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Sofic entropy and 
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1. Entropy on integer lattices 

2. Entropy on free groups 

3. Relative -invariantf



1. Entropy on integer lattices



Setup

•  integer lattice w/ origin 


•  = finite set, “alphabet”


• ex. 


•  is a microstate 

•  is a state


• We’ll assume  shift-invariant i.e.  is a measure-preserving 
system
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Entropy rate

• The state of a system is specified by . 
How random is ?


• The Kolmogorov-Sinai entropy rate is defined by


.

μ ∈ Prob(𝙰ℤd)
μ

hKS(μ) = lim
r→∞

1
|B(0,r) |

H(μr)
Shannon entropy

marginal on B(0,r)



Lemma 1
Shannon entropy and counting

Suppose .


Then the number of  with

        for all 


is about

.


Rearranged, and more precisely:


p ∈ Prob(𝙰)

x ∈ 𝙰n

P0
x({𝚊}) = 1

n |{i ∈ [n] : x(i) = 𝚊} | ≈ p({𝚊}) 𝚊 ∈ 𝙰

exp[n H(p)]

H(p) = lim
ε↓0

lim sup
n→∞

1
n

log |{x ∈ 𝙰n : ∥P0
x − p∥TV < ε} |
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Entropy rate via counting

 


The KS entropy can be expressed in a similar form:





where

 is a “microstate on a finite subsystem”

 is a “radius-  empirical distribution” to be defined.


• This is a special case of the fact that (sofic entropy) = (KS entropy) for amenable 
groups, proven by Bowen [2010]

H(p) = lim
ε↓0

lim sup
n→∞

1
n

log |{x ∈ 𝙰n : ∥P0
x − p∥TV < ε} |

hKS(μ) = inf
r,ε

lim sup
n→∞

1
|B(0,n) |

log |{x ∈ 𝙰B(0,n) : ∥Pr
x − μr∥TV < ε} |

x
Pr

x r



Local statistics of microstates

Let  be a large rectangle.

Given a microstate  and a radius , the depth-  neighborhood 
labeling  is the element of given by


.

K ⋐ ℤd

x ∈ 𝙰K r ∈ ℕ r
xr (𝙰B(0,r))K

xr(v) ⋅= (x(v + w))w∈B(0,r)

−
+ +
+

+

𝙰 = { + , − }
B(0,1) ⊂ ℤd

K ⊂ ℤd



Local statistics of microstates

Let  be a large rectangle.

Given a microstate  and a radius , the depth-  neighborhood 
labeling  is the element of given by


.

K ⋐ ℤd

x ∈ 𝙰K r ∈ ℕ r
xr (𝙰B(0,r))K

xr(v) ⋅= (x(v + w))w∈B(0,r)

−
+ ??
−

+

𝙰 = { + , − }
B(0,1) ⊂ ℤd

K ⊂ ℤd



Empirical distribution and good models

• The radius-  empirical distribution of  is defined byr x ∈ 𝙰K

.Pr
x = P0

xr ∈ Prob(𝙰B(0,r))



Empirical distribution and good models

• The radius-  empirical distribution of  is defined byr x ∈ 𝙰K

.Pr
x = P0

xr ∈ Prob(𝙰B(0,r))
• Say  is an -good model for  ifx (r, ε) μ ∈ Prob(𝙰ℤd)

.∥Pr
x − μr∥ < ε

•  is the set of such .Ω(K, μ, r, ε) x ∈ 𝙰K



Summary
and some terminology

With  a (Følner) sequence of boxes which exhausts , we have





 is a sofic approximation to  because


1. we have approximately free approximate actions of  on 


2.  locally look like 

Σ = (Kn)∞
n=1 ℤd

hΣ(μ) = inf
r,ε

lim sup
n→∞

1
n

log |Ω(Kn, μ, r, ε) | = hKS(μ)

Σ ℤd

ℤd Kn

Kn ℤd



2. Entropy for free-group 
actions
Based on:
Lewis Bowen. “The Ergodic Theory of Free Group Actions: Entropy and the f-Invariant.” Groups, 
Geometry, and Dynamics (2010), pp. 419-432.



Free group setup

 = rank-  free group with identity 


Let  be a -valued r.v. with shift-invariant law . The -invariant of  is defined 
by


.


where  &  is a -valued r.v. with law 


Is there a “counting good models” formula for ?

