Effective Equidistribution of
 Horospherical Flows in Infinite Volume

Jacqueline Warren, joint work with Nattalie Tamam

UCSanDiego

Background: $\mathrm{PSL}_{2}(\mathbb{R})$ acting on \mathbb{H}

- $\operatorname{PSL}_{2}(\mathbb{R})$ acts on \mathbb{H}, the upper half-plane, by Möbius transformations.
- There is a natural simply transitive action of $\operatorname{PSL}_{2}(\mathbb{R})$ on $\mathrm{T}^{1}(\mathbb{H}):$ for $(z, v) \in \mathrm{T}^{1}(\mathbb{H}), g \in \mathrm{PSL}_{2}(\mathbb{R})$,

$$
g \cdot(z, v)=\left(\frac{a z+b}{c z+d}, \frac{v}{(c z+d)^{2}}\right) .
$$

- This lets us identify $\operatorname{PSL}_{2}(\mathbb{R}) \cong \mathrm{T}^{1}(\mathbb{H})$.

Acting on the Hyperbolic surface

The geodesic flow is implemented by the diagonal subgroup

$$
a_{s}=\left(\begin{array}{cc}
e^{s / 2} & 0 \\
0 & e^{-s / 2}
\end{array}\right)
$$

Acting on the Hyperbolic surface

The geodesic flow is implemented by the diagonal subgroup

$$
a_{s}=\left(\begin{array}{cc}
e^{s / 2} & 0 \\
0 & e^{-s / 2}
\end{array}\right)
$$

Acting on the Hyperbolic surface

The geodesic flow is implemented by the diagonal subgroup

$$
a_{s}=\left(\begin{array}{cc}
e^{s / 2} & 0 \\
0 & e^{-s / 2}
\end{array}\right)
$$

Acting on the Hyperbolic surface

The geodesic flow is implemented by the diagonal subgroup

$$
a_{s}=\left(\begin{array}{cc}
e^{s / 2} & 0 \\
0 & e^{-s / 2}
\end{array}\right)
$$

Acting on the Hyperbolic surface

The horocycle subgroup

$$
\begin{aligned}
U & =\left\{g \in G: a_{-s} g a_{s} \rightarrow e \text { as } s \rightarrow+\infty\right\} \\
& =\left\{\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right): t \in \mathbb{R}\right\}
\end{aligned}
$$

Acting on the Hyperbolic surface

The horocycle subgroup

$$
\begin{aligned}
U & =\left\{g \in G: a_{-s} g a_{s} \rightarrow e \text { as } s \rightarrow+\infty\right\} \\
& =\left\{\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right): t \in \mathbb{R}\right\}
\end{aligned}
$$

Acting on the Hyperbolic surface

The horocycle subgroup

$$
\begin{aligned}
U & =\left\{g \in G: a_{-s} g a_{s} \rightarrow e \text { as } s \rightarrow+\infty\right\} \\
& =\left\{\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right): t \in \mathbb{R}\right\}
\end{aligned}
$$

Acting on the Hyperbolic surface

The horocycle subgroup

$$
\begin{aligned}
U & =\left\{g \in G: a_{-s} g a_{s} \rightarrow e \text { as } s \rightarrow+\infty\right\} \\
& =\left\{\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right): t \in \mathbb{R}\right\} .
\end{aligned}
$$

Acting on the Hyperbolic surface

- Let Γ be a lattice (finite covolume discrete subgroup) in $G=\mathrm{PSL}_{2}(\mathbb{R})$, such as $\mathrm{PSL}_{2}(\mathbb{Z})$.
- The unit tangent bundle $\mathrm{T}^{1}(\mathbb{H} / \Gamma)$ of \mathbb{H} / Γ may be identified with the homogeneous space $G / \Gamma . G$ acts on G / Γ by left multiplication

Figure: Fundamental domain of $\mathrm{PSL}_{2}(\mathbb{Z})$ (Anastasios Taliotis)

Equidistribution in finite volume

Theorem (Dani and Smillie, 1984)

Let Γ be a lattice in $G=\operatorname{PSL}_{2}(\mathbb{R})$. For every $x \in G / \Gamma$, we have one of the following:

- Ux is periodic.
- For any $f \in C_{c}(G / \Gamma)$,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f\left(u_{t} x\right) d t=m(f):=\int_{G / \Gamma} f d m
$$

where m denotes the normalized Haar measure on G / Γ.
However, this theorem does not tell us the rate of equidistribution - it is not effective.

