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Background: PSLy(R) acting on H

» PSLy(R) acts on H, the upper half-plane, by Mébius
transformations.

» There is a natural simply transitive action of PSLa(R) on
TL(H): for (z,v) € TI(H), g € PSLy(R),

g-(z,v):<a2+b v )

cz+d’ (cz+d)?

> This lets us identify PSLy(R) = T*(H).
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Acting on the Hyperbolic surface

» Let I be a lattice (finite covolume discrete subgroup) in
G = PSLy(R), such as PSLa(Z).

» The unit tangent bundle T*(H/T") of H/T' may be identified
with the homogeneous space G/I'. G acts on G/I" by left
multiplication
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Figure: Fundamental domain of PSLs(Z) (Anastasios Taliotis)



Equidistribution in finite volume

Theorem (Dani and Smillie, 1984)

Let T be a lattice in G = PSLa(R). For every x € G/T', we have
one of the following:

» Ux is periodic.
» For any f € C.(G/T),

T
lim %/0 flugz)dt = m(f) := fdm

T—oo G/T

where m denotes the normalized Haar measure on G/T.

However, this theorem does not tell us the rate of
equidistribution — it is not effective.



Equidistribution in finite volume

Figure: An orbit in direction v (Sullivan)



Effective Versions

» There are many effective generalizations, e.g.:

Theorem (McAdam, '18 (roughly stated))

For any x € X := SLy,(R)/SL,(Z), there exist constants
v,C > 0 such that for all f € CX(X) and T > C,

1

'W /BU(T) fluz)dm(u) —m(f)| <g T77,

unless there is an explicit algebraic obstruction.

» Here, By (T') denotes the ball of radius 7" in U.



Additional results

Equidistribution results:
» Dani (1982): G = SLa(R), I' = SLa(Z), and U is
horospherical.
» Ratner (1991): G a Lie group, I' C G a lattice, and U is
generated by one parameter unipotent subgroups.
Effective equidistribution results (U is horospherical):
» Sarnak (1981): G = PSLy(R) and T a lattice, closed orbits.

» Burger (1990): G = PSLy(R) and I cocompact.

» Strombergsson (2013): G = PSLa(R) and T
non-cocompact.

» Sarnak, Ubis (2015): G = SLy(R) and I" = SLy(Z).

» Katz (2019): G semisimple linear group without compact
factors and I a lattice



-
Acting on a Hyperbolic manifold

>

For n > 2, let G be the identity component of the special
orthogonal group SO(n,1).

G can be considered as the group of orientation preserving
isometries of n-upper half-space H".

Let U denote the horospherical subgroup

U={9€G : a_sgas — e as s — +oo}
:{Ut : tERn_l}.

Let T' be a discrete subgroup of G (not necessarily a
lattice).

Any complete hyperbolic (constant negative curvature)
n-manifold can be presented as H"/T", and G/T is the
space of positively oriented frames on H"/T".



The convex core

» The limit set of I', A = A(I") C OH", is the set of
accumulation points of I'o for some o € H™.

» When T is not a lattice, A is a fractal set.

» When it is a lattice, A = 9(H").

» The convex core of H"/T" is the convex submanifold given
by
hull(A)/T" = hull A ¢ H"/T,

where hull(A) is the smallest convex subset containing all
geodesics connecting two points in A.



The convex hull in the Poincaré disc model




A limit set example

Figure: Limit set (McMullen, Mohammadi, Oh)



Convex cocompact and geometrically finite

» T is called geometrically finite (GF) if the unit
neighborhood of the convex core has finite volume.

» May be thought of as H"/T" having a finite-sided
fundamental domain. Examples include quasifuchsian
groups, or cutting a compact n-manifold along a totally
geodesic hyperplane.

» I is called convex cocompact if the convex core is compact.
» In this case, there are no cusps.

» Schottky groups without parabolic elements are examples
(finitely generated by hyperbolic elements satisfying certain
conditions, “ping pong” construction), with the convex core
being a handle body in this case.



Equidistribution in Infinite Volume

Theorem (Hopf ratio ergodic thm, Hopf, 1937, Hochman,

2010)

Let p be a locally finite U-invariant ergodic measure on G/T.
Let f1, fo € LY(G/T) such that u(f2) # 0. Then, for p-a.e. x

f o frw)dt  p(f)
T—o0 fTT o (ux)dt w(f2)

When the Haar measure is infinite, it follows that for a.e. z,
1 T
lim — [ f(ux)dt =0.

