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Abstract

This article surveys R. Parikh’s work on feasibility, bounded arithmetic and the
complexity of proofs. We discuss in depth two of Parikh’s papers on these subjects
and some of the subsequent progress in the areas of feasible arithmetic and lengths
of proofs.

1 Introduction

This article discusses two papers of Rohit Parikh on feasibility and bounded
arithmetic and on the complexity of proofs: the first is the 1971 paper
“Existence and Feasibility in Arithmetic” [30] and the second is the 1973
paper “Some Results on Length of Proofs” [31]. Both papers were seminal
and influential and led to large research areas which are still active and
fruitful 25 years later. The first paper addressed the intuitive concept of
feasibility, discussed the infeasibility of exponentiation, and presented the
original definition of bounded arithmetic (I∆0). The second paper solved a
special case of a conjecture of Kreisel’s and additional problems in proof
speed-up, and introduced important tools for the analysis of the complexity of
proofs in first-order logic and other formal systems.

We will discuss first the “feasibility” paper, in section 2. Section 3 takes up
the “length of proof” paper, and section 4 concludes with a discussion of the
connections between these topics.
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2 Existence and Feasibility in Arithmetic

The most important aspect of the 1971 “feasibility” paper was arguably the
introduction of the first-order theory of bounded arithmetic, now referred to
as I∆0. This paper starts by considering the issue of whether a fast-growing
function such as exponentiation gives rise to numbers which are intuitively
infeasible or non-constructible. Of course, from the point of view of classical
proof theory, exponentiation is a rather slow-growing function — it is, of course,
a primitive recursive function and finitists and intuitionists certainly accept
all primitive recursive functions. On the other hand, there are a number of
reasons to doubt the feasibility of exponentiation, and a number of logicians
and philosophers have doubted the concrete existence of large numbers such
as 67257729

formed with exponential terms. (See Yessenin-Volpin [45] and the
later works building on Parikh’s bounded arithmetic of E. Nelson [26] and
Sazanov [38,39]). And for computer scientists, the computational infeasibility of
exponentiation was already well-recognized. Parikh endorsed this infeasibility
of exponentiation, saying

. . . there is a large element of phantasy in conventional mathematics which
one may accept if one finds it pleasant, but which one could equally sensibly
(perhaps more sensibly) reject.

and the principle themes of the paper were to give justifications for viewing
exponentiation as infeasible in formal theories of arithmetic and to give an
alternative formalization of arithmetic (i.e., bounded arithmetic) which would
be closer to feasible.

There are four aspects of the “feasibility” paper that we shall discuss: (i) the
suggestion that bounded formulas and linear space computations are feasible,
whereas exponentiation is not, (ii) the definition of bounded arithmetic,
(iii) the “Parikh theorem” for bounded arithmetic, and (iv) the extent to
which exponentiation is needed for the arithmetization of metamathematics.

(i) In section 3 of the “feasibility” paper, Parikh presents a model-theoretic
result illustrating the gap between exponentiation and the feasible operations
of addition and multiplication in models of arithmetic. Specifically, consider
the axioms

f(x, 0) = 1 f(x, y + z) = f(x, y) · f(x, z)

f(x, S(y)) = x · f(x, y) f(x, y · z) = f(f(x, y), z)

which uniquely characterize f(x, y) as the exponentiation function xy in
the standard integers. Parikh proved, however, that there is a non-standard
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model M of Th(N) and two distinct functions f1 and f2 on M both of which
satisfy the above four axioms for all values x, y, z ∈ M .

In the next section, Parikh proposes an “anthropomorphic” system based on
classes of predicates and functions which are more feasible than exponentiation.
His first class of predicates is the predicates which can be defined by bounded
formulas of the form

(Q1x1 < t1)(Q2x2 < t2) · · · (Qnxn < tn)B(x1, . . . , xn, y1, . . . , ym)

where the terms ti involve only the variables y1, . . . , ym and where B is a
quantifier-free formula. Nowadays, the notation ∆0 is commonly used to denote
either the set of bounded formulas or the set of predicates definable by bounded
formulas; it is also now known that this set of predicates is precisely the set
of predicates recognized by constant alternation, linear time Turing machines,
which are called the linear-time hierarchy predicates.

