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Background: PSL2(R) acting on H

I PSL2(R) acts on H, the upper half-plane, by Möbius
transformations.

I There is a natural simply transitive action of PSL2(R) on
T1(H): for (z, v) ∈ T1(H), g ∈ PSL2(R),

g · (z, v) =
(
az + b

cz + d
,

v

(cz + d)2

)
.

I This lets us identify PSL2(R) ∼= T1(H).



Acting on the Hyperbolic surface

The geodesic flow is implemented by the diagonal subgroup

as =
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The horocycle subgroup
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Acting on the Hyperbolic surface

I Let Γ be a lattice (finite covolume discrete subgroup) in
G = PSL2(R), such as PSL2(Z).

I The unit tangent bundle T1(H/Γ) of H/Γ may be identified
with the homogeneous space G/Γ. G acts on G/Γ by left
multiplication

Figure: Fundamental domain of PSL2(Z) (Anastasios Taliotis)



Equidistribution in finite volume

Theorem (Dani and Smillie, 1984)
Let Γ be a lattice in G = PSL2(R). For every x ∈ G/Γ, we have
one of the following:
I Ux is periodic.
I For any f ∈ Cc(G/Γ),

lim
T→∞

1
T

∫ T

0
f(utx)dt = m(f) :=

∫
G/Γ

fdm

where m denotes the normalized Haar measure on G/Γ.

However, this theorem does not tell us the rate of
equidistribution – it is not effective.



Equidistribution in finite volume

Figure: An orbit in direction v (Sullivan)



Effective Versions

I There are many effective generalizations, e.g.:

Theorem (McAdam, ’18 (roughly stated))
For any x ∈ X := SLn(R)/ SLn(Z), there exist constants
γ,C > 0 such that for all f ∈ C∞c (X) and T > C,∣∣∣∣∣ 1

m(BU (T ))

∫
BU (T )

f(ux)dm(u)−m(f)
∣∣∣∣∣�f T

−γ ,

unless there is an explicit algebraic obstruction.

I Here, BU (T ) denotes the ball of radius T in U .



Additional results

Equidistribution results:
I Dani (1982): G = SL2(R), Γ = SL2(Z), and U is

horospherical.
I Ratner (1991): G a Lie group, Γ ⊆ G a lattice, and U is

generated by one parameter unipotent subgroups.
Effective equidistribution results (U is horospherical):
I Sarnak (1981): G = PSL2(R) and Γ a lattice, closed orbits.
I Burger (1990): G = PSL2(R) and Γ cocompact.
I Strömbergsson (2013): G = PSL2(R) and Γ

non-cocompact.
I Sarnak, Ubis (2015): G = SL2(R) and Γ = SL2(Z).
I Katz (2019): G semisimple linear group without compact

factors and Γ a lattice



Acting on a Hyperbolic manifold

I For n ≥ 2, let G be the identity component of the special
orthogonal group SO(n, 1).

I G can be considered as the group of orientation preserving
isometries of n-upper half-space Hn.

I Let U denote the horospherical subgroup

U = {g ∈ G : a−sgas → e as s→ +∞}

=
{
ut : t ∈ Rn−1

}
.

I Let Γ be a discrete subgroup of G (not necessarily a
lattice).

I Any complete hyperbolic (constant negative curvature)
n-manifold can be presented as Hn/Γ, and G/Γ is the
space of positively oriented frames on Hn/Γ.



The convex core

I The limit set of Γ, Λ = Λ(Γ) ⊂ ∂Hn, is the set of
accumulation points of Γo for some o ∈ Hn.
I When Γ is not a lattice, Λ is a fractal set.

I When it is a lattice, Λ = ∂(Hn).

I The convex core of Hn/Γ is the convex submanifold given
by

hull(Λ)/Γ = hull Λ ⊂ Hn/Γ,

where hull(Λ) is the smallest convex subset containing all
geodesics connecting two points in Λ.



The convex hull in the Poincaré disc model



A limit set example

Figure: Limit set (McMullen, Mohammadi, Oh)



Convex cocompact and geometrically finite

I Γ is called geometrically finite (GF) if the unit
neighborhood of the convex core has finite volume.

I May be thought of as Hn/Γ having a finite-sided
fundamental domain. Examples include quasifuchsian
groups, or cutting a compact n-manifold along a totally
geodesic hyperplane.

I Γ is called convex cocompact if the convex core is compact.

I In this case, there are no cusps.

I Schottky groups without parabolic elements are examples
(finitely generated by hyperbolic elements satisfying certain
conditions, “ping pong” construction), with the convex core
being a handle body in this case.



Equidistribution in Infinite Volume

Theorem (Hopf ratio ergodic thm, Hopf, 1937, Hochman,
2010)
Let µ be a locally finite U -invariant ergodic measure on G/Γ.
Let f1, f2 ∈ L1(G/Γ) such that µ(f2) 6= 0. Then, for µ-a.e. x

lim
T→∞

∫ T
−T f1(ux)dt∫ T
−T f2(ux)dt

= µ(f1)
µ(f2) .

