Sofic entropy and the (relative) f-invariant

1. Entropy on integer lattices

2. Entropy on free groups
3. Relative f-invariant

1. Entropy on integer lattices

Setup

- \mathbb{Z}^{d} integer lattice w/ origin 0
- A = finite set, "alphabet"
- ex. $\{ \pm 1\}$
- $\mathbf{x} \in \mathrm{A}^{\mathbb{Z}^{d}}$ is a microstate
- $\mu \in \operatorname{Prob}\left(\mathrm{A}^{\mathbb{Z}^{d}}\right)$ is a state

- We'll assume μ shift-invariant i.e. $\left(\mathrm{A}^{\mathbb{Z}^{d}}, \mu, \mathbb{Z}^{d}\right)$ is a measure-preserving system

Setup

- \mathbb{Z}^{d} integer lattice w/ origin 0
- A = finite set, "alphabet"
- ex. $\{ \pm 1\}$
- $\mathbf{x} \in \mathrm{A}^{\mathbb{Z}^{d}}$ is a microstate
- $\mu \in \operatorname{Prob}\left(\mathrm{A}^{\mathbb{Z}^{d}}\right)$ is a state

- We'll assume μ shift-invariant i.e. $\left(\mathrm{A}^{\mathbb{Z}^{d}}, \mu, \mathbb{Z}^{d}\right)$ is a measure-preserving system

Entropy rate

- The state of a system is specified by $\mu \in \operatorname{Prob}\left(\mathrm{A}^{\mathbb{Z}^{d}}\right)$. How random is μ ?
- The Kolmogorov-Sinai entropy rate is defined by

$$
\mathrm{h}^{\mathrm{KS}}(\mu)=\lim _{r \rightarrow \infty} \frac{1}{|B(0, r)|} \mathrm{H}\left(\mu^{r}\right) .
$$

Lemma 1

Shannon entropy and counting

Suppose $p \in \operatorname{Prob}(\mathrm{~A})$.
Then the number of $\mathbf{x} \in \mathrm{A}^{n}$ with

$$
\frac{1}{n}|\{i \in[n]: \mathbf{x}(i)=\mathrm{a}\}| \approx p(\{\mathrm{a}\}) \quad \text { for all } \mathrm{a} \in \mathrm{~A}
$$

is about

$$
\exp [n \mathrm{H}(p)] .
$$

Lemma 1

Shannon entropy and counting

Suppose $p \in \operatorname{Prob}(\mathrm{~A})$.
Then the number of $\mathbf{x} \in \mathrm{A}^{n}$ with
is about $\underbrace{}_{\text {"empirical distribution" } \in \operatorname{Prob}(\mathrm{A})} P_{\mathrm{x}}^{0}(\{\mathrm{a}\})=\frac{1}{n}|\{i \in[n]: \mathbf{x}(i)=\mathrm{a}\}| \approx p(\{\mathrm{a}\}) \quad$ for all $\mathrm{a} \in \mathrm{A}$

Lemma 1

Shannon entropy and counting

Suppose $p \in \operatorname{Prob}(\mathrm{~A})$.
Then the number of $\mathbf{x} \in \mathrm{A}^{n}$ with
is about

$$
\begin{aligned}
& P_{\mathbf{x}}^{0}(\{\mathrm{a}\})=\frac{1}{n}|\{i \in[n]: \mathbf{x}(i)=\mathrm{a}\}| \approx p(\{\mathrm{a}\}) \quad \text { for all } \mathrm{a} \in \mathrm{~A} \\
& \text { "empirical distribution" } \in \operatorname{Prob}(\mathrm{A}) \\
& \exp [n \mathrm{H}(p)] .
\end{aligned}
$$

Rearranged, and more precisely:

$$
\mathrm{H}(p)=\lim _{\varepsilon \downarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|\left\{\mathbf{x} \in \mathrm{~A}^{n}:\left\|P_{\mathbf{x}}^{0}-p\right\|_{T V}<\varepsilon\right\}\right|
$$