𝔽r = ⟨s1, …, sr⟩ r e

z 𝙰𝔽r μ f μ

f(μ) = inf
R (H(zR(e)) −

r

∑
i=1

I(zR(e); zR(si)))
I(x; y) = H(x) + H(y) − H(x, y) zR (𝙰B(e,R))𝔽r μR

f(μ)



Microstates for free groups

• For  we can’t make sense of the empirical distribution because 
most sites are close to the edge.


• A large finite subgraph doesn’t locally look like 

x ∈ 𝙰B(e,R)

𝔽2

ℤ2 𝔽2

vs.



Partial fix

• A random regular graph  
“locally looks like ” in that:


For any , the fraction of 
vertices  with 

 
converges in prob. to 1 as 
size of .


• But how do we make sense 
of  and ?

G
𝔽r

R
v ∈ G

BG(v, R) ≅ BΓ(e, R)

G → ∞

xR PR
x
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Partial fix

• A random regular graph  
“locally looks like ” in that:


For any , the fraction of 
vertices  with 

 
converges in prob. to 1 as 
size of .


• But how do we make sense 
of  and ?

G
𝔽r

R
v ∈ G

BG(v, R) ≅ BΓ(e, R)

G → ∞

xR PR
x

−
++
+

+

v

no canonical 
choice!



Extra graph data

Edges of a Cayley graph naturally come directed and labeled by generators.


infinite systems

e s1s−1
1

s2
1

s2s1

s2

s−1
2 s1



finite systems
Extra graph data
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finite systems

• Write -regular  as union of  
permutations, and label edges

2r G r

• Now whenever  
there is exactly one isomorphism which 
respects edge labels and directions, 
which gives a canonical defn. of 

BΓ(e, R) ≅ BG(v, R)

xR

Extra graph data



• Pick a random regular graph 
with vertex set  
by picking  permutations 

 uniformly at random.


• Write . Can be 
thought of as a random 
homomorphism 


• Let  be the law of  (  is 
implicit)

[n] = {1,…, n}
r

σ1, …, σr

σ = (σ1, …, σr)

𝔽r → Sym(n)

ζn σ r

Permutation model



The -invariant via counting good modelsf

f(μ) = inf
R,ε

lim sup
n→∞

1
n log 𝔼σ∼ζn

|Ω(σ, μ, R, ε) |Theorem
[Bowen ’10] 

In other words





where  is a random sofic approximation.


f(μ) = hΣ(μ)

Σ = (ζn)∞
n=1



Idea of proof
first attempt

• Want to estimate ,  
i.e. the number of  with .

|Ω(σ, μ, R, ε) |
x ∈ 𝙰n ∥Pσ,R

x − μR∥TV < ε

• For any such , by definition  satisfies x xR ∈ (𝙰B(e,R))n ∥Pσ,0
xR − μR∥TV < ε
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Idea of proof
first attempt

• Want to estimate ,  
i.e. the number of  with .

|Ω(σ, μ, R, ε) |
x ∈ 𝙰n ∥Pσ,R

x − μR∥TV < ε

• For any such , by definition  satisfies x xR ∈ (𝙰B(e,R))n ∥Pσ,0
xR − μR∥TV < ε

• By Lemma 1, the number of  with this property is about
. So

X ∈ (𝙰B(e,R))n

exp[n H(μR)]
.inf

ε>0
lim sup

n→∞

1
n

log 𝔼σ∼ζn
|Ω(σ, μ, R, ε) | ≤ H(μR)



Idea of proof
continued – duplication of information

x1
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Idea of proof
continued – duplication of information

What if we instead require

1
n

#{j ∈ [n] :
X( j) = a

X(σi j) = a′ } ≈ μ { zR(e) = a
zR(si) = a′ }

for all ?i ∈ [r]

If we take , as a condition on  this is 
between  and .

X = xR x
Pσ,R

x ≈ μR Pσ,R+1
x ≈ μR+1

So it doesn’t affect our notion of “good model” – 
we’re still looking at “local statistics”

x1

x



Weights
recording “one-step statistics”

For ,  let  be given by


.


Note both marginals of  are equal to .

