A signature for some subgroups of the permutation group of [0,1[

UC San Diego Group Actions Seminar

Octave Lacourte

10th November 2020

ICJ (Lyon)

Context

Subgroups of $\mathfrak{S}([0,1[)$

A signature for $\widehat{\mathsf{IET}^{\bowtie}}$

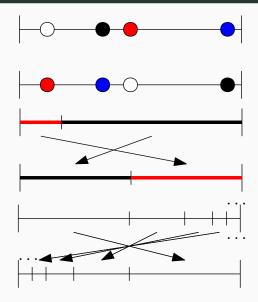
Normal subgroups

Context

Let X be the interval [0, 1[.

We denote by $\mathfrak{S}(X)$ the permutation group of X.

Permutation group



Let $\mathfrak{S}_{\mathrm{fin}}$ be the normal subgroup of $\mathfrak{S}(X)$ consisting of all finitely supported permutations.

Proposition There exists a unique non-trivial group homomorphism :

 $\varepsilon_{\mathrm{fin}}:\mathfrak{S}_{\mathrm{fin}}\to\mathbb{Z}/2\mathbb{Z}$

We define $\mathfrak{A}_{\mathrm{fin}}$ as the kernel of $\varepsilon_{\mathrm{fin}}$.

Proposition (Consequence of a remark of Vitali in 1915) There does not exist any group homomorphism from $\mathfrak{S}(X)$ to $\mathbb{Z}/2\mathbb{Z}$ that extends ε_{fin} .

Proof.

Every element of $\mathfrak{S}(\mathbb{Z})$ is a product of squares. We explicit here how the transposition of two distinct points of \mathbb{Z} is the product of squares.

$$\begin{array}{rcl}
\sigma &=& (1\ 2)(3\ 4)(5\ 6)\dots \\
\tau &=& (\dots -1\ 1\ 3\ 5\ \dots)(\dots\ 0\ 2\ 4\ 6\ \dots) \\
\sigma' &=& (3\ 4)(5\ 6)\dots \\
(1\ 2) &=& \sigma\sigma'^{-1} &=& [\sigma,\tau]
\end{array}$$

$$\begin{array}{rcl} a,b] &=& aba^{-1}b^{-1} \\ &=& (ab)^2b^{-1}a^{-2}b^{-1} \\ &=& (ab)^2b^{-2}ba^{-2}b^{-1} \\ &=& (ab)^2b^{-2}(ba^{-1}b^{-1})^2 \end{array}$$

$$1 \to \mathfrak{S}_{\mathrm{fin}} \to \mathfrak{S}(X) \to \mathfrak{S}(X)/\mathfrak{S}_{\mathrm{fin}} \to 1$$

$$1 \to \mathbb{Z}/2\mathbb{Z} \to \mathfrak{S}(X)/\mathfrak{A}_{\mathrm{fin}} \to \mathfrak{S}(X)/\mathfrak{S}_{\mathrm{fin}} \to 1$$

This exact sequence gives us a central extension of $\mathfrak{S}(X)/\mathfrak{S}_{\mathrm{fin}}$ by $\mathbb{Z}/2\mathbb{Z}$ thus an element of the cohomology group $H^2(\mathfrak{S}(X)/\mathfrak{S}_{\mathrm{fin}},\mathbb{Z}/2\mathbb{Z})$. We called this element the Kapoudjian class of $\mathfrak{S}(X)/\mathfrak{S}_{\mathrm{fin}}$.

This element is not trivial because the exact sequence does not split.

Let G be a subgroup of $\mathfrak{S}(X)/\mathfrak{S}_{\mathrm{fin}}$ and we denote by \widehat{G} its preimage in $\mathfrak{S}(X)$. We have :

$$1
ightarrow \mathfrak{S}_{ ext{fin}}
ightarrow \widehat{\textit{G}}
ightarrow \textit{G}
ightarrow 1$$

$$1 \to \mathbb{Z}/2\mathbb{Z} \to \widehat{G}/\mathfrak{A}_{\mathrm{fin}} \to G \to 1$$

Similarly we define the Kapoudjian class of $G \in H^2(G, \mathbb{Z}/2\mathbb{Z})$.