Entropy rate via counting

$$
\mathrm{H}(p)=\lim _{\varepsilon \downarrow 0} \lim _{n \rightarrow \infty} \sup \frac{1}{n} \log \left|\left\{\mathbf{x} \in \mathrm{~A}^{n}:\left\|P_{\mathbf{x}}^{0}-p\right\|_{T V}<\varepsilon\right\}\right|
$$

The KS entropy can be expressed in a similar form:

$$
\mathrm{h}^{\mathrm{KS}}(\mu)=\inf _{r, \varepsilon} \limsup _{n \rightarrow \infty} \frac{1}{|B(0, n)|} \log \left|\left\{\mathbf{x} \in \mathrm{A}^{B(0, n)}:\left\|P_{\mathbf{x}}^{r}-\mu^{r}\right\|_{T V}<\varepsilon\right\}\right|
$$

where
\mathbf{x} is a "microstate on a finite subsystem"
$P_{\mathbf{x}}^{r}$ is a "radius- r empirical distribution" to be defined.

- This is a special case of the fact that (sofic entropy) $=(\mathrm{KS}$ entropy) for amenable groups, proven by Bowen [2010]

Local statistics of microstates

Let $K \Subset \mathbb{Z}^{d}$ be a large rectangle.
Given a microstate $\mathbf{x} \in \mathrm{A}^{K}$ and a radius $r \in \mathbb{N}$, the depth- r neighborhood labeling \mathbf{x}^{r} is the element of $\left(\mathrm{A}^{B(0, r)}\right)^{K}$ given by

$$
\mathbf{x}^{r}(v) \doteq(\mathbf{x}(v+w))_{w \in B(0, r)}
$$

$$
A=\{+,-\}
$$

$K \subset \mathbb{Z}$

Local statistics of microstates

Let $K \Subset \mathbb{Z}^{d}$ be a large rectangle.
Given a microstate $\mathbf{x} \in \mathrm{A}^{K}$ and a radius $r \in \mathbb{N}$, the depth- r neighborhood labeling \mathbf{x}^{r} is the element of $\left(\mathrm{A}^{B(0, r)}\right)^{K}$ given by

$$
\mathbf{x}^{r}(v) \doteq(\mathbf{x}(v+w))_{w \in B(0, r)}
$$

$A=\{+,-\}$

$K \subset \mathbb{Z}^{d}$

Empirical distribution and good models

- The radius- r empirical distribution of $\mathbf{x} \in \mathrm{A}^{K}$ is defined by

$$
P_{\mathbf{x}}^{r}=P_{\mathbf{x}^{r}}^{0} \in \operatorname{Prob}\left(\mathrm{~A}^{B(0, r)}\right)
$$

Empirical distribution and good models

- The radius- r empirical distribution of $\mathbf{x} \in \mathrm{A}^{K}$ is defined by

$$
P_{\mathbf{x}}^{r}=P_{\mathbf{x}^{r}}^{0} \in \operatorname{Prob}\left(\mathrm{~A}^{B(0, r)}\right) .
$$

- Say \mathbf{X} is an (r, ε)-good model for $\mu \in \operatorname{Prob}\left(\mathrm{A}^{\mathbb{Z}^{d}}\right)$ if

$$
\left\|P_{\mathbf{x}}^{r}-\mu^{r}\right\|<\varepsilon
$$

- $\Omega(K, \mu, r, \varepsilon)$ is the set of such $\mathbf{x} \in \mathrm{A}^{K}$.

Summary

and some terminology

With $\Sigma=\left(K_{n}\right)_{n=1}^{\infty}$ a (FøIner) sequence of boxes which exhausts \mathbb{Z}^{d}, we have

$$
\mathrm{h}_{\Sigma}(\mu)=\inf _{r, \varepsilon} \lim \sup _{n \rightarrow \infty} \frac{1}{n} \log \left|\Omega\left(K_{n}, \mu, r, \varepsilon\right)\right|=\mathrm{h}^{K S}(\mu)
$$

Σ is a sofic approximation to \mathbb{Z}^{d} because

1. we have approximately free approximate actions of \mathbb{Z}^{d} on K_{n}
2. K_{n} locally look like \mathbb{Z}^{d}

2. Entropy for free-group actions

Based on:

Lewis Bowen. "The Ergodic Theory of Free Group Actions: Entropy and the f-Invariant." Groups, Geometry, and Dynamics (2010), pp. 419-432.