τ ∈ Sym(n) x ∈ 𝙰n Wx,τ ∈ Prob(𝙰 × 𝙰)

Wx,τ(𝚊, 𝚊′ ) =
1
n

#{j ∈ [n] :
x( j) = 𝚊
x(τj) = 𝚊′ }

Wx,τ P0
x

W( ∙ , ∙ ) = 1
5

W( ∙ , ∙ ) = 2
5

W( ∙ , ∙ ) = 0

W( ∙ , ∙ ) = 2
5

p( ∙ ) = 3
5

p( ∙ ) = 2
5

Example
𝙰 = { ∙ , ∙ }



Lemma 2
mutual information and counting

Suppose  and that  is a coupling of  with itself. 
Suppose  has .


Then the proportion of  with  is about


.

p ∈ Prob(𝙰) λ ∈ Prob(𝙰 × 𝙰) p
x ∈ 𝙰n P0

x ≈ p

τ ∈ Sym(n) Wx,τ ≈ λ

exp[ − n I(λ)]



More weights

For ,  let  be given by


.


For each , both marginals of  are equal to .

σ = (σ1, …, σr) x ∈ 𝙰n Wx,σ ∈ Prob(𝙰 × 𝙰)r

Wx,σ(𝚊, 𝚊′ ; i) =
1
n

#{j ∈ [n] :
x( j) = 𝚊

x(σi j) = 𝚊′ }
i ∈ [r] Wx,σ( ⋅ , ⋅ ; i) P0

x

W( ∙ , ∙ ; ↑ ) = 1
5

W( ∙ , ∙ ; ↑ ) = 2
5

W( ∙ , ∙ ; ↑ ) = 0

W( ∙ , ∙ ; ↑ ) = 2
5

p( ∙ ) = 3
5

p( ∙ ) = 2
5

Example
𝙰 = { ∙ , ∙ } W( ∙ , ∙ ; ↑ ) = 3

10

W( ∙ , ∙ ; ↑ ) = 3
10

W( ∙ , ∙ ; ↑ ) = 1
10

W( ∙ , ∙ ; ↑ ) = 3
10

=

=

=

=



More weights

• For  we use a slightly different notation:


• let  be given by


.


• So:


• 


• For each , both marginals of  are .

z ∼ μ ∈ Prob(𝙰𝔽r)

Wz ∈ Prob(𝙰 × 𝙰)r

Wz(𝚊, 𝚊′ ; i) = μ { z(e) = 𝚊
z(si) = 𝚊′ }

Wz( ⋅ , ⋅ ; i) = Law(z(e), z(si))
i Wz( ⋅ , ⋅ ; i) μ0

Similarly, write


WzR( ⋅ , ⋅ ; i) = Law(zR(e), zR(si))



Corollary
of Lemma 2

• Let  be such that .


• Again write .


• Then the proportion of  with  is about


.


• Proof: let  and apply Lemma 2. The key is that  are 
independent when  is chosen uniformly

X ∈ (𝙰B(e,R))n P0
X ≈ μR

z ∼ μ

τ = (τ1, …, τr) ∈ Sym(n)r WX,τ ≈ WzR

∏
i∈[r]

exp[ − n I(zR(e); zR(si))]

λi = WzR( ⋅ , ⋅ ; i) τ1, …, τr
τ



Idea of proof
upper bound sketch




• 


• 


• 


 . Taking the inf over  gives upper bound.

𝔼σ [#{x ∈ 𝙰n : WxR,σ ≈ WzR}] ≤ 𝔼σ [#{X ∈ (𝙰B(e,R))n : WX,σ ≈ WzR}]
= ∑

X: P0
X≈μR

ℙσ [WX,σ ≈ WzR]

≈ ∑
X: P0

X≈μR
∏
i∈[r]

exp[ − n I(zR(e); zR(si))]

≈ exp(n H(μR)) × ∏
i∈[r]

exp[ − n I(zR(e); zR(si))]

⇒ f(μ) ≤ H(zR(e)) − ∑
i∈[r]

I(zR(e); zR(si)) R

linearity of expectation

Corollary

Lemma 1

x ↪ xR



3. Relative -invariantf
Based on:
C. Shriver. “The Relative f-Invariant and Non-Uniform Random Sofic Approximations.” Mar. 2, 
2020. arXiv: 2003.00663 [math].