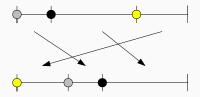
Proposition

The Kapoudjian class of G is trivial if and only if there exists a group homomorphism from \hat{G} onto $\mathbb{Z}/2\mathbb{Z}$ that extends ε_{fin} .

Subgroups of $\mathfrak{S}([0,1[)$

The group IET (Interval Exchange Transformations) is defined as the subgroup of $\mathfrak{S}(X)$ consisting of elements that are :

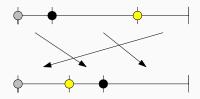
- 1. continuous outside a finite set;
- 2. right continuous;
- 3. piecewise a translation.



We notice that IET does not contain $\mathfrak{S}_{\mathrm{fin}}.$

The group $\widehat{\mathsf{IET}^+}$ is defined as the subgroup of $\mathfrak{S}(X)$ consisting of elements that are :

- 1. continuous outside a finite set;
- 2. piecewise a translation.

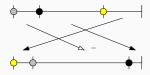


We can notice that $\mathsf{IET}^+ = \widehat{\mathsf{IET}^+} / \mathfrak{S}_{\mathrm{fin}}$ is isomorphic to $\mathsf{IET}.$

The group $\widehat{\mathsf{IET}}^{\bowtie}$ is defined as the subgroup of $\mathfrak{S}(X)$ consisting of elements that are :

- 1. continuous outside a finite set;
- 2. piecewise isometric.

We notice that \widehat{IET}^{\bowtie} is generated by \widehat{IET}^+ and reflections. IET^{\bowtie} is the group of all Intervals Exchange Transformations with flips. $\widehat{\mathsf{PC}}^{\bowtie}$ is the subgroup of $\mathfrak{S}(X)$ consisting of all piecewise continuous elements and $\widehat{\mathsf{PC}}^+$ is the subgroup of $\widehat{\mathsf{PC}}^{\bowtie}$ consisting of all elements that are piecewise increasing function.

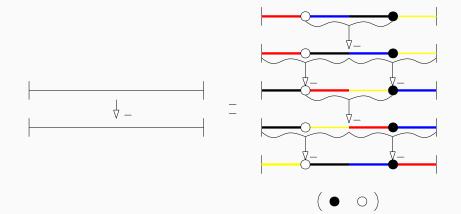


Proposition We have the following equalities :

1. $\widehat{\mathsf{PC}^+} = \mathsf{Homeo}^+(\mathbb{S}^1)\widehat{\mathsf{IET}^+}$; 2. $\widehat{\mathsf{PC}^{\bowtie}} = \mathsf{Homeo}^+(\mathbb{S}^1)\widehat{\mathsf{IET}^{\bowtie}}$

A signature for $I\widehat{ET}^{\bowtie}$

Intuition for the value on reflections



Let $f \in \widehat{\mathsf{IET}}^{\bowtie}$ and \mathcal{P} be a finite partition into intervals of [0, 1[. We said that \mathcal{P} is a partition associated with f if f is continuous on the interior of every interval of \mathcal{P} . We denote by $f(\mathcal{P})$ the arrival partition.

We denote by Π_f the set of all partition associated with f.

There exists a unique partition associated with f that has a minimal number of interval denoted by \mathcal{P}_{f}^{\min} . This partition is also minimal for the refinement.

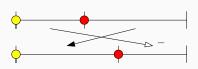
For every subinterval I of [0, 1[, we denote by r_I is the reflection of the interval I.

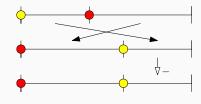
Proposition

For every $f \in \widehat{\operatorname{IET}}^{\bowtie}$ and $\mathcal{P} \in \Pi_f$, there exist a unique $\sigma_{(f,\mathcal{P})} \in \mathfrak{S}_{\operatorname{fin}}$ and a unique subset $A(f,\mathcal{P})$ of $f(\mathcal{P})$ such that $\sigma_{(f,\mathcal{P})}(\prod_{I \in A(f,\mathcal{P})} r_I)f$ belongs to IET (right continuous and piecewise a translation).

The permutation $\sigma_{(f,\mathcal{P})}$ is called the default of pseudo-right continuity of f in regards to \mathcal{P} . We denote by $R(f,\mathcal{P})$ the cardinal of $A(f,\mathcal{P})$.