Equidistribution in finite volume

Figure: An orbit in direction v (Sullivan)

Effective Versions

- There are many effective generalizations, e.g.:

Theorem (McAdam, '18 (roughly stated))

For any $x \in X:=\mathrm{SL}_{n}(\mathbb{R}) / \mathrm{SL}_{n}(\mathbb{Z})$, there exist constants $\gamma, C>0$ such that for all $f \in C_{c}^{\infty}(X)$ and $T>C$,

$$
\left|\frac{1}{m\left(B_{U}(T)\right)} \int_{B_{U}(T)} f(u x) d m(u)-m(f)\right|<_{f} T^{-\gamma}
$$

unless there is an explicit algebraic obstruction.

- Here, $B_{U}(T)$ denotes the ball of radius T in U.

Additional results

Equidistribution results:

- Dani (1982): $G=\mathrm{SL}_{2}(\mathbb{R}), \Gamma=\mathrm{SL}_{2}(\mathbb{Z})$, and U is horospherical.
- Ratner (1991): G a Lie group, $\Gamma \subseteq G$ a lattice, and U is generated by one parameter unipotent subgroups.
Effective equidistribution results (U is horospherical):
- Sarnak (1981): $G=\mathrm{PSL}_{2}(\mathbb{R})$ and Γ a lattice, closed orbits.
- Burger (1990): $G=\operatorname{PSL}_{2}(\mathbb{R})$ and Γ cocompact.
- Strömbergsson (2013): $G=\mathrm{PSL}_{2}(\mathbb{R})$ and Γ non-cocompact.
- Sarnak, Ubis (2015): $G=\mathrm{SL}_{2}(\mathbb{R})$ and $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$.
- Katz (2019): G semisimple linear group without compact factors and Γ a lattice

Acting on a Hyperbolic manifold

- For $n \geq 2$, let G be the identity component of the special orthogonal group $\mathrm{SO}(n, 1)$.
- G can be considered as the group of orientation preserving isometries of n-upper half-space \mathbb{H}^{n}.
- Let U denote the horospherical subgroup

$$
\begin{aligned}
U & =\left\{g \in G: a_{-s} g a_{s} \rightarrow e \text { as } s \rightarrow+\infty\right\} \\
& =\left\{u_{\mathbf{t}}: \mathbf{t} \in \mathbb{R}^{n-1}\right\} .
\end{aligned}
$$

- Let Γ be a discrete subgroup of G (not necessarily a lattice).
- Any complete hyperbolic (constant negative curvature) n-manifold can be presented as \mathbb{H}^{n} / Γ, and G / Γ is the space of positively oriented frames on \mathbb{H}^{n} / Γ.

The convex core

- The limit set of $\Gamma, \Lambda=\Lambda(\Gamma) \subset \partial \mathbb{H}^{n}$, is the set of accumulation points of Γo for some $o \in \mathbb{H}^{n}$.
- When Γ is not a lattice, Λ is a fractal set.
- When it is a lattice, $\Lambda=\partial\left(\mathbb{H}^{n}\right)$.
- The convex core of \mathbb{H}^{n} / Γ is the convex submanifold given by

$$
\operatorname{hull}(\Lambda) / \Gamma=\operatorname{hull} \Lambda \subset \mathbb{H}^{n} / \Gamma,
$$

where $\operatorname{hull}(\Lambda)$ is the smallest convex subset containing all geodesics connecting two points in Λ.

The convex hull in the Poincaré disc model

A limit set example

Figure: Limit set (McMullen, Mohammadi, Oh)

Convex cocompact and geometrically finite

- Γ is called geometrically finite (GF) if the unit neighborhood of the convex core has finite volume.
- May be thought of as \mathbb{H}^{n} / Γ having a finite-sided fundamental domain. Examples include quasifuchsian groups, or cutting a compact n-manifold along a totally geodesic hyperplane.
- Γ is called convex cocompact if the convex core is compact.
- In this case, there are no cusps.
- Schottky groups without parabolic elements are examples (finitely generated by hyperbolic elements satisfying certain conditions, "ping pong" construction), with the convex core being a handle body in this case.

