Equidistribution of affine random walks on some nilmanifolds.

Based on joint works with Weikun He and Elon Lindenstrauss

Tsviqa Lakrec

Hebrew University of Jerusalem

Outline

1 Random walks on tori and Heisenberg nilmanifold

Quantitative statement

More general statement

Random walk associated to a group action

Consider an action $G \curvearrowright X$. Let $\mu \in \mathcal{P}(G)$ be a probability measure. Let $x \in X$.

Definition

The random walk on X induced by μ and starting at x is the sequence of random variable $(g_ng_{n-1}\cdots g_1x)_{n>1}$ where $(g_n)_{n>1}$ is i.i.d. of law μ .

The law of $g_ng_{n-1}\cdots g_1x$ is $\mu^{*n}*\delta_x$, i.e. for any function $f:X\to\mathbb{C}$,

$$\mathbb{E}[f(g_ng_{n-1}\cdots g_1x)] = \int_X f\,\mathrm{d}(\mu^{*n}*\delta_x).$$

We are interested in the convergence in law, i.e. the convergence of $\mu^{*n} * \delta_x$ in the weak-* topology on X.

Compact nilmanifolds

Let $X = N/\Lambda$ be a compact nilmanifold. That is,

- $oldsymbol{0}$ N is a connected simply-connected nilpotent Lie group,
- \bullet $\Lambda \subset N$ is a lattice in N, i.e. it is discrete in N and
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \end{tabular} \hline \end{tabular} \end{$

We renormalize this measure to be a probability measure and denote it by \mathbf{m}_{X} .

Group of affine transformations

On $X=N/\Lambda$, we consider the action of its automorphism group

$$\operatorname{Aut}(X) = \{ \gamma \in \operatorname{Aut}(N) \mid \gamma(\Lambda) = \Lambda \}$$

and that of its affine transformations

$$Aff(X) = Aut(X) \ltimes N,$$

Here, for $\gamma \in \operatorname{Aut}(X)$ and $n \in N$, $(\gamma, n) \in \operatorname{Aut}(X) \ltimes N$ is the map

$$\forall x \in N, \quad x\Lambda \mapsto n\gamma(x)\Lambda.$$

For $g=(\gamma,n)$, we call γ the automorphism part and denote $\theta(g)=\gamma.$

Examples

- Let $d \geq 1$, $N = \mathbb{R}^d$ and $\Lambda = \mathbb{Z}^d$. Then $X = \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$, $\operatorname{Aut}(X) = \operatorname{GL}_d(\mathbb{Z})$.
- ② Let N be the Heisenberg group, $N=\mathbb{R}^3$ endowed with the law

$$(x,y,z)\cdot(x',y',z')=(x+x',y+y',z+z'+xy').$$

Let $\Lambda = \{ (x, y, z) \in N \mid x, y, z \in \mathbb{Z} \}.$

Then $\operatorname{Aut}(X)=\operatorname{GL}_2(\mathbb{Z})\ltimes\mathbb{Z}^2$ is the set of transformations

$$(x,y,z) \mapsto \left(ax+by,cx+dy,\det(g)(z-\frac{xy}{2})+\frac{1}{2}(ax+by)(cx+dy)+\alpha x+\beta y\right)$$

where $g = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \mathrm{GL}_2(\mathbb{Z})$ and $(\alpha, \beta) \in \frac{1}{2}\mathbb{Z}^2$ satisfies some parity condition.

Question on equidistribution in law

Question

Let X be a compact nilmanifold. Given $\mu \in \mathcal{P}(\mathrm{Aff}(X))$ and $x \in X$,

- does $\mu^{*n} * \delta_x \rightharpoonup^* m_X$?
- 2 If it does, how fast is the convergence?

Expected anwser: Yes, unless there is obvious obstruction.

Remark

Let $H = \langle \operatorname{Supp}(\mu) \rangle$, the subgroup generated by the support. If $\overline{Hx} \neq X$, then $\mu^{*n} * \delta_x \not\rightharpoonup^* m_X$.

Orbit closures

Note that $\operatorname{Aff}(X) \curvearrowright X$ is transitive. Hence $X = \operatorname{Aff}(X)/\operatorname{Aut}(X) \ltimes \Lambda$ is a homogeneous space. Let $\mathfrak g$ be the Lie algebra of $\operatorname{Aff}(X)$.

Theorem (Benoist-Quint)

Let $H \subset Aff(X)$ be a subgroup and $x \in X$.

Assume that the Zariski closure of Ad(H) in $GL(\mathfrak{g})$ is semisimple without compact factor.

Then \overline{Hx} is a finite homogeneous union of affine submanifolds.