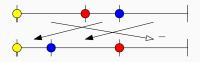
Associated partitions

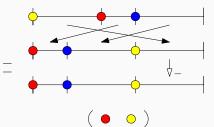




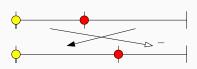
_

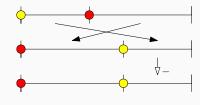
 $(\bullet \circ)$



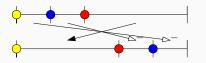


Associated partitions

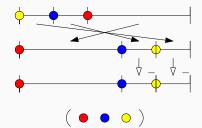




 $(\bullet \circ)$



_



Lemma Let $f \in \widehat{\mathsf{IET}^{\bowtie}}$ and $\mathcal{P} \in \Pi_f$. The value $\varepsilon_{\mathrm{fin}}(\sigma_{(f,\mathcal{P})}) + R(f,\mathcal{P}) \pmod{2}$ does not depend on \mathcal{P} .

We define $\varepsilon(f) = \varepsilon(\sigma_{(f,\mathcal{P}_f^{\min})}) + R(f,\mathcal{P}_f^{\min}) \pmod{2}$.

Proposition

Let $f,g \in \widehat{\mathsf{IET}^{\bowtie}}$. There exists $\mathcal{P} \in \Pi_g$ such that $g(\mathcal{P}) \in \Pi_f$.

Proof.

Let A be the set of discontinuities of f. We can always refine \mathcal{P}_g^{\min} in a partition \mathcal{P} in order to have $g^{-1}(A)$ inside the set of endpoints of intervals in \mathcal{P} . Hence $g(\mathcal{P})$ is a refinement of \mathcal{P}_f^{\min} , thus it is inside \prod_f .

Then for this partition we obtain :

1.
$$R(f \circ g, P) = R(f, g(P)) + R(g, P) \pmod{2}$$
;

2.
$$\sigma_{(f \circ g, \mathcal{P})} = \sigma_{(f, g(\mathcal{P}))} \circ f \circ \sigma_{(g, \mathcal{P}))} \circ f^{-1};$$

3. $\varepsilon(f \circ g) = \varepsilon(f) + \varepsilon(g).$

Theorem (L. 2020) The map ε is a group homomorphism that extends ε_{fin} .

Normal subgroups

Normal subgroups of IÊT[™]

$$1 \to \mathbb{Z}/2\mathbb{Z} \to \widehat{\mathsf{IET}^{\bowtie}}/\mathfrak{A}_{\mathrm{fin}} \to \mathsf{IET}^{\bowtie} \to 1$$

$$\widehat{\mathsf{IET}^{\bowtie}}/\mathfrak{A}_{\mathrm{fin}}\simeq\mathsf{IET}^{\bowtie}\times\mathbb{Z}/2\mathbb{Z}$$

Theorem (Arnoux 1981) *The group* IET^{\bowtie} *is simple.*

Theorem (L. 2020) The group $\widehat{\mathsf{IET}^{\bowtie}}$ has five normal subgroups given by the list :

 $\{\{1\}, \mathfrak{A}_{\mathrm{fin}}, \mathfrak{S}_{\mathrm{fin}}, \mathsf{Ker}(\varepsilon), \widehat{\mathsf{IET}^{\bowtie}}\}$

Theorem (L. 2020)

There exists a group homomorphism ε from \widehat{PC}^{\bowtie} onto $\mathbb{Z}/2\mathbb{Z}$ that extends $\varepsilon_{\mathrm{fin}}$.

Theorem (L. 2020)

Let G be a subgroup of PC^{\bowtie} that is simple nonabelian. Then \widehat{G} has exactly five normal subgroups given by the list :

 $\{\{1\}, \mathfrak{A}_{\mathrm{fin}}, \mathfrak{S}_{\mathrm{fin}}, \mathsf{Ker}(\varepsilon|_{\widehat{G}}), \widehat{G}\}$

Thanks for your attention!

Let $\sigma \in \mathfrak{S}(\mathbb{Z})$. Its decomposition into disjoint cycles may contain finite cycle, infinite cycle with finite/infinite number of fixed points.