Equidistribution in Infinite Volume

Theorem (Hopf ratio ergodic thm, Hopf, 1937, Hochman, 2010)

Let μ be a locally finite U-invariant ergodic measure on G / Γ. Let $f_{1}, f_{2} \in L^{1}(G / \Gamma)$ such that $\mu\left(f_{2}\right) \neq 0$. Then, for μ-a.e. x

$$
\lim _{T \rightarrow \infty} \frac{\int_{-T}^{T} f_{1}(u x) d t}{\int_{-T}^{T} f_{2}(u x) d t}=\frac{\mu\left(f_{1}\right)}{\mu\left(f_{2}\right)}
$$

When the Haar measure is infinite, it follows that for a.e. x,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f\left(u_{t} x\right) d t=0
$$

The time an orbit spends in any compact set is sub-linear. "There is not enough recurrence."

Equidistribution in Infinite Volume

Equidistribution in Infinite Volume

- The correct normalization will be given by the Patterson-Sullivan measure, and the limit will be given by the Burger-Roblin ($B R$) measure, which is a natural, geometrically defined measure.
- If $x^{-} \in \Lambda(\Gamma)$, the PS measure governs the return times of $u_{\mathbf{t}} x$ to the convex core.
- When Γ is a lattice and $n=2$, the Haar measure is the only U-ergodic measure not supported on a closed U orbit.
- If Γ is geometrically finite, the BR measure is the natural analogue of the Haar measure.

Our Equidistribution Theorem

Theorem (Tamam and W.)

Let $\Gamma \subseteq G$ be a convex cocompact subgroup of G and let $\Omega \subset G / \Gamma$ be a compact set. There exists $\kappa=\kappa(\Gamma)>0$ such that for any $x \in \Omega$ such that $x^{-} \in \Lambda(\Gamma), \psi \in C_{c}^{\infty}(G / \Gamma)$, and $r>r_{0}(x, \operatorname{supp} \psi)>0$,

$$
\left|\frac{1}{\mu_{x}^{\mathrm{PS}}\left(B_{U}(r)\right)} \int_{B_{U}(r)} \psi\left(u_{\boldsymbol{t}} x\right) d \boldsymbol{t}-m^{\mathrm{BR}}(\psi)\right| \ll r^{-\kappa}
$$

where the implied constant depends on Γ, Ω, and ψ.

Remark

- The dependence of r_{0} on x and $\operatorname{supp} \psi$ is explicit.
- We also prove this theorem for Γ geometrically finite, but additional assumptions are necessary.

Prior results in infinite volume

Equidistribution:

- Schapira (2005): $G=\mathrm{PSL}_{2}(\mathbb{R})$ and Γ is geometrically finite.
- Mohammadi and $\mathrm{Oh}(2010): G=\mathrm{SO}(n, 1)^{\circ}$ and Γ is geometrically finite.

Effective equidistribution:

- Edwards (2019): $G=\mathrm{PSL}_{2}(\mathbb{R})$ and Γ is geometrically finite.

Application: Γ orbits on \mathbb{R}^{n+1}

- Γ acts on $V:=\mathbb{R}^{n+1} \backslash\{0\}$ by matrix multiplication.

Proposition (Tamam-W.)

Let Γ be convex cocompact. For any $\varphi \in C_{c}(V)$ and every $v \in V$ with " v - $\in \Lambda(\Gamma)$," as $T \rightarrow \infty$, we have that

$$
\frac{1}{T^{\delta_{\Gamma} / 2}} \sum_{\gamma \in \Gamma,\|\gamma\| \leq T} \varphi(v \gamma) \asymp \int_{V} \varphi(u) \frac{d \bar{\nu}(u)}{(\|v\|\|u\|)^{\delta_{\Gamma} / 2}} .
$$

- δ_{Γ} is the Hausdorff dimension of $\Lambda(\Gamma)$.
- $\bar{\nu}$ is the pushforward of a measure that appears in the product structure of m^{BR}.
- We also prove a quantitative ratio theorem, and allow for geometrically finite Γ.

History: Γ orbits on \mathbb{R}^{n+1}

- Ledrappier (1999): Proved a similar ergodic theorem for lattices in $\mathrm{PSL}_{2}(\mathbb{R})$ acting on \mathbb{R}^{2}.
- Maucourant and Weiss (2012): A quantitative version of Ledrappier's theorem.
- Maucourant and Schapira (2014): proved an asymptotic version for convex cocompact Γ in $\mathrm{SL}_{2}(\mathbb{R})$.
- Showed there cannot be convergence of the same form as in Maucourant-Weiss.
- Proved convergence with an additional averaging.
- Many additional works studying the finite volume setting in broad generality, e.g. works by Gorodnik-Weiss, Gorodnik-Nevo, Nogueira, and more.

