=%
W(e,o:1) ==

3

p(e =3
W(e,¢;1)=0

(¢)==
TUTS D oweein)=2

W(.a ;!
W(.a ;!
W('a ;!

W('a ;!



More weights

e Forz ~ u & Prob(A[Fr) we use a slightly different notation:

. let W, € Prob(A X A)" be given by
| 7Z(e) = a
W, (a,a’;i) = pu { }

Z(s;) = a’

* S0:
. W,(-,-;i) =Law(z(e),z(s,)) Similarly, write

+ For each i, both marginals of W,( -, - ;i) are u?. | Wal"» 30 = Law (2%(e), 2%(s)))




Corollary

of Lemma 2

. Let X € (A%M)" pe such that Py ~ u”.
 Again write Z ~ Uu.
» Then the proportion of 7 = (7, ..., 7,) € Sym(n)" with Wy . ~ W,k is about

H exp| — n1(z"(e); z"(s))|.

1elr]

o Proof:let A; = W_x( -, - ;1) and apply Lemma 2. The key is that 7}, ..., 7, are
independent when 7 is chosen uniformly



Idea of proot

upper bound sketch

_f’l

= f(u) < H(z"(e)) —

(X EA": W, » WR}] —6[ (X € (APERY Wy, » ZR}] x < xf

= 2 P, [Wy, ~ Wy

X: sz/,tR

Z H exp| — n1(z"(e); 2%(s)))|

X: PR~ultie[r]

~ exp(n H(IMR)) X H €Xp[ — nI(zR(e); ZR(S,-))]

€| r]

1e|r]

linearity of expectation

Corollary

Lemma 1

2 I(ZR(e); ZR(Si)). Taking the inf over R gives upper bound.



3. Relative f-invariant

Based on:
C. Shriver. “The Relative f-Invariant and Non-Uniform Random Sofic Approximations.” Mar. 2,
2020. arXiv: 2003.00663 [math].



Conditional entropy

» Given two coupled random variables X, y, the
H(x | y) = H(x, y) — H(y).

e \We can define a

» suppose we have two finite alphabets A, B and shift-invariant
i, € Prob(A™), un € Prob(B").

e SUPPOSE U E Prob((A X B)h’) is a joining of u,, ug. Then
Ju | B) = f(u) — fup).

IS



Relative f-invariant via good models

Theorem B) = inf lim sup + log E #x e A PR — uFlry < &)
f(ﬂ‘ ) R,e n—>oopn g 7S5 ; { H Yy : HTV }_

new objects:  SBM, is a type of with a Yy,
This encodes the ‘already known’ information from B

» SBM,, will be such that y, is a good model for pi

« we’re counting the expected number of good models for 1, which extend y,
to i, a particular joining of iy, Uy



Permutation stochastic block models

Given 7 = (7, ...,7,) € Sym(n)',y € B", and k € N let

SBM(z,y, k) = Unif

L

planted partition
of [n]

used to specify

local statistics

k>0

{ o€ Sym(n) : Wy, = W,

L depends on j

allofoorrt

standard SBM

more precise local statistics




Theorem B) = inf lim sup — log [ _# x € A" ||[PoR — uR <€ |
f(lul | R n—>oopn & Co-sEl, ) { ” o : HTV }

What parameters work"?
- pick m, = o(log log n)
. pick y, € B" with P) ~ ug
» pick 7, so that Wym, . = Wym,
. let SBM,, = SBM(z,,y,, m,).

For X’s, precise estimates are needed, but best choices always work.



Good models over an SBM

e Whatis

inf lim sup = log E__cay | Q(o, s, R, €) | 2
R.e n .

n— Qo0

» Lety, € B" be the planted good model for py from SBN,,.

» If X is any good model for 4, then (X, y, ) is a good model for some joining
of u,, Uy — maybe not /.



Good models over an SBM

e Let F(uy, pg) C Prob((A X B)[Fr) denote the set of joinings of y,, Uy

Theorem inf Iim sup < log ~ 5~SBM, ‘ Q(U, U, R, 8) ‘ — Sup f(/l ‘ :3)
[S °20] Re poco AE T (jyohip)

» Write LHS as hy(u,), with 2 = (SBM,))"> , a random sofic approximation.




Summary and future work

* We have formulas for entropy over two types of random sofic approximations:
e uniform — f-invariant

« stochastic block model — optimum over relative f-invariants
* Different entropy values for nonrandom sofic approximations?
* “degenerate” case of no good models is known to occur

« SBM's can avoid degeneracy by ensuring the existence of some good models.

» need to understand optimization better. Some progress for when p,, (y are Gibbs
measures for a nearest-neighbor interaction (like Ising).