The product of two cycles of the same length $\ell \in \mathbb{N} \cup \{\infty\}$, is a square.

$$(\ldots a_{-1} a_0 a_1 \ldots)(\ldots b_{-1} b_0 b_1 \ldots) = (\ldots a_{-1} b_{-1} a_0 b_0 a_1 b_1 \ldots)^2$$

Let $n \in 2\mathbb{N} \cup \{\infty\}$ we have that any product of n disjoint cycles of same length (length in $\mathbb{N} \cup \{\infty\}$) is a square.

An infinite cycle with finite number of fixed points is the product of an infinite cycle with infinite fixed points with an infinite product of disjoint transpositions.

$$(\dots p_0 q_0 p_1 q_1 \dots) = (\dots (p_0 q_0) (p_1 q_1) \dots) (\dots q_0 q_1 \dots)$$

An infinite product of finite cycles is the product of an infinite cycle with an infinite product of disjoint transpositions.

$$((a_1 \ a_2 \ \dots \ a_{r_1}) \ (a_{r_1+1} \ a_{r_1+2} \ \dots \ a_{r_2}) \dots) = \\ ((a_{r_1} \ a_{r_1+1}) \ (a_{r_2} \ a_{r_2+1}) \ \dots) (\dots \ a_{r_2} \ a_{r_1} \ a_1 \ a_2 \ \dots \ a_{r_1-1} \ a_{r_1+1} \ \dots \ a_{r_2-1} \dots)$$

Any cycle with infinite fixed points is a commutator thus the product of three squares. There exists d_1, d_2, \ldots disjoint cycles whose length are the length of c. Let $\Sigma = d_1 d_2 \ldots$ and $\Sigma' = c d_1 d_2 \ldots$ Then Σ and Σ' are conjugated and $c = \Sigma' \Sigma^{-1}$ is a commutator.

- Pierre Arnoux, Échanges d'intervalles et flots sur les surfaces, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) (1981), 5–38.
- Les surfaces, Ph.D. thesis, Université de Reims, 1981.
- Yves Cornulier, *Realizations of groups of piecewise continuous transformations of the circle.*, ArXiv:1902.06991 (2019).
- François Dahmani, Koji Fujiwara, and Vincent Guirardel, Free groups of interval exchange transformations are rare., Groups Geom. Dyn. 7 (2013), no. 4, 883–910 (English).
- François Dahmani, Koji Fujiwara, and Vincent Guirardel, *Solvable groups of interval exchange transformations*, arXiv: 1701.00377 (2017).
- Nancy Guelman and Isabelle Liousse, Bounded simplicity of affine interval exchange transformations and interval exchange transformations, ArXiv:1910.08923 (2019).

- Kate Juschenko and Nicolas Monod, Cantor systems, piecewise translations and simple amenable groups, Annals of mathematics (2013), 775–787.
- Kate Juschenko, Nicolás Matte Bon, Nicolas Monod, and Mikael de la Salle, *Extensive amenability and an application to interval exchanges*, Ergodic Theory and Dynamical Systems **38** (2018), no. 1, 195–219.
- Christophe Kapoudjian, Virasoro-type extensions for the higman-thompson and neretin groups, The Quarterly Journal of Mathematics 53 (2002), no. 3, 295–317.
- A. B. Katok, Invariant measures of flows on orientable surfaces, Dokl. Akad. Nauk SSSR 211 (1973), 775–778. MR 0331438
- Michael Keane, Interval exchange transformations, Math. Z. 141 (1975), 25–31. MR 357739

- A. B. Katok and A. M. Stepin, *Approximations in ergodic theory*, Uspehi Mat. Nauk **22** (1967), no. 5 (137), 81–106. MR 0219697
- Octave Lacourte, Signature for piecewise continuous groups, arXiv:2002.12851, 2020.
- Christopher F. Novak, *Discontinuity-growth of interval-exchange maps*, J. Mod. Dyn. **3** (2009), no. 3, 379–405. MR 2538474
- Chih-Han Sah, *Scissors congruences of the interval*, preprint (1981).
- Giuseppe Vitali, Sostituzioni sopra un'infinita numerabile di elementi, Bollettino Mathesis, 1915.
- Yaroslav Vorobets, *Notes on the commutator group of the group of interval exchange transformations*, ArXiv e-prints (2011), arXiv:1109.1352.