The linear time hierarchy was first introduced by Smullyan [41] in the guise
of “rudimentary predicates”. Shortly thereafter, Bennett [2] proved that
Smullyan’s rudimentary predicates are precisely the predicates that can be
defined with a bounded formula over the integers (using a m-adic representation
of integers). During the later 1960’s, a number of people investigated the re-
lationship between the rudimentary predicates and computational complexity
classes (see, e.g., Jones [19]). In later work, subsequent to Parikh’s “feasibility”
paper, the rudimentary predicates were studied extensively by Wrathall [44],
Harrow [17], Nepomnjaščĭı [27], and Wilkie [42]; both Wrathall and Wilkie
essentially proved that this class was equal to the linear time hierarchy, but
Lipton [23] was the first to explicitly prove the fact that the set of ∆0 predicates
is equal to the linear time hierarchy.

Parikh was definitely interested in connections between computational com-
plexity and the ∆0-formulas, but instead of discussing the linear-time hierarchy
(since, in any event, the linear-time hierarchy was not yet defined, much less
known to be related to the ∆0-hierarchy), he turned to the class of predicates
which are recognized by deterministic linear bounded automata (dlba’s), or in
modern day terminology, to the class of predicates which can be computed in
linear space by a deterministic Turing machine. Parikh called the linear space
predicates “concrete”: he noted the theorem of Myhill that every ∆0-formula
defines a concrete predicate and also noted that the converse inclusion was
open (and this is still open today!).

From a present-day computer science viewpoint, the suggestion that concrete
(linear-space) predicates are “feasible” seems odd, since it is commonly con-
jectured that some of these predicates require exponential time to compute.
Likewise, the class of ∆0-predicates, which equals the linear-time hierarchy, is
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conjectured to contain predicates which require exponential time to compute;
for instance, the NP-complete predicate SAT is in the linear time hierarchy
and is commonly conjectured to be infeasible. Parikh does not offer any strong
reasons in the “feasibility” paper for why the concrete or the ∆0-predicates
should be considered feasible; however, there are at least two reasons that
might support taking them to be feasible: firstly, they do not involve the use
of any exponentially large numbers, and secondly, the ∆0-predicates at least
do not seem to be vulnerable to the kind of model-theoretic separation from
addition and multiplication that was shown to hold for exponentiation.

(ii) The most important contribution of the “feasibility” paper was probably
the definition of the theory of bounded arithmetic, denoted PB in that paper,
but now usually denoted I∆0. (We’ll use the modern notation in this paper.)

Definition 1 (Parikh [30]) I∆0 (or PB) is the first-order theory with non-
logical symbols 0, S, + and · and containing the axioms

(1) 0 6= S(x) (5) x + S(y) = S(x + y)

(2) S(x) = S(y) → x = y (6) x · 0 = 0

(3) x = 0 ∨ ∃y(x = S(y)) (7) x · S(y) = x · y + x

(4) x + 0 = x

(8n) A(0) ∧ ∀x(A(x) → A(S(x))) → ∀xA(x)

where A may be any bounded formula, possibly involving free variables other
than x.

The syntactic details of defining bounded quantifiers in the language of I∆0,
which does not contain a < relation symbol, were not discussed in the
“feasibility” paper, but presumably “x < y” was intended to abbreviate the
formula “∃z(x + S(z) = y).”

(iii) The primary evidence presented in the “feasibility” paper for the feasibility
of bounded arithmetic is the nondefinability of functions of superlinear growth
rate. Parikh proves this in two parts. First, he shows that there is no formula,
bounded or otherwise, which defines exponentiation as a provably total function
of I∆0; more precisely,
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Theorem 2 (Parikh [30]) There is no formula A(x, y, z) such that I∆0 proves

(1) ∀x∀y∃!zA(x, y, z).

(2) ∀x∀y∀z(A(x, 0, 1) ∧ (A(x, y, z) → A(x, S(y), z · x))).