The time an orbit spends in any compact set is sub-linear.
“There is not enough recurrence.”



Equidistribution in Infinite Volume




Equidistribution in Infinite Volume

» The correct normalization will be given by the
Patterson-Sullivan measure, and the limit will be given by
the Burger-Roblin (BR) measure, which is a natural,
geometrically defined measure.

» If v= € A(T'), the PS measure governs the return times of
utx to the convex core.

» When I is a lattice and n = 2, the Haar measure is the
only U-ergodic measure not supported on a closed U orbit.

» If I' is geometrically finite, the BR measure is the natural
analogue of the Haar measure.



Our Equidistribution Theorem

Theorem (Tamam and W.)

Let I' C G be a convex cocompact subgroup of G and let

Q C GJT be a compact set. There exists kK = k(I') > 0 such that
for any x € Q such that z= € A(T), v € CX(G/T), and

r > ro(x,supp¢) > 0,

b
1S (By(r))

where the tmplied constant depends on I', ), and .

/ (ugz)dt — mBR(l/J) <Lr ",
By (r)

» The dependence of g on x and supp ¥ is explicit.
» We also prove this theorem for I' geometrically finite, but
additional assumptions are necessary.




Prior results in infinite volume

Equidistribution:

» Schapira (2005): G = PSL2(R) and T is geometrically
finite.

» Mohammadi and Oh (2010): G = SO(n,1)° and I is
geometrically finite.

Effective equidistribution:

» Edwards (2019): G = PSLy(R) and I' is geometrically
finite.



Application: I' orbits on R+

» I acts on V := R\ {0} by matrix multiplication.

Proposition (Tamam-W.)

Let T' be convex cocompact. For any ¢ € C.(V) and every v € V
with “v= € A(T"),” as T — oo, we have that

1 _ dv(u)
2 el = [t

YELIVIST

» or is the Hausdorff dimension of A(T").

» 7 is the pushforward of a measure that appears in the
product structure of mBR,

» We also prove a quantitative ratio theorem, and allow for
geometrically finite I'.



-
History: I' orbits on R"!

» Ledrappier (1999): Proved a similar ergodic theorem for
lattices in PSLy(R) acting on R2.

» Maucourant and Weiss (2012): A quantitative version of
Ledrappier’s theorem.

» Maucourant and Schapira (2014): proved an asymptotic
version for convex cocompact I" in SLa(R).

» Showed there cannot be convergence of the same form as in
Maucourant-Weiss.

» Proved convergence with an additional averaging.
» Many additional works studying the finite volume setting
in broad generality, e.g. works by Gorodnik-Weiss,
Gorodnik-Nevo, Nogueira, and more.



e
The PS and BR measures

» A I'-invariant conformal density of dimension § is a family
of finite measures {y, : * € H"} on 9(H") such that

%(5) — o= 0Be(zy)

* = d
Vxlz = Hyz A1 dp,

» The Patterson-Sullivan density, denoted {v, : z € H"}, is a
I’-invariant conformal density with dimension equal to the
Hausdorff dimension of A. It is unique up to scaling.

» We can use a weighted stereographic projection to define
the PS measure on a horosphere from this conformal
density. This will give an infinite measure.



A limit set example revisited

Figure: Limit set (McMullen, Mohammadi, Oh)



Hopf Parametrization

T!(H?) is homeomorphic to
(O(H?) x O(H?) — {(&,€) : € € O(H?)}) x R

via g — (g%,97, s = B,+(0,7(g))), for fixed o € H2.
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e
The PS and BR measures

» In the convex cocompact case, for 2+ € A(T),
WP (By(T)) =< T

» When there are cusps, there is an additional term scaling
by the distance into the cusp.

» The BR measure is defined geometrically using weighted
stereographic projection from the PS density and the
Lebesgue measure on d(H") (with a product structure).

» The support is {gI' € G/T": g~ € A(T")}.



Theorem revisited

Theorem (Tamam and W.)