Free group setup

$\mathbb{F}_{r}=\left\langle s_{1}, \ldots, s_{r}\right\rangle=$ rank- r free group with identity e
 by

$$
f(\mu)=\inf _{R}\left(\mathrm{H}\left(\mathbf{z}^{R}(e)\right)-\sum_{i=1}^{r} \mathrm{I}\left(\mathbf{z}^{R}(e) ; \mathbf{z}^{R}\left(s_{i}\right)\right)\right) .
$$

where $\mathrm{I}(\mathbf{x} ; \mathbf{y})=\mathrm{H}(\mathbf{x})+\mathrm{H}(\mathbf{y})-\mathrm{H}(\mathbf{x}, \mathbf{y}) \& \mathbf{z}^{R}$ is a $\left(\mathrm{A}^{B(e, R}\right)^{\mathbb{F}_{r}}$-valued r.v. with law μ^{R}

Is there a "counting good models" formula for $f(\mu)$?

Microstates for free groups

- For $\mathbf{x} \in \mathrm{A}^{B(e, R)}$ we can't make sense of the empirical distribution because most sites are close to the edge.
- A large finite subgraph doesn't locally look like \mathbb{F}_{2}

vs.

Partial fix

- A random regular graph G "locally looks like \mathbb{F}_{r} " in that:

For any R, the fraction of vertices $v \in G$ with $B^{G}(v, R) \cong B^{\Gamma}(e, R)$ converges in prob. to 1 as size of $G \rightarrow \infty$.

- But how do we make sense of \mathbf{x}^{R} and $P_{\mathbf{x}}^{R}$?

Partial fix

- A random regular graph G "locally looks like \mathbb{F}_{r} " in that:

For any R, the fraction of vertices $v \in G$ with $B^{G}(v, R) \cong B^{\Gamma}(e, R)$ converges in prob. to 1 as size of $G \rightarrow \infty$.

- But how do we make sense of \mathbf{x}^{R} and $P_{\mathbf{x}}^{R}$?

Partial fix

- A random regular graph G "locally looks like \mathbb{F}_{r} " in that:

For any R, the fraction of vertices $v \in G$ with $B^{G}(v, R) \cong B^{\Gamma}(e, R)$ converges in prob. to 1 as size of $G \rightarrow \infty$.

- But how do we make sense of \mathbf{x}^{R} and $P_{\mathbf{x}}^{R}$?

Partial fix

- A random regular graph G "locally looks like \mathbb{F}_{r} " in that:

For any R, the fraction of vertices $v \in G$ with $B^{G}(v, R) \cong B^{\Gamma}(e, R)$ converges in prob. to 1 as size of $G \rightarrow \infty$:,

- But how do we make sense of \mathbf{x}^{R} and $P_{\mathbf{x}}^{R}$?

Extra graph data

infinite systems
Edges of a Cayley graph naturally come directed and labeled by generators.

Extra graph data

finite systems

Extra graph data

finite systems

- Write $2 r$-regular G as union of r permutations, and label edges

Permutation model

- Pick a random regular graph with vertex set $[n]=\{1, \ldots, n\}$ by picking r permutations $\sigma_{1}, \ldots, \sigma_{r}$ uniformly at random.
- Write $\sigma=\left(\sigma_{1}, \ldots, \sigma_{r}\right)$. Can be thought of as a random homomorphism $\mathbb{F}_{r} \rightarrow \operatorname{Sym}(n)$
- Let ζ_{n} be the law of $\sigma(r$ is implicit)

The f-invariant via counting good models

$$
\begin{gathered}
\text { Theorem } \\
\text { [Bowen '10] }
\end{gathered} \quad f(\mu)=\inf _{R, \varepsilon} \limsup \frac{1}{n} \log \mathbb{E}_{\sigma \sim \zeta_{n}}|\Omega(\sigma, \mu, R, \varepsilon)|
$$

In other words

$$
f(\mu)=\mathrm{h}_{\mathbf{\Sigma}}(\mu)
$$

where $\boldsymbol{\Sigma}=\left(\zeta_{n}\right)_{n=1}^{\infty}$ is a random sofic approximation.