(3) ∀x∀y∀z(A(x, y, z) → z 6= 0). 2

The theorem was proven by a proof-by-contradiction using a model-theoretic
argument; namely, let N be a nonstandard model of Peano arithmetic and
α be an infinite integer in N . Define M to the initial segment of N containing
the integers of N which are less than αn for some standard n ∈ N. Then, by
the absoluteness of ∆0-formulas, M ² I∆0. Consider the value b such that
M ² A(α, α, b). From the construction of M , b < αk for some k ∈ N. Let c be
the value such that M ² A(α, α− k, c). Then, in M , c 6= 0 and c ·αk = b < αk,
which is a contradiction. q.e.d.

The second result concerning the nondefinability of superlinear growth rate
functions is the theorem commonly called “Parikh’s theorem” in bounded
arithmetic. It introduced the very important idea of ∆0-definable functions:

Theorem 3 (Parikh [30]) If A(x, y) is a bounded formula with no additional
free variables, and if I∆0 can prove ∀x∃yA(x, y), then for some k, ` > 0,

I∆0 ` ∀x∃y(y < xk + ` ∧ A(x, y))

Dimitracopoulos later noted that the model-theoretic proof of the previous
theorem can readily be modified to yield a proof of this theorem; however,
Parikh presented a proof-theoretic proof based on Herbrand’s theorem. He
first noted that by adding Skolem functions

fA,t(x, ~y) := µx(A(x, ~y) ∨ x = t)

for all ∆0-formulas A and all terms t = t(~y), one obtains a conservative
extension PB′ of I∆0 such that PB′ is axiomatizable by universal formulas
and such that any ∆0-formula is PB′-provably equivalent to a quantifier-free
formula. By Herbrand’s theorem and by closure of the set of PB′ function

2 Parikh omitted the condition (3) from the statement of the theorem and
unfortunately the theorem is false without this assumption, since one may take
A(x, y, z) to be the formula

exp(x, y, z) ∨ (z = 0 ∧ ¬∃u(exp(x, y, u))).

where exp(x, y, z) is a formula defining the graph of exponentiation.
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symbols under definition by cases, it follows the I∆0-provability of ∀x∃yA(x, y)
implies that there is a PB′-term t such that

PB′ ` ∀xA(x, t(x)).

Since any PB′-term is provably bounded by a polynomial, and since PB′ is a
conservative extension of I∆0, the theorem follows.

(iv) Parikh discusses as an open question the issue of whether the exponentia-
tion function is required for the arithmetization of metamathematics necessary
for the Gödel incompleteness theorems. Rephrasing his arguments slightly, he
notes that if a formula A(x) has m symbols and a term t has n symbols, then
the formula A(t) may have number of symbols proportional to m · n. Hence if
an efficient Gödel numbering is used, A will have Gödel number pAq ≈ 2O(m)

and t will have Gödel number ptq ≈ 2O(n), and therefore A(t) will have Gödel
number

pA(t)q ≈ 2O(n·m) ≈ (pAq)O(n) ≈ (pAq)O(log(ptq)) .

The value of pA(t)q cannot be bounded by a polynomial of pAq and ptq
and, as corollary to the previous two theorems, I∆0 cannot prove that pA(t)q
exists from only the assumption that pAq and ptq exist. Since the arithme-
tization of substitution is an important component of the arithmetization of
metamathematics, this gives an indication that the usual “intensional” Gödel
incompleteness theorems cannot be carried out in the theory I∆0.

Subsequent developments showed however that full exponentiation is not
needed for the arithmetization of metamathematics. Already, Parikh’s size
analysis shows that only the function (x, y) 7→ xlog y is needed. Wilkie and
Paris [43] first noted this and considered the theory I∆0 augmented with
an axiom Ω1 stating ∀x, y∃z(z = xblog yc): they showed that all the usual
arithmetization of metamathematics can be carried out in I∆0 + Ω1. Later,
Nelson [26] and Buss [3] used a function # of similar growth rate: x#y := 2|x|·|y|

where |x| ≈ log2 x. The growth rates of Ω1 and the # function are generally
felt to be much closer to multiplication than to exponentiation, and indeed,
xlog y and x#y are generally viewed as feasible.

