Effective Equidistribution of Horospherical Flows in Infinite Volume

Jacqueline Warren, joint work with Nattalie Tamam

Background: $PSL_2(\mathbb{R})$ acting on \mathbb{H}

▶ PSL₂(ℝ) acts on 𝔄, the upper half-plane, by Möbius transformations.

► There is a natural simply transitive action of $PSL_2(\mathbb{R})$ on $T^1(\mathbb{H})$: for $(z, v) \in T^1(\mathbb{H}), g \in PSL_2(\mathbb{R}),$

$$g\cdot(z,v)=\left(\frac{az+b}{cz+d},\frac{v}{(cz+d)^2}\right).$$

• This lets us identify $PSL_2(\mathbb{R}) \cong T^1(\mathbb{H})$.

$$a_s = \begin{pmatrix} e^{s/2} & 0\\ 0 & e^{-s/2} \end{pmatrix}.$$

$$a_s = \begin{pmatrix} e^{s/2} & 0\\ 0 & e^{-s/2} \end{pmatrix}.$$

$$a_s = \begin{pmatrix} e^{s/2} & 0\\ 0 & e^{-s/2} \end{pmatrix}.$$

$$a_s = \begin{pmatrix} e^{s/2} & 0\\ 0 & e^{-s/2} \end{pmatrix}.$$

$$U = \{g \in G : a_{-s}ga_s \to e \text{ as } s \to +\infty\}$$
$$= \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} : t \in \mathbb{R} \right\}.$$
$$\downarrow_{v}$$

$$U = \{g \in G : a_{-s}ga_s \to e \text{ as } s \to +\infty\}$$
$$= \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} : t \in \mathbb{R} \right\}.$$

- Let Γ be a lattice (finite covolume discrete subgroup) in $G = \text{PSL}_2(\mathbb{R})$, such as $\text{PSL}_2(\mathbb{Z})$.
- ► The unit tangent bundle $T^1(\mathbb{H}/\Gamma)$ of \mathbb{H}/Γ may be identified with the homogeneous space G/Γ . G acts on G/Γ by left multiplication

Figure: Fundamental domain of $PSL_2(\mathbb{Z})$ (Anastasios Taliotis)

Equidistribution in finite volume

Theorem (Dani and Smillie, 1984)

Let Γ be a lattice in $G = \text{PSL}_2(\mathbb{R})$. For every $x \in G/\Gamma$, we have one of the following:

• For any $f \in C_c(G/\Gamma)$,

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(u_t x) dt = m(f) := \int_{G/\Gamma} f dm$$

where m denotes the normalized Haar measure on G/Γ .

However, this theorem does not tell us the rate of equidistribution – it is not *effective*.

Equidistribution in finite volume

Figure: An orbit in direction v (Sullivan)

Effective Versions

▶ There are many effective generalizations, e.g.:

Theorem (McAdam, '18 (roughly stated))

For any $x \in X := \operatorname{SL}_n(\mathbb{R}) / \operatorname{SL}_n(\mathbb{Z})$, there exist constants $\gamma, C > 0$ such that for all $f \in C_c^{\infty}(X)$ and T > C,

$$\left|\frac{1}{m(B_U(T))}\int_{B_U(T)}f(ux)dm(u)-m(f)\right|\ll_f T^{-\gamma},$$

unless there is an explicit algebraic obstruction.

• Here, $B_U(T)$ denotes the ball of radius T in U.

Additional results

Equidistribution results:

- ► Dani (1982): $G = SL_2(\mathbb{R}), \Gamma = SL_2(\mathbb{Z}), \text{ and } U$ is horospherical.
- ► Ratner (1991): G a Lie group, $\Gamma \subseteq G$ a lattice, and U is generated by one parameter unipotent subgroups.