Idea of proof

first attempt

- Want to estimate $|\Omega(\sigma, \mu, R, \varepsilon)|$,
i.e. the number of $\mathbf{x} \in \mathrm{A}^{n}$ with $\left\|P_{\mathbf{x}}^{\sigma, R}-\mu^{R}\right\|_{\mathrm{TV}}<\varepsilon$.
- For any such \mathbf{x}, by definition $\mathbf{x}^{R} \in\left(\mathrm{~A}^{B(e, R)}\right)^{n}$ satisfies $\left\|P_{\mathbf{x}^{R}}^{\sigma, 0}-\mu^{R}\right\|_{\mathrm{TV}}<\varepsilon$

Idea of proof

first attempt

- Want to estimate $|\Omega(\sigma, \mu, R, \varepsilon)|$,
i.e. the number of $\mathbf{x} \in \mathrm{A}^{n}$ with $\left\|P_{\mathbf{x}}^{\sigma, R}-\mu^{R}\right\|_{\mathrm{TV}}<\varepsilon$.
- For any such \mathbf{x}, by definition $\mathbf{x}^{R} \in\left(\mathrm{~A}^{B(e, R)}\right)^{n}$ satisfies $\left\|P_{\mathbf{x}^{R}}^{\sigma, 0}-\mu^{R}\right\|_{\mathrm{TV}}<\varepsilon$
- By Lemma 1, the number of $\mathbf{X} \in\left(\mathrm{A}^{B(e, R)}\right)^{n}$ with this property is about $\exp \left[n \mathrm{H}\left(\mu^{R}\right)\right]$. So

Idea of proof

first attempt

- Want to estimate $|\Omega(\sigma, \mu, R, \varepsilon)|$,
i.e. the number of $\mathbf{x} \in \mathrm{A}^{n}$ with $\left\|P_{\mathbf{x}}^{\sigma, R}-\mu^{R}\right\|_{\mathrm{TV}}<\varepsilon$.
- For any such \mathbf{x}, by definition $\mathbf{x}^{R} \in\left(\mathrm{~A}^{B(e, R)}\right)^{n}$ satisfies $\left\|P_{\mathbf{x}^{R}}^{\sigma, 0}-\mu^{R}\right\|_{\mathrm{TV}}<\varepsilon$
- By Lemma 1, the number of $\mathbf{X} \in\left(\mathrm{A}^{B(e, R)}\right)^{n}$ with this property is about $\exp \left[n \mathrm{H}\left(\mu^{R}\right)\right]$. So

$$
\inf _{\varepsilon>0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}_{\sigma \sim \zeta_{n}}|\Omega(\sigma, \mu, R, \varepsilon)| \leq \mathrm{H}\left(\mu^{R}\right) .
$$

Idea of proof

continued - duplication of information

Idea of proof

continued - duplication of information
What if we instead require

Idea of proof

continued - duplication of information
What if we instead require

$$
\frac{1}{n} \#\left\{j \in[n]: \begin{array}{c}
\mathbf{X}(j)=\mathbf{a} \\
\mathbf{X}\left(\sigma_{i} j\right)=\mathbf{a}^{\prime}
\end{array}\right\} \approx \mu\left\{\begin{array}{l}
\mathbf{z}^{R}(e)=\mathbf{a} \\
\mathbf{z}^{R}\left(s_{i}\right)=\mathbf{a}^{\prime}
\end{array}\right\}
$$

Idea of proof

continued - duplication of information
What if we instead require

$$
\frac{1}{n} \#\left\{j \in[n]: \begin{array}{c}
\mathbf{X}(j)=\mathbf{a} \\
\mathbf{X}\left(\sigma_{i} j\right)=\mathbf{a}^{\prime}
\end{array}\right\} \approx \mu\left\{\begin{array}{l}
\mathbf{z}^{R}(e)=\mathbf{a} \\
\mathbf{z}^{R}\left(s_{i}\right)=\mathbf{a}^{\prime}
\end{array}\right\}
$$

for all $i \in[r]$?