Even without the axiom Ω1 or the function #, the arithmetization of meta-
mathematics and the intensional treatment of Gödel’s incompleteness theorems
can be (mostly) carried out in I∆0. Namely, Solovay, in an unpublished 1976
letter to Hájek, showed that I∆0 can prove the existence of a cut or initial
segment of the integers which is closed under #. I∆0 can thus carry out the
arithmetization of metamathematics relativized to this initial segment, and
this is sufficient for most applications of Gödel incompleteness theorems. (See
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Pudlak [35] and Nelson [26] for the development of this.)

However, it is still open whether I∆0 can formalize the metamathematics
needed for the Gödel incompleteness theorems without the use of relativization
to initial segments. It turns out that the substitution function is not the essen-
tial problem, but rather the problem is to formalize the provability predicate
ThmI∆0 so that I∆0 can prove that if a formula is provable, then it is provable
that it is provable (in other words, so that the third Hilbert-Bernays-Löb
derivability condition holds).

Since Parikh’s original definition, bounded arithmetic has grown into a large
and actively studied area. In the late 1970’s to mid 1980’s, Paris and Wilkie
and other authors developed a large body of results on bounded arithmetic and
especially its connections to computational complexity. Of particular note is
the influential paper of Paris and Dimitracopoulos [33] relating model-theoretic
results in bounded arithmetic, Peano arithmetic and true arithmetic to open
questions in computational complexity concerning P, NP, the polynomial
time hierarchy, and polynomial space. In the mid-1980’s, the present author
introduced a new formalization S2 of bounded arithmetic which is essentially
equivalent to I∆0 + Ω1. The theory S2 contains natural subtheories Si

2 and
T i

2 which can be related directly to complexity classes in the polynomial time
hierarchy such as P and NP . Since the mid-1980’s, there has been extensive
research on S2 and related theories; however, it is beyond the scope of the
present paper to survey this work.

For more complete treatments of bounded arithmetic, the reader can refer to
Wilkie-Paris [43], Buss [3], Hájek-Pudlák [16] and Kraj́ıček [21].

In addition to the aspects of Parikh’s “feasibility” paper discussed above,
two additional topics were covered in the paper. The first topic was the
description of a formula A which is provable in PA and therefore the formula
P (A) := ThmPA(pAq) is provable in PA, such that the shortest PA-proof
of A is significantly longer than the shortest PA-proof of P (A). “Significantly
longer” means that any primitive recursive gap between the proof lengths is
obtainable. Parikh then generalized this to formulas P (P (· · ·P (A) · · ·)) based
on iterated use of the provability predicate. Subsequent research on this topic
includes [10,8,6,40].

The second additional topic was “almost consistent theories” which are incon-
sistent theories extending PA in which the shortest proof of an inconsistency is
infeasibly long. Let PA+ denote Peano arithmetic formalized in the usual
fashion, but in a language containing function symbols for all primitive
recursive functions and the defining axioms for these function symbols. Let PA+

F

denote PA+ extended with the inclusion of a new unary predicate symbol F ,
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where F (x) has the intuitive meaning “x is a feasible integer”, plus a finite list
of axioms including (at least)

F (0), (∀x)(F (x) → F (S(x))),

and ¬F (θ) for some closed term θ. The new function symbol F is not allowed
to appear in induction formulas. The theory PA+

F is obviously inconsistent,
since θ is closed term and can hence be proved to equal Si(0) for some i ≥ 0.
However the term θ may have an extremely large value, and since F cannot be
used in induction formulas, one might expect that any proof of an inconsistency
in PA+

F must be extremely long. This is, in fact, exactly what Parikh proves
in a strengthened form. Namely, he proves theorems stating that if PA+

F ` B
for some PA+-formula B and if the PA+

F -proof is short enough relative to the
value of the closed term θ, then already PA+ can prove B. We will omit a
detailed description of these theorems, but instead only remark that the value
of θ is superexponentially larger than the size of the PA+

F -proof of F . Further
work on these almost consistent theories has been done by Dragalin [11] and
Carbone [7].