Effective equidistribution results (U is horospherical):

- ► Sarnak (1981): $G = PSL_2(\mathbb{R})$ and Γ a lattice, closed orbits.
- Burger (1990): $G = PSL_2(\mathbb{R})$ and Γ cocompact.
- Strömbergsson (2013): $G = PSL_2(\mathbb{R})$ and Γ non-cocompact.
- ► Sarnak, Ubis (2015): $G = SL_2(\mathbb{R})$ and $\Gamma = SL_2(\mathbb{Z})$.
- ► Katz (2019): G semisimple linear group without compact factors and Γ a lattice

Acting on a Hyperbolic manifold

- For $n \ge 2$, let G be the identity component of the special orthogonal group SO(n, 1).
- G can be considered as the group of orientation preserving isometries of n-upper half-space \mathbb{H}^n .
- Let U denote the horospherical subgroup

$$U = \{g \in G : a_{-s}ga_s \to e \text{ as } s \to +\infty\}$$
$$= \{u_{\mathbf{t}} : \mathbf{t} \in \mathbb{R}^{n-1}\}.$$

- Let Γ be a discrete subgroup of G (not necessarily a lattice).
- Any complete hyperbolic (constant negative curvature) *n*-manifold can be presented as \mathbb{H}^n/Γ , and G/Γ is the space of positively oriented frames on \mathbb{H}^n/Γ .

The convex core

- The *limit set* of Γ , $\Lambda = \Lambda(\Gamma) \subset \partial \mathbb{H}^n$, is the set of accumulation points of Γo for some $o \in \mathbb{H}^n$.
 - When Γ is not a lattice, Λ is a fractal set.

• When it is a lattice, $\Lambda = \partial(\mathbb{H}^n)$.

• The convex core of \mathbb{H}^n/Γ is the convex submanifold given by

$$\operatorname{hull}(\Lambda)/\Gamma = \operatorname{hull} \Lambda \subset \mathbb{H}^n/\Gamma,$$

where $\operatorname{hull}(\Lambda)$ is the smallest convex subset containing all geodesics connecting two points in Λ .

The convex hull in the Poincaré disc model

A limit set example

Figure: Limit set (McMullen, Mohammadi, Oh)

Convex cocompact and geometrically finite

- Γ is called *geometrically finite* (GF) if the unit neighborhood of the convex core has finite volume.
- ► May be thought of as Hⁿ/Γ having a finite-sided fundamental domain. Examples include quasifuchsian groups, or cutting a compact *n*-manifold along a totally geodesic hyperplane.
- Γ is called *convex cocompact* if the convex core is compact.
- ▶ In this case, there are no cusps.
- Schottky groups without parabolic elements are examples (finitely generated by hyperbolic elements satisfying certain conditions, "ping pong" construction), with the convex core being a handle body in this case.

Equidistribution in Infinite Volume

Theorem (Hopf ratio ergodic thm, Hopf, 1937, Hochman, 2010)

Let μ be a locally finite U-invariant ergodic measure on G/Γ . Let $f_1, f_2 \in L^1(G/\Gamma)$ such that $\mu(f_2) \neq 0$. Then, for μ -a.e. x

$$\lim_{T \to \infty} \frac{\int_{-T}^{T} f_1(ux) dt}{\int_{-T}^{T} f_2(ux) dt} = \frac{\mu(f_1)}{\mu(f_2)}.$$

When the Haar measure is infinite, it follows that for a.e. x,

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(u_t x) dt = 0.$$

The time an orbit spends in any compact set is sub-linear. "There is not enough recurrence."

Equidistribution in Infinite Volume

Equidistribution in Infinite Volume

- ▶ The correct normalization will be given by the *Patterson-Sullivan* measure, and the limit will be given by the *Burger-Roblin (BR)* measure, which is a natural, geometrically defined measure.
- If x⁻ ∈ Λ(Γ), the PS measure governs the return times of utx to the convex core.
- When Γ is a lattice and n = 2, the Haar measure is the only U-ergodic measure not supported on a closed U orbit.
- If Γ is geometrically finite, the BR measure is the natural analogue of the Haar measure.

Our Equidistribution Theorem

Theorem (Tamam and W.)

Let $\Gamma \subseteq G$ be a convex cocompact subgroup of G and let $\Omega \subset G/\Gamma$ be a compact set. There exists $\kappa = \kappa(\Gamma) > 0$ such that for any $x \in \Omega$ such that $x^- \in \Lambda(\Gamma)$, $\psi \in C_c^{\infty}(G/\Gamma)$, and $r > r_0(x, \operatorname{supp} \psi) > 0$,

$$\left|\frac{1}{\mu_x^{\mathrm{PS}}(B_U(r))}\int_{B_U(r)}\psi(u_t x)dt - m^{\mathrm{BR}}(\psi)\right| \ll r^{-\kappa}$$

where the implied constant depends on Γ, Ω , and ψ .