Orbit closures, case of a torus

Theorem (Guivarc'h-Starkov & Muchnik)

Let Γ be a subgroup of $\mathrm{GL}_d(\mathbb{Z}) = \mathrm{Aut}(\mathbb{T}^d)$. Assume

- lacksquare the action of the Γ on \mathbb{Q}^d is strongly irreducible.
- **2** the Zariski closure Γ in $GL_d(\mathbb{R})$ is semisimple without compact factor.

For every $x \in \mathbb{T}^d$, the orbit Γx is either finite of dense.

Definition

We say Γ acts strongly irreducibly on \mathbb{Q}^d if it does not preserve any finite nontrivial union of proper subspaces of \mathbb{Q}^d .

Equidistribution in law, torus, linear

Theorem (Bourgain-Furman-Lindenstrauss-Mozes, He-Saxcé)

Let $\mu \in \mathcal{P}(GL_d(\mathbb{Z}))$ having a finite β -exponential moment for some $\beta > 0$. Let $\Gamma = \langle \operatorname{Supp}(\mu) \rangle$. Assume that the action of the Γ on \mathbb{R}^d is strongly irreducible.

Then for any $x \in \mathbb{T}^d$, $\mu^{*n} * \delta_x \rightharpoonup^* \mathbf{m}_{\mathbb{T}^d}$ unless $x \in \mathbb{Q}^d/\mathbb{Z}^d$ (i.e. Γx is finite).

Definition

For some $\beta > 0$, we say μ has a finite β -exponential moment if

$$\int_{\mathrm{SL}_d(\mathbb{Z})} \|g\|^{\beta} \,\mathrm{d}\mu(g) < +\infty.$$

Equidistribution in law, torus, affine

Recall that $\theta \colon \operatorname{Aff}(X) \to \operatorname{Aut}(X)$ denotes the projection.

Theorem (He-Lindenstrauss-L.)

Let $\mu \in \mathcal{P}(\mathrm{GL}_d(\mathbb{Z}) \ltimes \mathbb{R}^d)$ having a finite support.

Let $H = \langle \operatorname{Supp}(\mu) \rangle$ and $\Gamma = \theta(H)$.

Assume Γ satisfies the assumptions in the BFLM theorem.

Then for any $x \in \mathbb{T}^d$, $\mu^{*n} * \delta_x \rightharpoonup^* m_{\mathbb{T}^d}$ unless Hx is finite.

Very similar result was obtained by Boyer, under different assumptions.

Equidistribution in law, Heisenberg nilmanifold

Let $X=N/\Lambda$ with N being the (2k+1)-dimensional Heisenberg group. Note that (N,N) is the one dimensional center and $N/(N,N)\Lambda$ is a 2k-dimensional torus.

Denote by $\pi \colon X \to N/(N,N)\Lambda$ the projection.

Theorem (H-Lindenstrauss-L.)

Let $\mu \in \mathcal{P}(\mathrm{Aff}(X))$ with a finite support.

Let $H = \langle \operatorname{Supp}(\mu) \rangle$ and $\Gamma = \theta(H)$.

Assume that the action of Γ on N/(N,N) satisfies the assumptions in the BFLM theorem.

Then for any $x \in X$, $\mu^{*n} * \delta_x \rightharpoonup^* m_X$ unless $\pi(Hx)$ is finite.

If $\mu \in \mathcal{P}(\mathrm{Aut}(X))$, then finite support can be relaxed to having a finite exponential moment.

Outline

Random walks on tori and Heisenberg nilmanifold

Quantitative statement

More general statement

Wasserstein distance

We fix a Riemannian distance on $X = N/\Lambda$.

For $\alpha \in (0,1)$, let $\mathcal{C}^{0,\alpha}(X)$ denote the space of α -Hölder continuous functions on X, equipped with the norm

$$||f||_{0,\alpha} = ||f||_{\infty} + \sup_{x \neq y \in X} \frac{|f(x) - f(y)|}{d(x,y)^{\alpha}}.$$

Definition

Let ν and η be Borel measures on X. The α -Wasserstein distance between them is

$$\mathcal{W}_{\alpha}(\nu,\eta) = \sup_{f \in \mathcal{C}^{0,\alpha}(X): \|f\|_{0,\alpha} \le 1} \left| \int_X f \, \mathrm{d}\nu - \int_X f \, \mathrm{d}\eta \right|.$$

Quantitative statement, Lyapunov exponent

Let $\mu \in \mathcal{P}(\mathrm{Aff}(X))$ with a finite support. Let $H = \langle \mathrm{Supp}(\mu) \rangle$ and $\Gamma = \theta(H)$.