The PS and BR measures

- A Γ-invariant conformal density of dimension δ is a family of finite measures $\left\{\mu_{x}: x \in \mathbb{H}^{n}\right\}$ on $\partial\left(\mathbb{H}^{n}\right)$ such that

$$
\gamma_{*} \mu_{x}=\mu_{\gamma x} \quad \text { and } \quad \frac{d \mu_{x}}{d \mu_{y}}(\xi)=e^{-\delta \beta_{\xi}(x, y)}
$$

- The Patterson-Sullivan density, denoted $\left\{\nu_{x}: x \in \mathbb{H}^{n}\right\}$, is a Γ-invariant conformal density with dimension equal to the Hausdorff dimension of Λ. It is unique up to scaling.
- We can use a weighted stereographic projection to define the PS measure on a horosphere from this conformal density. This will give an infinite measure.

A limit set example revisited

Figure: Limit set (McMullen, Mohammadi, Oh)

Hopf Parametrization

$\mathrm{T}^{1}\left(\mathbb{H}^{2}\right)$ is homeomorphic to

$$
\left(\partial\left(\mathbb{H}^{2}\right) \times \partial\left(\mathbb{H}^{2}\right)-\left\{(\xi, \xi): \xi \in \partial\left(\mathbb{H}^{2}\right)\right\}\right) \times \mathbb{R}
$$

via $g \mapsto\left(g^{+}, g^{-}, s=\beta_{g^{+}}(o, \pi(g))\right)$, for fixed $o \in \mathbb{H}^{2}$.

Hopf Parametrization

$\mathrm{T}^{1}\left(\mathbb{H}^{2}\right)$ is homeomorphic to

$$
\left(\partial\left(\mathbb{H}^{2}\right) \times \partial\left(\mathbb{H}^{2}\right)-\left\{(\xi, \xi): \xi \in \partial\left(\mathbb{H}^{2}\right)\right\}\right) \times \mathbb{R}
$$

via $g \mapsto\left(g^{+}, g^{-}, s=\beta_{g^{+}}(o, \pi(g))\right)$, for fixed $o \in \mathbb{H}^{2}$.

Hopf Parametrization

$\mathrm{T}^{1}\left(\mathbb{H}^{2}\right)$ is homeomorphic to

$$
\left(\partial\left(\mathbb{H}^{2}\right) \times \partial\left(\mathbb{H}^{2}\right)-\left\{(\xi, \xi): \xi \in \partial\left(\mathbb{H}^{2}\right)\right\}\right) \times \mathbb{R}
$$

via $g \mapsto\left(g^{+}, g^{-}, s=\beta_{g^{+}}(o, \pi(g))\right)$, for fixed $o \in \mathbb{H}^{2}$.

Hopf Parametrization

$\mathrm{T}^{1}\left(\mathbb{H}^{2}\right)$ is homeomorphic to

$$
\left(\partial\left(\mathbb{H}^{2}\right) \times \partial\left(\mathbb{H}^{2}\right)-\left\{(\xi, \xi): \xi \in \partial\left(\mathbb{H}^{2}\right)\right\}\right) \times \mathbb{R}
$$

via $g \mapsto\left(g^{+}, g^{-}, s=\beta_{g^{+}}(o, \pi(g))\right)$, for fixed $o \in \mathbb{H}^{2}$.

Hopf Parametrization

$\mathrm{T}^{1}\left(\mathbb{H}^{2}\right)$ is homeomorphic to

$$
\left(\partial\left(\mathbb{H}^{2}\right) \times \partial\left(\mathbb{H}^{2}\right)-\left\{(\xi, \xi): \xi \in \partial\left(\mathbb{H}^{2}\right)\right\}\right) \times \mathbb{R}
$$

via $g \mapsto\left(g^{+}, g^{-}, s=\beta_{g^{+}}(o, \pi(g))\right)$, for fixed $o \in \mathbb{H}^{2}$.