Idea of proof

continued - duplication of information
What if we instead require

$$
\frac{1}{n} \#\left\{j \in[n]: \begin{array}{c}
\mathbf{X}(j)=\mathbf{a} \\
\mathbf{X}\left(\sigma_{i} j\right)=\mathbf{a}^{\prime}
\end{array}\right\} \approx \mu\left\{\begin{array}{l}
\mathbf{z}^{R}(e)=\mathbf{a} \\
\mathbf{z}^{R}\left(s_{i}\right)=\mathbf{a}^{\prime}
\end{array}\right\}
$$

for all $i \in[r]$?

If we take $\mathbf{X}=\mathbf{x}^{R}$, as a condition on \mathbf{x} this is between $P_{\mathbf{x}}^{\sigma, R} \approx \mu^{R}$ and $P_{\mathbf{x}}^{\sigma, R+1} \approx \mu^{R+1}$.

Idea of proof

continued - duplication of information
What if we instead require

$$
\frac{1}{n} \#\left\{j \in[n]: \begin{array}{c}
\mathbf{X}(j)=\mathbf{a} \\
\mathbf{X}\left(\sigma_{i} j\right)=\mathbf{a}^{\prime}
\end{array}\right\} \approx \mu\left\{\begin{array}{c}
\mathbf{z}^{R}(e)=\mathbf{a} \\
\mathbf{z}^{R}\left(s_{i}\right)=\mathbf{a}^{\prime}
\end{array}\right\}
$$

for all $i \in[r]$?

If we take $\mathbf{X}=\mathbf{x}^{R}$, as a condition on \mathbf{x} this is between $P_{\mathbf{x}}^{\sigma, R} \approx \mu^{R}$ and $P_{\mathbf{x}}^{\sigma, R+1} \approx \mu^{R+1}$.
So it doesn't affect our notion of "good model" we're still looking at "local statistics"

Weights

recording "one-step statistics"
For $\tau \in \operatorname{Sym}(n), \mathbf{x} \in \mathrm{A}^{n}$ let $W_{\mathbf{x}, \tau} \in \operatorname{Prob}(\mathrm{A} \times \mathrm{A})$ be given by

$$
W_{\mathbf{x}, \tau}\left(\mathrm{a}, \mathrm{a}^{\prime}\right)=\frac{1}{n} \#\left\{j \in[n]: \begin{array}{c}
\mathbf{x}(j)=\mathrm{a} \\
\mathbf{x}(\tau j)=\mathrm{a}^{\prime}
\end{array}\right\} .
$$

Note both marginals of $W_{\mathbf{x}, \tau}$ are equal to $P_{\mathbf{x}}^{0}$.

$$
\begin{array}{ll}
\mathrm{A}=\{\bullet, \bullet\} & W(\bullet, \bullet)=\frac{1}{5} \\
p(\bullet)=\frac{3}{5} & W(\bullet, \bullet)=\frac{2}{5} \\
p(\bullet)=\frac{2}{5} & W(\bullet, \bullet)=0 \\
& W(\bullet, \bullet)=\frac{2}{5}
\end{array}
$$

Lemma 2

mutual information and counting

Suppose $p \in \operatorname{Prob}(\mathrm{~A})$ and that $\lambda \in \operatorname{Prob}(\mathrm{A} \times \mathrm{A})$ is a coupling of p with itself. Suppose $\mathbf{x} \in \mathrm{A}^{n}$ has $P_{\mathbf{x}}^{0} \approx p$.