Let T' C G be a convex cocompact subgroup of G and let

Q C G/T be a compact set. There exists k = k(I') > 0 such that
for any x € Q such that = € A(T"), ¥ € C(G/T), and

r > ro(x,supp ) > 0,

-
15 (Bu(r))

where the tmplied constant depends on I', ), and .

/ (ugr)dt — mBR(dJ) <Lr ",
By(r)




Main ingredients in the proof: Exponential mixing

» The BMS measure is a finite measure that is closely related
to the BR measure.

» It is supported on the convex core of I'.

» Our theorem requires exponential mixing of the A action
for mBMS.

Assumption (Exponential Mixing)

There exist kK = £(I') > 0 and s = so(I") such that for s > sg
and ¢, f € CX(G/TI),

- "7[) (asx) f (m) deMS (27) _ mBMS ("ﬁ) mBMS (f) < e—/is’

where the implied constant depends only on f,, and I'.




Main ingredients in the proof: Exponential mixing

» For I' convex co-compact, the exponential mixing was
proved by Winter in 2016, building on work of Stoyanov
and Dolgopyat. (See also Sarkar-Winter (2020).)

» For I' GF such that L?(G/T) has a spectral gap,
exponential mixing was proved by Mohammadi and Oh in
2015.

» When the critical exponent of I', dp > n — 2, there is such a
spectral gap.

» When there is a cusp of rank n — 1, op > "T_l In
particular, for n = 2, 3, there is a spectral gap.

» It is conjectured to be true for all n.



Main ingredients in the proof: quantitative
nondivergence

» For I' GF, we consider e-Diophantine points x € G/T.
> “x does not travel into the cusps too quickly”, a necessary
assumption.

Theorem (Tamam-W.)

There exists > 0 satisfying the following: for any
e-Diophantine element v € X, there exists Ty = To(x) > 0 such
that for every R >0, T > Ty, s <T¢, and xg = a_1ogsT, we
have
Hap (Bu(T/s)zo N Cr)
fizy (Bu(T/s)z0)

where the implied constant depends on I'.

-1k e_ﬁR,

» Here, Cr is an explicit compact set arising from the
thick-thin decomposition of the convex core.



Main ingredients in the proof: “Friendliness”

> A key difficulty in higher dimensions is understanding the
PS measure.

» In particular, can a large portion of the measure of a ball
be concentrated near its boundary?

» Das, Fishman, Simmons, and Urbanski proved in 2015 that
the PS density is “friendly” if I' is GF and all cusps have
rank n — 1. Using this, we proved that for such I':

Proposition

There exists o = a(I') > 0 such that for any x € G/T" with
xt e A(l),0< &<,

uES(By (€ +n)) &\
WES(By(p) T (‘) '
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Proof of the theorem

Using the exponential mixing, the relation between the
measures, and “Margulis’ thickening trick” one can show:

Theorem (Tamam-W.)

There exist k = k(') and sop = so(I') which satisfy the following.
Let Q) C G be a compact set, 0 < r < 1 be smaller than the
injectivity radius of Q, ¢ € CX(G/T'), and f € CX(By(r)).
Then, for any x € Q, x € supp(mPMS), and s > so we have

[ ) D — WSS w)| < e,

where the implied constant depends on f,v and I.




Proof of the theorem

Using the previous theorem and the relation between the
measures one can show:

Theorem (Tamam-W.)

There exist k = k(I') and so = so(T") which satisfy the following.
Let Q C G be a compact set, 0 < r < 1 be smaller than the
injectivity radius of 0, ¢ € C.(G/I'), and f € CX(By(r)).
Then, for any = € Q, x € supp(mPMS), and s > sq we have

e("_l_‘sr)s/ Y(asugz) f(t)dt — uxps(f)mBR(w) <L e ",
By (r)

where the implied constant depends on ¢, f, and I.




Proof of the theorem

For

s = glogT, 20 :=a_gv, and Ty=T'"%

we have

1 e(n—l—5)80

D) o BT Dy P

0

and
toy (Bu(To)wo N CF) < pigs (Bu(To)ao)e M.

0

By decomposing
By (To) = (Bu(To) N Cr) N (Bu(To) N CR),

we can get a bound on By (Tp) N Cf and use the nondivergence
statement on By (Tp) N Cr to get the estimate we want.
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