Remark

- The dependence of r_0 on x and $\operatorname{supp} \psi$ is explicit.
- We also prove this theorem for Γ geometrically finite, but additional assumptions are necessary.

Prior results in infinite volume

Equidistribution:

- Schapira (2005): $G = PSL_2(\mathbb{R})$ and Γ is geometrically finite.
- ► Mohammadi and Oh (2010): $G = SO(n, 1)^{\circ}$ and Γ is geometrically finite.

Effective equidistribution:

• Edwards (2019): $G = PSL_2(\mathbb{R})$ and Γ is geometrically finite.

Application: Γ orbits on \mathbb{R}^{n+1}

• Γ acts on $V := \mathbb{R}^{n+1} \setminus \{0\}$ by matrix multiplication.

Proposition (Tamam-W.)

Let Γ be convex cocompact. For any $\varphi \in C_c(V)$ and every $v \in V$ with " $v^- \in \Lambda(\Gamma)$," as $T \to \infty$, we have that

$$\frac{1}{T^{\delta_{\Gamma}/2}}\sum_{\gamma\in\Gamma, \|\gamma\|\leq T}\varphi(v\gamma)\asymp \int_{V}\varphi(u)\frac{d\overline{\nu}(u)}{(\|v\|\|u\|)^{\delta_{\Gamma}/2}}$$

• δ_{Γ} is the Hausdorff dimension of $\Lambda(\Gamma)$.

- ▶ $\overline{\nu}$ is the pushforward of a measure that appears in the product structure of m^{BR} .
- We also prove a quantitative ratio theorem, and allow for geometrically finite Γ.

History: Γ orbits on \mathbb{R}^{n+1}

- ► Ledrappier (1999): Proved a similar ergodic theorem for lattices in PSL₂(ℝ) acting on ℝ².
- Maucourant and Weiss (2012): A quantitative version of Ledrappier's theorem.
- Maucourant and Schapira (2014): proved an asymptotic version for convex cocompact Γ in SL₂(R).
 - ▶ Showed there cannot be convergence of the same form as in Maucourant-Weiss.
 - ▶ Proved convergence with an additional averaging.
- Many additional works studying the finite volume setting in broad generality, e.g. works by Gorodnik-Weiss, Gorodnik-Nevo, Nogueira, and more.

The PS and BR measures

• A Γ -invariant conformal density of dimension δ is a family of finite measures $\{\mu_x : x \in \mathbb{H}^n\}$ on $\partial(\mathbb{H}^n)$ such that

$$\gamma_*\mu_x = \mu_{\gamma x}$$
 and $\frac{d\mu_x}{d\mu_y}(\xi) = e^{-\delta\beta_{\xi}(x,y)}$

- ► The Patterson-Sullivan density, denoted $\{\nu_x : x \in \mathbb{H}^n\}$, is a Γ -invariant conformal density with dimension equal to the Hausdorff dimension of Λ . It is unique up to scaling.
- ▶ We can use a weighted stereographic projection to define the PS measure on a horosphere from this conformal density. This will give an infinite measure.

A limit set example revisited

Figure: Limit set (McMullen, Mohammadi, Oh)

 $T^1(\mathbb{H}^2)$ is homeomorphic to

 $(\partial(\mathbb{H}^2) \times \partial(\mathbb{H}^2) - \{(\xi, \xi) : \xi \in \partial(\mathbb{H}^2)\}) \times \mathbb{R}$

 $T^1(\mathbb{H}^2)$ is homeomorphic to

 $(\partial(\mathbb{H}^2) \times \partial(\mathbb{H}^2) - \{(\xi, \xi) : \xi \in \partial(\mathbb{H}^2)\}) \times \mathbb{R}$

 $T^1(\mathbb{H}^2)$ is homeomorphic to

 $(\partial(\mathbb{H}^2) \times \partial(\mathbb{H}^2) - \{(\xi, \xi) : \xi \in \partial(\mathbb{H}^2)\}) \times \mathbb{R}$