Definition

Denote by $\lambda_{1,N/(N,N)}(\theta_*\mu)$ the top Lyapunov exponent of the random walk induced by $\theta_*\mu$ on the Euclidean space N/(N,N).

$$\lambda_{1,N/(N,N)}(\theta_*\mu) = \lim_{n \to +\infty} \frac{1}{n} \int \log \|\theta(g)\|_{N/(N,N)} d\mu^{*n}(g)$$

where $\|\cdot\|_{N/(N,N)}$ denotes any operator norm on $\operatorname{End}(N/(N,N))$.

Quantitative statement, Heisenberg nilmanifold

Theorem (He-Lindenstrauss-L.)

Assume $N=\mathbb{R}^d$ or a Heisenberg group. Assume that the action of Γ on N/(N,N) satisfies the assumptions in the BFLM theorem.

Given $\lambda \in (0,\lambda_{1,N/(N,N)}(\mu))$ and $\alpha \in (0,\beta)$, there exists $C \geq 1$ such that : If for some $x \in X$, $t \in (0,\frac{1}{2})$ and $m \geq C \log \frac{1}{t}$,

$$W_{\alpha}(\mu^{*m} * \delta_x, \mathbf{m}_X) > t,$$

then there exists $x' \in X$ and a finite set $F \subset \mathrm{Aff}(X)$ such that

$$d(x, x') + \max_{g \in \text{Supp}(\mu)} d(g, F) \le e^{-\lambda m},$$

and the projection of the orbit $\langle F \rangle x'$ in $N/(N,N)\Lambda$ is finite of cardinality less than t^{-C} .

If $\mu \in \mathcal{P}(\mathrm{Aut}(X))$ instead, then this can be reformulated with infinite support instead.

Outline

Random walks on tori and Heisenberg nilmanifold

Quantitative statement

More general statement

Growth rate and spectral radius

Let H be a group and μ a probability measure on H.

Definition

Consider an action of H on a group Z by automorphisms.

Let $\theta_Z \colon H \to \operatorname{Aut}(Z)$ denote the homomorphism. Define

$$\tau_Z(\mu) = \lim_{m \to +\infty} \frac{1}{m} \log \#\theta_Z(\operatorname{Supp}(\mu^{*m})).$$

This definition needs to be slightly modified when μ is not finitely supported.

Definition

If $(X, m_X) \to (Y, m_Y)$ is a factor map of a H-spaces (p.m.p action on both), define

$$\sigma_{X,Y}(\mu) = -\lim_{m \to +\infty} \frac{1}{m} \log ||P(\mu)^m||_{L^2(X, \mathbf{m}_X) \ominus L^2(Y, \mathbf{m}_Y)},$$

Quantitative equidistribution

Definition

Let $\lambda>0$, C>1, $\alpha\in(0,1]$, $\mu\in\mathcal{P}(\operatorname{Aut}(X))$, and let $H=\langle\operatorname{Supp}(\mu)\rangle$. We say that the μ -induced random walk on X satisfies (C,λ,α) -quantitative equidistribution if the following holds for any integer $m\geq 1$ and any $t\in(0,\frac{1}{2})$. Assume

$$m \geq C \log \frac{1}{t}$$
 and $\mathcal{W}_{\alpha}(\mu^{*m} * \delta_x, \mathbf{m}_X) > t$.

Then there exists a point $x' \in X$ such that

- $d(x,x') \le e^{-\lambda m}$
- **2** $\pi(Hx')$ lies in a proper closed H-invariant subset of T of height $\leq t^{-C}$.

Quantitative statement, general case

Theorem (He-Lindenstrauss-L.)

Let $\mu \in \mathcal{P}(\mathrm{Aut}(X))$ be with a finite β -exponential moment, Γ as before. Assume that there exists a rational Γ -invariant connected central subgroup $Z \subset N$ such that

$$\tau_Z(\mu) < 2\sigma_{X,Y}(\mu)$$

where $Y=N/(\Lambda Z)$ is the factor nilmanifold obtained by quotienting out Z .

If the μ -induced random walk on Y satisfies (λ,α) -quantitative equidistribution for some $\lambda>0$ and $\alpha\in(0,\beta]$ then the μ -induced random walk on X satisfies (λ',α) -quantitative equidistribution for any $\lambda'\in(0,\lambda)$.

Examples

- **①** N is a step 2 nilpotent group and the action of Γ on its center Z(N) is virtually nilpotent.
- ② Action of $\Gamma \subset \mathrm{SL}_{2d}(\mathbb{Z})$ on \mathbb{T}^{2d} consisting of $d \times d$ -block triangular matrices. For example, let μ be the law of

$$\left(\begin{array}{c|c}A & I_d\\\hline 0 & D\end{array}\right).$$

where A and D are independent random variables. Given any A, we can choose D to ensure

$$\tau_{\mathbb{R}^d \oplus 0}(\mu) < 2\sigma_{\mathbb{T}^{2d},0 \oplus \mathbb{T}^d}(\mu).$$

Thank you for listening!