Then the proportion of $\tau \in \operatorname{Sym}(n)$ with $W_{\mathbf{x}, \tau} \approx \lambda$ is about

$$
\exp [-n \mathrm{I}(\lambda)]
$$

More weights

For $\sigma=\left(\sigma_{1}, \ldots, \sigma_{r}\right), \mathbf{x} \in \mathrm{A}^{n}$ let $W_{\mathbf{x}, \sigma} \in \operatorname{Prob}(\mathrm{A} \times \mathrm{A})^{r}$ be given by

$$
W_{\mathbf{x}, \sigma}\left(\mathrm{a}, \mathrm{a}^{\prime} ; i\right)=\frac{1}{n} \#\left\{j \in[n]: \begin{array}{c}
\mathbf{x}(j)=\mathrm{a} \\
\mathbf{x}\left(\sigma_{i} j\right)=\mathrm{a}^{\prime}
\end{array}\right\}
$$

For each $i \in[r]$, both marginals of $W_{\mathbf{x}, \sigma}(\cdot, \cdot ; i)$ are equal to $P_{\mathbf{x}}^{0}$.

$$
\begin{array}{lll}
\mathrm{A}=\{\bullet, \bullet\} & W(\bullet, \bullet ; \uparrow)=\frac{1}{5} & W(\bullet, \bullet ; \uparrow)=\frac{3}{10} \\
p(\bullet)=\frac{3}{5} & W(\cdot, \bullet ; \uparrow)=\frac{2}{5} & W(\bullet, \bullet ; \uparrow)=\frac{3}{10} \\
p(\bullet)=\frac{2}{5} & W(\cdot, \bullet ; \uparrow)=0 & W(\bullet, \bullet ; \uparrow)=\frac{1}{10} \\
& W(\bullet, \bullet ; \uparrow)=\frac{2}{5} & W(\bullet, \bullet ; \uparrow)=\frac{3}{10}
\end{array}
$$

More weights

- For $\mathbf{z} \sim \mu \in \operatorname{Prob}\left(\mathrm{A}^{\mathbb{F}_{r}}\right)$ we use a slightly different notation:
- let $W_{\mathbf{z}} \in \operatorname{Prob}(\mathrm{A} \times \mathrm{A})^{r}$ be given by

$$
W_{\mathbf{z}}\left(\mathrm{a}, \mathrm{a}^{\prime} ; i\right)=\mu\left\{\begin{array}{l}
\mathbf{z}(e)=\mathrm{a} \\
\mathbf{z}\left(s_{i}\right)=\mathrm{a}^{\prime}
\end{array}\right\} .
$$

- So:
- $W_{\mathbf{z}}(\cdot, \cdot ; i)=\operatorname{Law}\left(\mathbf{z}(e), \mathbf{z}\left(s_{i}\right)\right)$
- For each i, both marginals of $W_{\mathbf{z}}(\cdot, \cdot ; i)$ are μ^{0}.

Similarly, write

$$
W_{\mathbf{z}^{R}}(\cdot, \cdot ; i)=\operatorname{Law}\left(\mathbf{z}^{R}(e), \mathbf{z}^{R}\left(s_{i}\right)\right)
$$

Corollary

of Lemma 2

- Let $\mathbf{X} \in\left(\mathrm{A}^{B(e, R)}\right)^{n}$ be such that $P_{\mathbf{X}}^{0} \approx \mu^{R}$.
- Again write $\mathbf{z} \sim \mu$.
- Then the proportion of $\tau=\left(\tau_{1}, \ldots, \tau_{r}\right) \in \operatorname{Sym}(n)^{r}$ with $W_{\mathbf{X}, \tau} \approx W_{\mathbf{z}^{R}}$ is about $\prod_{i \in[r]} \exp \left[-n \mathrm{I}\left(\mathbf{z}^{R}(e) ; \mathbf{z}^{R}\left(s_{i}\right)\right)\right]$.
- Proof: let $\lambda_{i}=W_{\mathbf{z}^{R}}(\cdot, \cdot ; i)$ and apply Lemma 2. The key is that $\tau_{1}, \ldots, \tau_{r}$ are independent when τ is chosen uniformly