 $T^1(\mathbb{H}^2)$ is homeomorphic to

 $(\partial(\mathbb{H}^2) \times \partial(\mathbb{H}^2) - \{(\xi, \xi) : \xi \in \partial(\mathbb{H}^2)\}) \times \mathbb{R}$

 $T^1(\mathbb{H}^2)$ is homeomorphic to

 $(\partial(\mathbb{H}^2) \times \partial(\mathbb{H}^2) - \{(\xi, \xi) : \xi \in \partial(\mathbb{H}^2)\}) \times \mathbb{R}$

The PS and BR measures

• In the convex cocompact case, for $x^{\pm} \in \Lambda(\Gamma)$,

$$\mu_x^{\mathrm{PS}}(B_U(T)) \asymp T^{\delta_{\Gamma}}.$$

- ▶ When there are cusps, there is an additional term scaling by the distance into the cusp.
- ▶ The BR measure is defined geometrically using weighted stereographic projection from the PS density and the Lebesgue measure on $\partial(\mathbb{H}^n)$ (with a product structure).

• The support is
$$\{g\Gamma \in G/\Gamma : g^- \in \Lambda(\Gamma)\}.$$

Theorem revisited

Theorem (Tamam and W.)

Let $\Gamma \subseteq G$ be a convex cocompact subgroup of G and let $\Omega \subset G/\Gamma$ be a compact set. There exists $\kappa = \kappa(\Gamma) > 0$ such that for any $x \in \Omega$ such that $x^- \in \Lambda(\Gamma)$, $\psi \in C_c^{\infty}(G/\Gamma)$, and $r > r_0(x, \operatorname{supp} \psi) > 0$,

$$\left|\frac{1}{\mu_x^{\mathrm{PS}}(B_U(r))}\int_{B_U(r)}\psi(u_t x)dt - m^{\mathrm{BR}}(\psi)\right| \ll r^{-\kappa},$$

where the implied constant depends on Γ, Ω , and ψ .

Main ingredients in the proof: Exponential mixing

- ▶ The BMS measure is a finite measure that is closely related to the BR measure.
- It is supported on the convex core of Γ .
- Our theorem requires exponential mixing of the A action for m^{BMS} :

Assumption (Exponential Mixing)

There exist $\kappa = \kappa(\Gamma) > 0$ and $s_0 = s_0(\Gamma)$ such that for $s > s_0$ and $\psi, f \in C_c^{\infty}(G/\Gamma)$,

$$\left| \int_{G/\Gamma} \psi(a_s x) f(x) dm^{\text{BMS}}(x) - m^{\text{BMS}}(\psi) m^{\text{BMS}}(f) \right| \ll e^{-\kappa s},$$

where the implied constant depends only on f, ψ , and Γ .

Main ingredients in the proof: Exponential mixing

- For Γ convex co-compact, the exponential mixing was proved by Winter in 2016, building on work of Stoyanov and Dolgopyat. (See also Sarkar-Winter (2020).)
- For Γ GF such that $L^2(G/\Gamma)$ has a spectral gap, exponential mixing was proved by Mohammadi and Oh in 2015.
- When the critical exponent of Γ , $\delta_{\Gamma} > n-2$, there is such a spectral gap.
- When there is a cusp of rank n-1, $\delta_{\Gamma} > \frac{n-1}{2}$. In particular, for n = 2, 3, there is a spectral gap.
- It is conjectured to be true for all n.

Main ingredients in the proof: quantitative nondivergence

• For Γ GF, we consider ϵ -Diophantine points $x \in G/\Gamma$.

 "x does not travel into the cusps too quickly", a necessary assumption.

Theorem (Tamam-W.)

There exists $\beta > 0$ satisfying the following: for any ϵ -Diophantine element $x \in X$, there exists $T_0 = T_0(x) > 0$ such that for every $R \ge 0$, $T > T_0$, $s \le T^{\epsilon}$, and $x_0 = a_{-\log s}x$, we have

$$\frac{\mu_{x_0}^{\text{PS}}(B_U(T/s)x_0 \cap C_R)}{\mu_{x_0}^{\text{PS}}(B_U(T/s)x_0)} - 1 \ll e^{-\beta R},$$

where the implied constant depends on Γ .

