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Context



Permutation group

Let X be the interval [0, 1[.

We denote by S(X ) the permutation group of X .
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Permutation group
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Permutation group

Let Sfin be the normal subgroup of S(X ) consisting of all finitely
supported permutations.

Proposition
There exists a unique non-trivial group homomorphism :

εfin : Sfin → Z/2Z

We define Afin as the kernel of εfin.

Proposition (Consequence of a remark of Vitali in 1915)
There does not exist any group homomorphism from S(X ) to Z/2Z that
extends εfin.
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Vitali’s remark

Proof.
Every element of S(Z) is a product of squares. We explicit here how the
transposition of two distinct points of Z is the product of squares.

σ = (1 2)(3 4)(5 6) . . .
τ = (. . . − 1 1 3 5 . . .)(. . . 0 2 4 6 . . .)
σ′ = (3 4)(5 6) . . . = τστ−1

(1 2) = σσ′−1 = [σ, τ ]

[a, b] = aba−1b−1

= (ab)2b−1a−2b−1

= (ab)2b−2ba−2b−1

= (ab)2b−2(ba−1b−1)2
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Kapoudjian class

1→ Sfin → S(X )→ S(X )/Sfin → 1

1→ Z/2Z→ S(X )/Afin → S(X )/Sfin → 1

This exact sequence gives us a central extension of S(X )/Sfin by Z/2Z
thus an element of the cohomology group H2(S(X )/Sfin,Z/2Z). We
called this element the Kapoudjian class of S(X )/Sfin.

This element is not trivial because the exact sequence does not split.
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Kapoudjian class

Let G be a subgroup of S(X )/Sfin and we denote by Ĝ its preimage in
S(X ). We have :

1→ Sfin → Ĝ → G → 1

1→ Z/2Z→ Ĝ/Afin → G → 1

Similarly we define the Kapoudjian class of G ∈ H2(G ,Z/2Z).

Proposition
The Kapoudjian class of G is trivial if and only if there exists a group
homomorphism from Ĝ onto Z/2Z that extends εfin.
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Subgroups of S([0, 1[)



IET

The group IET (Interval Exchange Transformations) is defined as the
subgroup of S(X ) consisting of elements that are :

1. continuous outside a finite set;
2. right continuous;
3. piecewise a translation.

We notice that IET does not contain Sfin.
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IET+

The group ÎET+ is defined as the subgroup of S(X ) consisting of
elements that are :

1. continuous outside a finite set;
2. piecewise a translation.

We can notice that IET+ = ÎET+/Sfin is isomorphic to IET.
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IET./

The group ÎET./ is defined as the subgroup of S(X ) consisting of
elements that are :

1. continuous outside a finite set;
2. piecewise isometric.

reflection :
−

We notice that ÎET./ is generated by ÎET+ and reflections.

IET./ is the group of all Intervals Exchange Transformations with flips.
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PC+, PC./

P̂C./ is the subgroup of S(X ) consisting of all piecewise continuous
elements and P̂C+ is the subgroup of P̂C./ consisting of all elements that
are piecewise increasing function.

−

Proposition
We have the following equalities :

1. P̂C+ = Homeo+(S1)ÎET+ ;

2. P̂C./ = Homeo+(S1)ÎET./
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A signature for ̂IET./



Intuition for the value on reflections

−

−

− −

−

− −
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Associated partitions

Let f ∈ ÎET./ and P be a finite partition into intervals of [0, 1[. We said
that P is a partition associated with f if f is continuous on the interior of
every interval of P. We denote by f (P) the arrival partition.

We denote by Πf the set of all partition associated with f .

There exists a unique partition associated with f that has a minimal
number of interval denoted by Pmin

f . This partition is also minimal for
the refinement.
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Associated partitions

For every subinterval I of [0, 1[, we denote by rI is the reflection of the
interval I.