Idea of proof

upper bound sketch

$$
\begin{aligned}
& \mathbb{E}_{\sigma}\left[\#\left\{\mathbf{x} \in \mathrm{~A}^{n}: W_{\mathbf{x}^{R}, \sigma} \approx W_{\mathbf{z}^{R}}\right\}\right] \leq \mathbb{E}_{\sigma}\left[\#\left\{\mathbf{X} \in\left(\mathrm{~A}^{B(e, R)}\right)^{n}: W_{\mathbf{X}, \sigma} \approx W_{\mathbf{z}^{R}}\right\}\right] \quad \mathrm{x} \hookrightarrow \mathbf{x}^{R} \\
& =\sum_{\mathbf{X}: P_{\mathbf{X}}^{0} \approx \mu^{R}} \mathbb{P}_{\sigma}\left[W_{\mathbf{X}, \sigma} \approx W_{\mathbf{z}^{R}}\right] \\
& \approx \sum_{\mathbf{X}: P_{\mathbf{X}}^{0} \approx \mu^{R}} \prod_{i \in[r]} \exp \left[-n \mathrm{I}\left(\mathbf{z}^{R}(e) ; \mathbf{z}^{R}\left(s_{i}\right)\right)\right] \\
& \approx \exp \left(n \mathrm{H}\left(\mu^{R}\right)\right) \times \prod_{i \in[r]} \exp \left[-n \mathrm{I}\left(\mathbf{z}^{R}(e) ; \mathbf{z}^{R}\left(s_{i}\right)\right)\right] \\
& \Rightarrow f(\mu) \leq \mathrm{H}\left(\mathbf{z}^{R}(e)\right)-\sum_{i \in[r]} \mathrm{I}\left(\mathbf{z}^{R}(e) ; \mathbf{z}^{R}\left(s_{i}\right)\right) . \text { Taking the inf over } R \text { gives upper bound. }
\end{aligned}
$$

3. Relative f-invariant

Based on:

C. Shriver. "The Relative f-Invariant and Non-Uniform Random Sofic Approximations." Mar. 2, 2020. arXiv: 2003.00663 [math].

Conditional entropy

- Given two coupled random variables \mathbf{x}, \mathbf{y}, the conditionall Shannon entropy is

$$
\mathrm{H}(\mathbf{x} \mid \mathbf{y})=\mathrm{H}(\mathbf{x}, \mathbf{y})-\mathrm{H}(\mathbf{y}) .
$$

- We can define a relative f-invariant:
- suppose we have two finite alphabets A, B and shift-invariant $\mu_{\mathrm{A}} \in \operatorname{Prob}\left(\mathrm{A}^{\mathbb{F}_{r}}\right), \mu_{\mathrm{B}} \in \operatorname{Prob}\left(\mathrm{B}^{\mathbb{F}_{r}}\right)$.
- suppose $\mu \in \operatorname{Prob}\left((\mathrm{A} \times \mathrm{B})^{\mathbb{F}_{r}}\right)$ is a joining of $\mu_{\mathrm{A}}, \mu_{\mathrm{B}}$. Then

$$
f(\mu \mid \mathrm{B})=f(\mu)-f\left(\mu_{\mathrm{B}}\right) .
$$

Relative f-invariant via good models

$$
\begin{aligned}
& \text { Theorem } \\
& \text { [S '20] }
\end{aligned} f(\mu \mid \mathrm{B})=\inf _{R, \varepsilon} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}_{\sigma \sim \mathrm{SBM}_{n}}\left[\#\left\{\mathbf{x} \in \mathrm{~A}^{n}:\left\|P_{\left(\mathbf{x}, \mathbf{y}_{n}\right)}^{\sigma, R}-\mu^{R}\right\|_{\mathrm{TV}}<\varepsilon\right\}\right]
$$

new objects: $\quad \mathrm{SBM}_{n}$ is a type of stochastic block model with a planted partition \mathbf{y}_{n}

- SBM_{n} will be such that \mathbf{y}_{n} is a good model for μ_{B}
- we're counting the expected number of good models for μ_{A} which extend \mathbf{y}_{n} to μ, a particular joining of $\mu_{\mathrm{A}}, \mu_{\mathrm{B}}$