When the Haar measure is infinite, it follows that for a.e. x,

lim
T→∞

1
T

∫ T

0
f(utx)dt = 0.

The time an orbit spends in any compact set is sub-linear.
“There is not enough recurrence.”



Equidistribution in Infinite Volume



Equidistribution in Infinite Volume

I The correct normalization will be given by the
Patterson-Sullivan measure, and the limit will be given by
the Burger-Roblin (BR) measure, which is a natural,
geometrically defined measure.

I If x− ∈ Λ(Γ), the PS measure governs the return times of
utx to the convex core.

I When Γ is a lattice and n = 2, the Haar measure is the
only U -ergodic measure not supported on a closed U orbit.

I If Γ is geometrically finite, the BR measure is the natural
analogue of the Haar measure.



Our Equidistribution Theorem

Theorem (Tamam and W.)
Let Γ ⊆ G be a convex cocompact subgroup of G and let
Ω ⊂ G/Γ be a compact set. There exists κ = κ(Γ) > 0 such that
for any x ∈ Ω such that x− ∈ Λ(Γ), ψ ∈ C∞c (G/Γ), and
r > r0(x, suppψ) > 0,∣∣∣∣∣ 1

µPS
x (BU (r))

∫
BU (r)

ψ(utx)dt−mBR(ψ)
∣∣∣∣∣� r−κ,

where the implied constant depends on Γ,Ω, and ψ.

Remark
I The dependence of r0 on x and suppψ is explicit.
I We also prove this theorem for Γ geometrically finite, but

additional assumptions are necessary.



Prior results in infinite volume

Equidistribution:
I Schapira (2005): G = PSL2(R) and Γ is geometrically

finite.

I Mohammadi and Oh (2010): G = SO(n, 1)◦ and Γ is
geometrically finite.

Effective equidistribution:
I Edwards (2019): G = PSL2(R) and Γ is geometrically

finite.



Application: Γ orbits on Rn+1

I Γ acts on V := Rn+1 \ {0} by matrix multiplication.

Proposition (Tamam-W.)
Let Γ be convex cocompact. For any ϕ ∈ Cc(V ) and every v ∈ V
with “v− ∈ Λ(Γ),” as T →∞, we have that

1
T δΓ/2

∑
γ∈Γ,‖γ‖≤T

ϕ(vγ) �
∫
V
ϕ(u) dν(u)

(‖v‖‖u‖)δΓ/2
.

I δΓ is the Hausdorff dimension of Λ(Γ).
I ν is the pushforward of a measure that appears in the

product structure of mBR.
I We also prove a quantitative ratio theorem, and allow for

geometrically finite Γ.



History: Γ orbits on Rn+1

I Ledrappier (1999): Proved a similar ergodic theorem for
lattices in PSL2(R) acting on R2.

I Maucourant and Weiss (2012): A quantitative version of
Ledrappier’s theorem.

I Maucourant and Schapira (2014): proved an asymptotic
version for convex cocompact Γ in SL2(R).
I Showed there cannot be convergence of the same form as in

Maucourant-Weiss.

I Proved convergence with an additional averaging.
I Many additional works studying the finite volume setting

in broad generality, e.g. works by Gorodnik-Weiss,
Gorodnik-Nevo, Nogueira, and more.



The PS and BR measures

I A Γ-invariant conformal density of dimension δ is a family
of finite measures {µx : x ∈ Hn} on ∂(Hn) such that

γ∗µx = µγx and dµx
dµy

(ξ) = e−δβξ(x,y).

I The Patterson-Sullivan density, denoted {νx : x ∈ Hn}, is a
Γ-invariant conformal density with dimension equal to the
Hausdorff dimension of Λ. It is unique up to scaling.

I We can use a weighted stereographic projection to define
the PS measure on a horosphere from this conformal
density. This will give an infinite measure.



A limit set example revisited

Figure: Limit set (McMullen, Mohammadi, Oh)



Hopf Parametrization

T1(H2) is homeomorphic to

(∂(H2)× ∂(H2)− {(ξ, ξ) : ξ ∈ ∂(H2)})× R

via g 7→ (g+, g−, s = βg+(o, π(g))), for fixed o ∈ H2.
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The PS and BR measures

I In the convex cocompact case, for x± ∈ Λ(Γ),

µPS
x (BU (T )) � T δΓ .

I When there are cusps, there is an additional term scaling
by the distance into the cusp.

I The BR measure is defined geometrically using weighted
stereographic projection from the PS density and the
Lebesgue measure on ∂(Hn) (with a product structure).

I The support is {gΓ ∈ G/Γ : g− ∈ Λ(Γ)}.



Theorem revisited

Theorem (Tamam and W.)
Let Γ ⊆ G be a convex cocompact subgroup of G and let
Ω ⊂ G/Γ be a compact set. There exists κ = κ(Γ) > 0 such that
for any x ∈ Ω such that x− ∈ Λ(Γ), ψ ∈ C∞c (G/Γ), and
r > r0(x, suppψ) > 0,∣∣∣∣∣ 1

µPS
x (BU (r))

∫
BU (r)

ψ(utx)dt−mBR(ψ)
∣∣∣∣∣� r−κ,

where the implied constant depends on Γ,Ω, and ψ.