3 Lengths of Proofs

In the “length of proofs” paper [31], Parikh proved a remarkable theorem
about lengths of proofs, of a type first conjectured by Kreisel. Let PA∗ be a
formalization of Peano arithmetic in a first-order language with a constant
symbol 0, a unary symbol S, and two 3-ary relation symbols A(· · ·) and M(· · ·)
defining the graphs of addition and multiplication. PA∗ has axioms describing
the properties of 0, S, A and M , plus induction for all formulas. Further
assume PA∗ is axiomatized in a “schematic” way with a finite number of axiom
schemes and inference rule schemes (we’ll discuss schematic systems in more
detail below).

Proof length will be measured in terms of the number of steps, i.e., the number
of lines or formulas, which appear in the proof. The notation “PA∗ k A” means
that A has a PA∗-proof of size at most k. Let n denote the term Sn(0) =
S(S(· · ·S(0) · · ·)) with value equal to n ∈ N.

Theorem 4 (Parikh [31]) Let A(x) be a formula. Suppose there is a fixed k > 0
such that PA∗ k A(n) for all n ∈ N. Then PA∗ ` ∀xA(x).

A quick observation is that the converse of this theorem is trivially true, since
∀xA(x) → A(n) is provably in a constant number of steps, independent of
A and n (and since any schematic system can simulate modus ponens in a
constant number of steps). As a second observation, note that since we are
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measuring proof lengths in terms of the number steps in the proof instead of in
terms of the number of symbols in the proof, there are infinitely many proofs
of size less than or equal to k. This is because a k-step proof may contain
arbitrarily complex formulas.

Now it should be noted that Theorem 4 cannot possibly be true of all possible
formalizations of PA∗ — indeed, since PA∗’s consequences form a recursively
enumerable set, a method of Craig’s shows that it is possible to give a recursive
axiomatization of PA∗ in which every theorem of PA∗ has a PA∗-proof in
a constant number of lines. This is done by letting PA∗ be axiomatized by
the formulas A ∧ (Sk0 = Sk0) where k is the Gödel number of a PA∗-proof
of A. Clearly this axiomatization is recursive. Also, A can be proved from
this axiom in a constant number of steps via modus ponens with the formula
(A ∧ (Sk0 = Sk0)) → A.

This recursive formalization of PA∗ is of course rather pathological and to
avoid pathological axiomatizations, Parikh required that PA∗ be formalized as
a schematic system. A schematic system is a formal system with a finite set
of schematic rules modified by admissible restrictions. Rather than reproduce
Parikh’s definitions, we present four examples of schematic rules:

1. Modus Ponens. The following inference rule is a binary schematic rule:

P P → Q

Q

where any formulas may be substituted for P and Q. It has no associated
restrictions.

2. P → (Q → P ) is a nullary schematic rule (i.e., an axiom scheme). Any
formulas may be substituted for P and Q and it has no associated restrictions.

3. ∀xP (x) → P (t) is another nullary schematic rule. Any formula may be
substituted for P and any variable for x and any term for t, provided t is free
for x in P . The condition “t is free for x in P” is the admissible restriction
modifying this schematic inference rule.

4. P (0) ∧ ∀x(P (x) → P (S(x))) → ∀xP (x) is another example of a schematic
inference rule. Again, any formula may be substituted for P and any variable
for x. It has the associated admissible restriction that “x does not appear
bound in P”.

Other types of admissible restrictions are possible other than the above
example. They include, for instance, “x does not occur in P” and “x does
not occur free in P”.

To properly define schematic systems, Parikh needed to augment the language
of first-order logic with special “formula variables”, “term variables” and
“meta-variables”. A schematic rule and its associated admissible restrictions
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are expressed in the augmented language; a substitution is a mapping from
the formula variables, term variables and metavariables to formulas, terms and
variables (respectively). Then, a schematic rule indicates that any substitution
instance of the rule is a valid inference provided the substitution satisfies the
conditions of the associated admissible restrictions.

It is an important property of schematic systems that they are specified by
only a finite set of schematic rules. For instance, this excludes the pathological
axiomatization of PA∗ discussed above. Examples of schematic proof systems
include the usual Hilbert-style proof systems. (The Gentzen sequent calculus
is not strictly speaking a schematic system; however, by slightly extending the
definition of schematic systems, it can also be viewed as a schematic system.)