Permutation stochastic block models

Given $\tau=\left(\tau_{1}, \ldots, \tau_{r}\right) \in \operatorname{Sym}(n)^{r}, \mathbf{y} \in \mathrm{~B}^{n}$, and $k \in \mathbb{N}$ let

$$
\begin{aligned}
& \text { Theorem } \\
& \text { [S '20] }
\end{aligned} f(\mu \mid \mathrm{B})=\inf _{R, \varepsilon} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}_{\sigma \sim \mathrm{SBM}_{n}}\left[\#\left\{\mathbf{x} \in \mathrm{~A}^{n}:\left\|P_{\left(\mathbf{x}, \mathbf{y}_{n}\right)}^{\sigma, R}-\mu^{R}\right\|_{\mathrm{TV}}<\varepsilon\right\}\right]
$$

What parameters work?

- pick $m_{n}=o(\log \log n)$
- pick $\mathbf{y}_{n} \in \mathrm{~B}^{n}$ with $P_{\mathbf{y}_{n}}^{0} \approx \mu_{\mathrm{B}}^{0} \quad$ (individual letter frequencies are correct)
- pick τ_{n} so that $W_{\mathbf{y}_{n}^{m_{n}}, \tau_{n}} \approx W_{\mathbf{z}_{\mathrm{B}} m_{n}}$ (here $\mathbf{z}_{\mathrm{B}} \sim \mu_{\mathrm{B}}$; the radius- m_{n} weight of \mathbf{y}_{n} is correct)
- let $\operatorname{SBM}_{n}=\operatorname{SBM}\left(\tau_{n}, \mathbf{y}_{n}, m_{n}\right)$.

For \approx 's, precise estimates are needed, but best choices always work.

Good models over an SBM

- What is

$$
\inf _{R, \varepsilon} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}_{\sigma \sim S B M_{n}}\left|\Omega\left(\sigma, \mu_{\mathrm{A}}, R, \varepsilon\right)\right| ?
$$

- Let $\mathbf{y}_{n} \in \mathrm{~B}^{n}$ be the planted good model for μ_{B} from SBM_{n}.
- If \mathbf{x} is any good model for μ_{A} then $\left(\mathbf{x}, \mathbf{y}_{n}\right)$ is a good model for some joining of $\mu_{\mathrm{A}}, \mu_{\mathrm{B}}$ - maybe not μ.

Good models over an SBM

- Let $\mathscr{J}\left(\mu_{\mathrm{A}}, \mu_{\mathrm{B}}\right) \subset \operatorname{Prob}\left((\mathrm{A} \times \mathrm{B})^{\mathbb{F}_{r}}\right)$ denote the set of joinings of $\mu_{\mathrm{A}}, \mu_{\mathrm{B}}$

$$
\inf _{R, \varepsilon} \lim \sup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}_{\sigma \sim \mathrm{SBM}_{n}}\left|\Omega\left(\sigma, \mu_{\mathrm{A}}, R, \varepsilon\right)\right|=\sup _{\lambda \in \mathcal{F}\left(\mu_{\mathrm{A}}, \mu_{\mathrm{B}}\right)} f(\lambda \mid \mathrm{B})
$$

- Write LHS as $\mathrm{h}_{\boldsymbol{\Sigma}}\left(\mu_{\mathrm{A}}\right)$, with $\boldsymbol{\Sigma}=\left(\mathrm{SBM}_{n}\right)_{n=1}^{\infty}$ a random sofic approximation.

Summary and future work

- We have formulas for entropy over two types of random sofic approximations:
- uniform $\rightarrow f$-invariant
- stochastic block model \rightarrow optimum over relative f-invariants
- Different entropy values for nonrandom sofic approximations?
- "degenerate" case of no good models is known to occur
- SBM's can avoid degeneracy by ensuring the existence of some good models.
- need to understand optimization better. Some progress for when $\mu_{\mathrm{A}}, \mu_{\mathrm{B}}$ are Gibbs measures for a nearest-neighbor interaction (like Ising).