Proposition
For every f ∈ ÎET./ and P ∈ Πf , there exist a unique σ(f ,P) ∈ Sfin and a
unique subset A(f ,P) of f (P) such that σ(f ,P)(

∏
I∈A(f ,P)

rI)f belongs to

IET (right continuous and piecewise a translation).

The permutation σ(f ,P) is called the default of pseudo-right continuity of
f in regards to P. We denote by R(f ,P) the cardinal of A(f ,P).

15



Associated partitions

− −

− −
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Associated partitions

− −

− − − −
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The signature

Lemma
Let f ∈ ÎET./ and P ∈ Πf . The value εfin(σ(f ,P)) + R(f ,P) [mod 2]
does not depend on P.

We define ε(f ) = ε(σ(f ,Pmin
f )) + R(f ,Pmin

f ) [mod 2].
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Group homomorphism

Proposition
Let f , g ∈ ÎET./. There exists P ∈ Πg such that g(P) ∈ Πf .

Proof.
Let A be the set of discontinuities of f . We can always refine Pmin

g in a
partition P in order to have g−1(A) inside the set of endpoints of
intervals in P. Hence g(P) is a refinement of Pmin

f , thus it is inside
Πf .

Then for this partition we obtain :

1. R(f ◦ g ,P) = R(f , g(P)) + R(g ,P) [mod 2] ;
2. σ(f ◦g,P) = σ(f ,g(P)) ◦ f ◦ σ(g,P)) ◦ f −1;
3. ε(f ◦ g) = ε(f ) + ε(g).

Theorem (L. 2020)
The map ε is a group homomorphism that extends εfin.

19



Normal subgroups



Normal subgroups of ̂IET./

1→ Z/2Z→ ÎET.//Afin → IET./ → 1

ÎET.//Afin ' IET./×Z/2Z

Theorem (Arnoux 1981)
The group IET./ is simple.

Theorem (L. 2020)
The group ÎET./ has five normal subgroups given by the list :

{{1},Afin,Sfin,Ker(ε), ÎET./}
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More generally

Theorem (L. 2020)
There exists a group homomorphism ε from P̂C./ onto Z/2Z that
extends εfin.

Theorem (L. 2020)
Let G be a subgroup of PC./ that is simple nonabelian. Then Ĝ has
exactly five normal subgroups given by the list :

{{1},Afin,Sfin,Ker(ε|Ĝ ), Ĝ}
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Thanks for your attention!
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Precisions about Vitali’s remark i

Let σ ∈ S(Z). Its decomposition into disjoint cycles may contain finite
cycle, infinite cycle with finite/infinite number of fixed points.

The product of two cycles of the same length ` ∈ N ∪ {∞}, is a square.

(. . . a−1 a0 a1 . . .)(. . . b−1 b0 b1 . . .) = (. . . a−1 b−1 a0 b0 a1 b1 . . .)2

Let n ∈ 2N ∪ {∞} we have that any product of n disjoint cycles of same
length (length in N ∪ {∞}) is a square.

An infinite cycle with finite number of fixed points is the product of an
infinite cycle with infinite fixed points with an infinite product of disjoint
transpositions.

(. . . p0 q0 p1 q1 . . .) = (. . . (p0 q0) (p1 q1) . . .) (. . . q0 q1 . . .)
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Precisions about Vitali’s remark ii

An infinite product of finite cycles is the product of an infinite cycle with
an infinite product of disjoint transpositions.

((a1 a2 . . . ar1 ) (ar1+1 ar1+2 . . . ar2 ) . . .) =
((ar1 ar1+1) (ar2 ar2+1) . . .)(. . . ar2 ar1 a1 a2 . . . ar1−1 ar1+1 . . . ar2−1 . . .)

Any cycle with infinite fixed points is a commutator thus the product of
three squares. There exists d1, d2, . . . disjoint cycles whose length are the
length of c. Let Σ = d1d2 . . . and Σ′ = cd1d2 . . .. Then Σ and Σ′ are
conjugated and c = Σ′Σ−1 is a commutator.
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