We’ll now sketch the main ideas of the proof of Theorem 4. For this proof,
it is necessary to circumvent the problem of having infinitely many proofs of
k steps. Toward this end, Parikh introduced the important notion of a proof
analysis (subsequently called a “proof skeleton” or “proof scheme” by other
researchers).

A proof analysis describes a (possible) proof by giving a precise statement
about which schematic rule is used to derive each line in the proof, including a
specification of which earlier lines in the proof (if any) were used as hypotheses
to the rule. However, a proof analysis does not list the precise formulas and
terms appearing in the proof. It is an easy observation that there are only
finitely many proof analyses for proof of size at most k.

Of course, every proof has a proof analysis, but not every proof analysis
corresponds to an actual proof. However, Parikh shows that for PA∗ it is
decidable whether a given proof analysis corresponds to an actual proof of a
given formula. For this, he first establishes the following:

Lemma 5 (Parikh [31, Lemma A]) Given a k-step proof analysis A, one can
effectively produce a sequence of formulas F1, . . . , Fm, G1, . . . , Gm, H and a
finite set K of admissible restrictions so that any formula A has a proof with
analysis A if and only if there is a substitution S satisfying S(Fi) = S(Gi) for
all i and S(H) = A and satisfying the restrictions in K. Furthermore, for any
such substitution, S(F1), . . . ,S(Fk), A is a valid proof of A and, conversely, any
proof of A with proof analysis A can be obtained in this way.

Lemma 5 holds for any schematic proof system, not just for PA∗. It is proved
by induction on k, and we shall omit the proof here. The number m turns out
to be ≤ c ·k where c is the maximum number of hypotheses in a schematic rule.

The problem of determining whether there is a substitution that makes
formulas Fi equal to Gi is a kind of unification problem with the admissible
restrictions placing extra conditions on the solution of the unification problem.
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Thus Lemma 5 states that the question of whether a proof analysis corresponds
to an actual proof of A is equivalent to a unification problem.

Lemma 6 (Parikh [31, Lemma B]) Given a proof analysis A for the theory PA∗

and a formula A(x), one can effectively find a formula BA(x) in the language of
Presburger arithmetic such that (PA∗ proves that) for all n ∈ N, BA(n) is true
if and only if A(n) has a PA∗-proof with proof analysis A.

Lemma 6 is proved by showing that the unification problem of Lemma 5 can
be rephrased as a formula of Presburger arithmetic. It is useful to split this
unification into two parts: the first part is an ordinary unification of the type
due to Herbrand [18] and Robinson [37], which is sometimes called “first-order”
unification. This part of the unification problem can be solved to get the logical
and relational structure of all the formulas in a (simplest possible) proof with
analysis A. That is to say, we can solve a first-order unification problem to
determine the logical symbols (propositional connectives and quantifiers but
not the identity of the quantified variables) and all the relation symbols (=, A
and M ; undetermined relations may be set to “=”).

The remaining part of the unification problem is a special case of “second-order
unification” and it is the problem of determining which terms must appear in
a proof with analysis A. The second-order unification problem is find terms
t1, . . . , tn satisfying conditions such as

(i) ti = tj
(ii) ti = Sr(tj)
(iii) ti(x/tj) = tk
(iv) ti = Sr(0).

where, since we are working with PA∗, each ti is of the form ti = S`i0 or
ti = S`i(xvi

) where `i, vi ≥ 0 and xvi
is a variable. There are, up to renaming

of variables, only finitely many choices for the innermost symbols 0 or xvi
of ti.

Fixing one such choice, finding a solution of the unification problem reduces to
finding an integer solution to a set of simultaneous equations of the forms

(i′) `i = `j (provided vi = vj)
(ii′) `i = r + `j (provided vi = vj)
(iii′) `i + `j = `k (provided x = xvi

and vj = vk)
(iv′) `i = r (provided 0 was chosen instead of a variable xvi

)

Since Presburger arithmetic includes 0, S and +, the property of being able to
satisfy equations of the forms (i′)-(iv′) is expressible by a formula of Presburger
arithmetic (in fact, by an existential formula). We get at most one such
Presburger arithmetic formula for each set of choices of innermost symbols
of ti; and, for each such choice it is easy to check whether the admissible
restrictions will be satisfied. Thus the formula BA(n) is defined to be the
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disjunction of these Presburger arithmetic formulas for choices of the 0/xvi

values for which a substitution could give a valid proof.