The PS and BR measures

- In the convex cocompact case, for $x^{ \pm} \in \Lambda(\Gamma)$,

$$
\mu_{x}^{\mathrm{PS}}\left(B_{U}(T)\right) \asymp T^{\delta_{\Gamma}}
$$

- When there are cusps, there is an additional term scaling by the distance into the cusp.
- The BR measure is defined geometrically using weighted stereographic projection from the PS density and the Lebesgue measure on $\partial\left(\mathbb{H}^{n}\right)$ (with a product structure).
- The support is $\left\{g \Gamma \in G / \Gamma: g^{-} \in \Lambda(\Gamma)\right\}$.

Theorem revisited

Theorem (Tamam and W.)

Let $\Gamma \subseteq G$ be a convex cocompact subgroup of G and let $\Omega \subset G / \Gamma$ be a compact set. There exists $\kappa=\kappa(\Gamma)>0$ such that for any $x \in \Omega$ such that $x^{-} \in \Lambda(\Gamma), \psi \in C_{c}^{\infty}(G / \Gamma)$, and $r>r_{0}(x, \operatorname{supp} \psi)>0$,

$$
\left|\frac{1}{\mu_{x}^{\mathrm{PS}}\left(B_{U}(r)\right)} \int_{B_{U}(r)} \psi\left(u_{\boldsymbol{t}} x\right) d \boldsymbol{t}-m^{\mathrm{BR}}(\psi)\right| \ll r^{-\kappa}
$$

where the implied constant depends on Γ, Ω, and ψ.

Main ingredients in the proof: Exponential mixing

- The BMS measure is a finite measure that is closely related to the BR measure.
- It is supported on the convex core of Γ.
- Our theorem requires exponential mixing of the A action for $m^{\text {BMS }}$:

Assumption (Exponential Mixing)

There exist $\kappa=\kappa(\Gamma)>0$ and $s_{0}=s_{0}(\Gamma)$ such that for $s>s_{0}$ and $\psi, f \in C_{c}^{\infty}(G / \Gamma)$,

$$
\left|\int_{G / \Gamma} \psi\left(a_{s} x\right) f(x) d m^{\mathrm{BMS}}(x)-m^{\mathrm{BMS}}(\psi) m^{\mathrm{BMS}}(f)\right| \ll e^{-\kappa s}
$$

where the implied constant depends only on f, ψ, and Γ.

Main ingredients in the proof: Exponential mixing

- For Γ convex co-compact, the exponential mixing was proved by Winter in 2016, building on work of Stoyanov and Dolgopyat. (See also Sarkar-Winter (2020).)
- For Γ GF such that $L^{2}(G / \Gamma)$ has a spectral gap, exponential mixing was proved by Mohammadi and Oh in 2015.
- When the critical exponent of $\Gamma, \delta_{\Gamma}>n-2$, there is such a spectral gap.
- When there is a cusp of rank $n-1, \delta_{\Gamma}>\frac{n-1}{2}$. In particular, for $n=2,3$, there is a spectral gap.
- It is conjectured to be true for all n.

Main ingredients in the proof: quantitative nondivergence

- For Γ GF, we consider ϵ-Diophantine points $x \in G / \Gamma$.
- " x does not travel into the cusps too quickly", a necessary assumption.

Theorem (Tamam-W.)

There exists $\beta>0$ satisfying the following: for any
ϵ-Diophantine element $x \in X$, there exists $T_{0}=T_{0}(x)>0$ such that for every $R \geq 0, T>T_{0}, s \leq T^{\epsilon}$, and $x_{0}=a_{-\log _{s} x}$, we have

$$
\frac{\mu_{x_{0}}^{\mathrm{PS}}\left(B_{U}(T / s) x_{0} \cap C_{R}\right)}{\mu_{x_{0}}^{\mathrm{PS}}\left(B_{U}(T / s) x_{0}\right)}-1 \ll e^{-\beta R}
$$

where the implied constant depends on Γ.

- Here, C_{R} is an explicit compact set arising from the thick-thin decomposition of the convex core.