Main ingredients in the proof: Exponential mixing

I The BMS measure is a finite measure that is closely related
to the BR measure.

I It is supported on the convex core of Γ.
I Our theorem requires exponential mixing of the A action

for mBMS:

Assumption (Exponential Mixing)
There exist κ = κ(Γ) > 0 and s0 = s0(Γ) such that for s > s0
and ψ, f ∈ C∞c (G/Γ),∣∣∣∣∣
∫
G/Γ

ψ (asx) f (x) dmBMS (x)−mBMS (ψ)mBMS (f)
∣∣∣∣∣� e−κs,

where the implied constant depends only on f, ψ, and Γ.



Main ingredients in the proof: Exponential mixing

I For Γ convex co-compact, the exponential mixing was
proved by Winter in 2016, building on work of Stoyanov
and Dolgopyat. (See also Sarkar-Winter (2020).)

I For Γ GF such that L2(G/Γ) has a spectral gap,
exponential mixing was proved by Mohammadi and Oh in
2015.

I When the critical exponent of Γ, δΓ > n− 2, there is such a
spectral gap.

I When there is a cusp of rank n− 1, δΓ >
n−1

2 . In
particular, for n = 2, 3, there is a spectral gap.

I It is conjectured to be true for all n.



Main ingredients in the proof: quantitative
nondivergence

I For Γ GF, we consider ε-Diophantine points x ∈ G/Γ.
I “x does not travel into the cusps too quickly”, a necessary

assumption.

Theorem (Tamam-W.)
There exists β > 0 satisfying the following: for any
ε-Diophantine element x ∈ X, there exists T0 = T0(x) > 0 such
that for every R ≥ 0, T > T0, s ≤ T ε, and x0 = a− log sx, we
have

µPS
x0 (BU (T/s)x0 ∩ CR)
µPS
x0 (BU (T/s)x0) − 1� e−βR,

where the implied constant depends on Γ.

I Here, CR is an explicit compact set arising from the
thick-thin decomposition of the convex core.



Main ingredients in the proof: “Friendliness”

I A key difficulty in higher dimensions is understanding the
PS measure.

I In particular, can a large portion of the measure of a ball
be concentrated near its boundary?

I Das, Fishman, Simmons, and Urbański proved in 2015 that
the PS density is “friendly” if Γ is GF and all cusps have
rank n− 1. Using this, we proved that for such Γ:

Proposition
There exists α = α(Γ) > 0 such that for any x ∈ G/Γ with
x+ ∈ Λ(Γ), 0 < ξ < η,

µPS
x (BU (ξ + η))
µPS
x (BU (η)) − 1�Γ

(
ξ

η

)α
.



Proof of the theorem

Using the exponential mixing, the relation between the
measures, and “Margulis’ thickening trick” one can show:

Theorem (Tamam-W.)
There exist κ = κ(Γ) and s0 = s0(Γ) which satisfy the following.
Let Ω ⊆ G be a compact set, 0 < r < 1 be smaller than the
injectivity radius of Ω, ψ ∈ C∞c (G/Γ), and f ∈ C∞c (BU (r)).
Then, for any x ∈ Ω, x ∈ supp(mBMS), and s > s0 we have∣∣∣∣∫

U
ψ(asutx)f(t)dµPS

Ux(t)− µPS
Ux(f)mBMS(ψ)

∣∣∣∣� e−κs,

where the implied constant depends on f, ψ and Γ.



Proof of the theorem

Using the previous theorem and the relation between the
measures one can show:

Theorem (Tamam-W.)
There exist κ = κ(Γ) and s0 = s0(Γ) which satisfy the following.
Let Ω ⊆ G be a compact set, 0 < r < 1 be smaller than the
injectivity radius of Ω, ψ ∈ Cc(G/Γ), and f ∈ C∞c (BU (r)).
Then, for any x ∈ Ω, x ∈ supp(mBMS), and s > s0 we have∣∣∣∣∣e(n−1−δΓ)s

∫
BU (r)

ψ(asutx)f(t)dt− µPS
x (f)mBR(ψ)

∣∣∣∣∣� e−κs.

where the implied constant depends on ψ, f , and Γ.



Proof of the theorem

For
s0 := ε

2 log T, x0 := a−s0x, and T0 = T 1− ε2

we have

1
µPS
x (BU (T ))

∫
BU (T )

ψ(utx)dt = e(n−1−δ)s0

µPS
x0 (BU (T0))

∫
BU (T0)

ψ(as0utx0)dt

and
µPS
x0 (BU (T0)x0 ∩ CcR)� µPS

x0 (BU (T0)x0)e−βR.

By decomposing

BU (T0) = (BU (T0) ∩ CR) ∩ (BU (T0) ∩ CcR),

we can get a bound on BU (T0) ∩ CcR and use the nondivergence
statement on BU (T0) ∩ CR to get the estimate we want.



Thank You
for Your Attention!