Conditional entropy

• Given two coupled random variables , the conditional Shannon entropy is


.


• We can define a relative -invariant:


• suppose we have two finite alphabets  and shift-invariant 
.


• suppose  is a joining of . Then


.

x, y

H(x ∣ y) = H(x, y) − H(y)

f
𝙰, 𝙱

μ𝙰 ∈ Prob(𝙰𝔽r), μ𝙱 ∈ Prob(𝙱𝔽r)
μ ∈ Prob((𝙰 × 𝙱)𝔽r) μ𝙰, μ𝙱

f(μ ∣ 𝙱) = f(μ) − f(μ𝙱)



Relative -invariant via good modelsf

Theorem 
[S ’20]

f(μ ∣ 𝙱) = inf
R,ε

lim sup
n→∞

1
n log 𝔼σ∼𝚂𝙱𝙼n [#{x ∈ 𝙰n : ∥Pσ,R

(x,yn)
− μR∥TV < ε}]

 is a type of stochastic block model with a planted partition  
This encodes the ‘already known’ information from 

𝚂𝙱𝙼n yn
𝙱

new objects:

•  will be such that  is a good model for 


• we’re counting the expected number of good models for  which extend  
to , a particular joining of 

𝚂𝙱𝙼n yn μ𝙱

μ𝙰 yn
μ μ𝙰, μ𝙱



Permutation stochastic block models

Given , , and  let


.

τ = (τ1, …, τr) ∈ Sym(n)r y ∈ 𝙱n k ∈ ℕ

𝚂𝙱𝙼(τ, y, k) = Unif {σ ∈ Sym(n)r : Wyk,σ = Wyk,τ ∀i}

k = 0 standard SBM

k > 0 more precise local statistics

planted partition 
of [n]

used to specify 
local statistics

depends on 
all of  or σ τ



What parameters work?

• pick  

• pick  with                        (individual letter frequencies are correct)


• pick  so that   (here ; the radius-  weight of  is correct)

• let .


For ’s, precise estimates are needed, but best choices always work.

mn = o(log log n)
yn ∈ 𝙱n P0

yn
≈ μ0

𝙱
τn Wymn

n , τn
≈ Wzmn

𝙱
z𝙱 ∼ μ𝙱 mn yn

𝚂𝙱𝙼n = 𝚂𝙱𝙼(τn, yn, mn)

≈

Theorem 
[S ’20]

f(μ ∣ 𝙱) = inf
R,ε

lim sup
n→∞

1
n log 𝔼σ∼𝚂𝙱𝙼n [#{x ∈ 𝙰n : ∥Pσ,R

(x,yn)
− μR∥TV < ε}]



Good models over an SBM

• What is

?


• Let  be the planted good model for  from .


• If  is any good model for  then  is a good model for some joining 
of  – maybe not .

inf
R,ε

lim sup
n→∞

1
n log 𝔼σ∼𝚂𝙱𝙼n

|Ω(σ, μ𝙰, R, ε) |

yn ∈ 𝙱n μ𝙱 𝚂𝙱𝙼n

x μ𝙰 (x, yn)
μ𝙰, μ𝙱 μ



Good models over an SBM

• Let  denote the set of joinings of 


• Write LHS as , with  a random sofic approximation.

𝒥(μ𝙰, μ𝙱) ⊂ Prob((𝙰 × 𝙱)𝔽r) μ𝙰, μ𝙱

hΣ(μ𝙰) Σ = (𝚂𝙱𝙼n)∞
n=1

Theorem 
[S ’20]

inf
R,ε

lim sup
n→∞

1
n log 𝔼σ∼𝚂𝙱𝙼n

|Ω(σ, μ𝙰, R, ε) | = sup
λ∈𝒥(μ𝙰,μ𝙱)

f(λ ∣ 𝙱)



Summary and future work

• We have formulas for entropy over two types of random sofic approximations:


• uniform  -invariant


• stochastic block model  optimum over relative -invariants


• Different entropy values for nonrandom sofic approximations?


• “degenerate” case of no good models is known to occur


• SBM's can avoid degeneracy by ensuring the existence of some good models.


• need to understand optimization better. Some progress for when  are Gibbs 
measures for a nearest-neighbor interaction (like Ising).

→ f

→ f

μ𝙰, μ𝙱