• Here, C_R is an explicit compact set arising from the thick-thin decomposition of the convex core.

Main ingredients in the proof: "Friendliness"

- ► A key difficulty in higher dimensions is understanding the PS measure.
- In particular, can a large portion of the measure of a ball be concentrated near its boundary?
- ▶ Das, Fishman, Simmons, and Urbański proved in 2015 that the PS density is "friendly" if Γ is GF and all cusps have rank n-1. Using this, we proved that for such Γ :

Proposition

There exists $\alpha = \alpha(\Gamma) > 0$ such that for any $x \in G/\Gamma$ with $x^+ \in \Lambda(\Gamma), \ 0 < \xi < \eta$,

$$\frac{\mu_x^{\mathrm{PS}}(B_U(\xi+\eta))}{\mu_x^{\mathrm{PS}}(B_U(\eta))} - 1 \ll_{\Gamma} \left(\frac{\xi}{\eta}\right)^{\alpha}$$

Proof of the theorem

Using the exponential mixing, the relation between the measures, and "Margulis' thickening trick" one can show:

Theorem (Tamam-W.)

There exist $\kappa = \kappa(\Gamma)$ and $s_0 = s_0(\Gamma)$ which satisfy the following. Let $\Omega \subseteq G$ be a compact set, 0 < r < 1 be smaller than the injectivity radius of Ω , $\psi \in C_c^{\infty}(G/\Gamma)$, and $f \in C_c^{\infty}(B_U(r))$. Then, for any $x \in \Omega$, $x \in \operatorname{supp}(m^{BMS})$, and $s > s_0$ we have

$$\left|\int_{U} \psi(a_{s} u_{t} x) f(t) d\mu_{Ux}^{\mathrm{PS}}(t) - \mu_{Ux}^{\mathrm{PS}}(f) m^{\mathrm{BMS}}(\psi)\right| \ll e^{-\kappa s},$$

where the implied constant depends on f, ψ and Γ .

Proof of the theorem

Using the previous theorem and the relation between the measures one can show:

Theorem (Tamam-W.)

There exist $\kappa = \kappa(\Gamma)$ and $s_0 = s_0(\Gamma)$ which satisfy the following. Let $\Omega \subseteq G$ be a compact set, 0 < r < 1 be smaller than the injectivity radius of Ω , $\psi \in C_c(G/\Gamma)$, and $f \in C_c^{\infty}(B_U(r))$. Then, for any $x \in \Omega$, $x \in \operatorname{supp}(m^{BMS})$, and $s > s_0$ we have

$$e^{(n-1-\delta_{\Gamma})s} \int_{B_U(r)} \psi(a_s u_t x) f(t) dt - \mu_x^{\mathrm{PS}}(f) m^{\mathrm{BR}}(\psi) \bigg| \ll e^{-\kappa s}.$$

where the implied constant depends on ψ , f, and Γ .

Proof of the theorem

For

$$s_0 := \frac{\epsilon}{2} \log T, \quad x_0 := a_{-s_0} x, \text{ and } T_0 = T^{1-\frac{\epsilon}{2}}$$

we have

$$\frac{1}{\mu_x^{\mathrm{PS}}(B_U(T))} \int_{B_U(T)} \psi(u_{\mathbf{t}} x) d\mathbf{t} = \frac{e^{(n-1-\delta)s_0}}{\mu_{x_0}^{\mathrm{PS}}(B_U(T_0))} \int_{B_U(T_0)} \psi(a_{s_0} u_{\mathbf{t}} x_0) d\mathbf{t}$$

and

$$\mu_{x_0}^{\rm PS} \left(B_U(T_0) x_0 \cap C_R^c \right) \ll \mu_{x_0}^{\rm PS} \left(B_U(T_0) x_0 \right) e^{-\beta R}$$

By decomposing

$$B_U(T_0) = (B_U(T_0) \cap C_R) \cap (B_U(T_0) \cap C_R^c),$$

we can get a bound on $B_U(T_0) \cap C_R^c$ and use the nondivergence statement on $B_U(T_0) \cap C_R$ to get the estimate we want.

Thank You for Your Attention!