Main ingredients in the proof: "Friendliness"

- A key difficulty in higher dimensions is understanding the PS measure.
- In particular, can a large portion of the measure of a ball be concentrated near its boundary?
- Das, Fishman, Simmons, and Urbański proved in 2015 that the PS density is "friendly" if Γ is GF and all cusps have rank $n-1$. Using this, we proved that for such Γ :

Proposition

There exists $\alpha=\alpha(\Gamma)>0$ such that for any $x \in G / \Gamma$ with $x^{+} \in \Lambda(\Gamma), 0<\xi<\eta$,

$$
\frac{\mu_{x}^{\mathrm{PS}}\left(B_{U}(\xi+\eta)\right)}{\mu_{x}^{\mathrm{PS}}\left(B_{U}(\eta)\right)}-1 \ll \Gamma\left(\frac{\xi}{\eta}\right)^{\alpha} .
$$

Proof of the theorem

Using the exponential mixing, the relation between the measures, and "Margulis' thickening trick" one can show:

Theorem (Tamam-W.)

There exist $\kappa=\kappa(\Gamma)$ and $s_{0}=s_{0}(\Gamma)$ which satisfy the following. Let $\Omega \subseteq G$ be a compact set, $0<r<1$ be smaller than the injectivity radius of $\Omega, \psi \in C_{c}^{\infty}(G / \Gamma)$, and $f \in C_{c}^{\infty}\left(B_{U}(r)\right)$. Then, for any $x \in \Omega, x \in \operatorname{supp}\left(m^{\mathrm{BMS}}\right)$, and $s>s_{0}$ we have

$$
\left|\int_{U} \psi\left(a_{s} u_{\boldsymbol{t}} x\right) f(\boldsymbol{t}) d \mu_{U x}^{\mathrm{PS}}(\boldsymbol{t})-\mu_{U x}^{\mathrm{PS}}(f) m^{\mathrm{BMS}}(\psi)\right| \ll e^{-\kappa s}
$$

where the implied constant depends on f, ψ and Γ.

Proof of the theorem

Using the previous theorem and the relation between the measures one can show:

Theorem (Tamam-W.)

There exist $\kappa=\kappa(\Gamma)$ and $s_{0}=s_{0}(\Gamma)$ which satisfy the following. Let $\Omega \subseteq G$ be a compact set, $0<r<1$ be smaller than the injectivity radius of $\Omega, \psi \in C_{c}(G / \Gamma)$, and $f \in C_{c}^{\infty}\left(B_{U}(r)\right)$. Then, for any $x \in \Omega, x \in \operatorname{supp}\left(m^{\text {BMS }}\right)$, and $s>s_{0}$ we have

$$
\left|e^{\left(n-1-\delta_{\Gamma}\right) s} \int_{B_{U}(r)} \psi\left(a_{s} u_{\boldsymbol{t}} x\right) f(\boldsymbol{t}) d \boldsymbol{t}-\mu_{x}^{\mathrm{PS}}(f) m^{\mathrm{BR}}(\psi)\right| \ll e^{-\kappa s} .
$$

where the implied constant depends on ψ, f, and Γ.

Proof of the theorem

For

$$
s_{0}:=\frac{\epsilon}{2} \log T, \quad x_{0}:=a_{-s_{0}} x, \quad \text { and } \quad T_{0}=T^{1-\frac{\epsilon}{2}}
$$

we have
$\frac{1}{\mu_{x}^{\mathrm{PS}}\left(B_{U}(T)\right)} \int_{B_{U}(T)} \psi\left(u_{\mathbf{t}} x\right) d \mathbf{t}=\frac{e^{(n-1-\delta) s_{0}}}{\mu_{x_{0}}^{\mathrm{PS}}\left(B_{U}\left(T_{0}\right)\right)} \int_{B_{U}\left(T_{0}\right)} \psi\left(a_{s_{0}} u_{\mathbf{t}} x_{0}\right) d \mathbf{t}$
and

$$
\mu_{x_{0}}^{\mathrm{PS}}\left(B_{U}\left(T_{0}\right) x_{0} \cap C_{R}^{c}\right) \ll \mu_{x_{0}}^{\mathrm{PS}}\left(B_{U}\left(T_{0}\right) x_{0}\right) e^{-\beta R} .
$$

By decomposing

$$
B_{U}\left(T_{0}\right)=\left(B_{U}\left(T_{0}\right) \cap C_{R}\right) \cap\left(B_{U}\left(T_{0}\right) \cap C_{R}^{c}\right)
$$

we can get a bound on $B_{U}\left(T_{0}\right) \cap C_{R}^{c}$ and use the nondivergence statement on $B_{U}\left(T_{0}\right) \cap C_{R}$ to get the estimate we want.

Thank You for Your Attention!