The above argument concludes our outline of the proof of Lemma 6. From this
lemma, Theorem 4 follows readily by observing the following facts: (1) There
are only finitely many proof analyses A for proofs of size less than or equal to k.
Thus, taking the disjunction of finitely many formulas BA gives a Presburger
arithmetic formula BA,k(n) expressing the condition A(n) has a proof of size
≤ k. (2) Presburger arithmetic is complete. Therefore if A(n) has a PA∗-proof
of ≤ k steps for all n, the Presburger formula BA,k(n) is true for all n ∈ N and
by completeness, ∀xBA,k(x) is provable in Presburger arithmetic and hence
in PA∗. (3) From the solution of the first-order portion of the unification
problem, there is a uniform upper bound on the quantifier complexity needed
in PA∗-proofs of A of size ≤ k. It follows that PA∗ proves that every instance of
A(n) has a PA∗-proof of bounded logical complexity. Finally, Theorem 4 follows
by the reflexivity of PA∗; that is to say, by the fact that Peano arithmetic proves
the reflection principle for formulas proved by proofs with a constant upper
bound on their logical complexity.

As a corollary to the method of proof of Theorem 4 above, we get

Theorem 7 (Parikh [31]) Let A(x) be a PA∗-formula and k ∈ N. Then the
set {n | PA∗ k A(n)} consists of a finite set of integers plus a finite union of
arithmetic progressions.

The “length of proofs” paper concluded with a proof of a special case of a
theorem stated by Gödel in his lengths of proofs paper [14]. Let PA∗

k denote
k-th order arithmetic in the language 0, S, A, M . Thus PA∗

1 = PA∗ and PA∗
2 is

a system of analysis.

Theorem 8 (Parikh [31]) PA∗
2 has unbounded proof speedup over PA∗

1.

The theorem is proved by noting that PA∗
2 proves Con(PA∗), but PA∗ does not.

Let Con(PA∗, n) be a formula stating that there is no PA∗-proof of 0 = 1 of
size less than or equal to n. Then there is a uniform upper bound on the size of
the shortest PA∗

2-proofs of Con(PA∗, n), with the same upper bound applying
for all values of n. But, by Theorem 4, there is no uniform upper bound on
the size of the shortest PA∗-proofs of Con(PA∗, n) since otherwise PA∗ would
prove its own consistency.

Gödel actually stated that (k + 1)-st order arithmetic has unbounded speedup
over k-th order arithmetic; however, he gave no proof of this. Parikh extended
the unbounded speedup in [32], showing that PA∗

k+1 has unbounded speedup
over PA∗

k. Buss [5] later established the same results for Peano arithmetic
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formulated in the usual style with addition and multiplication as function
symbols.

Since the “length of proofs” paper [31] there has been a large number of papers
dealing with the lengths of first-order proofs. The results in this area are too
numerous to list them all, so we mention only a few of the papers most closely
related to Parikh’s work. Richardson [36], Yukami [46,47] and Miyatake [25,24]
gave extensions of Parikh’s work on proof lengths. Kraj́ıček [20] sharpened
the bounds on the logical complexity of formulas in proofs of bounded size.
Goldfarb [15] proved the undecidability of general second-order unification
when arbitrary function symbols are allowed in place of the single unary
functions symbol S. Farmer [12,13] proved the decidability of second-order
monadic unification where all function symbols are unary and gave applications
to lengths of proofs. Orevkov [28,29] and Kraj́ıček-Pudlák [22] established
the undecidability of the problem of determining whether a proof analysis
corresponds to an actual proof. Buss [4] proved the undecidability of the k-step
provability problem for a particular version of the Gentzen sequent calculus.
(It is still open whether the k-step provability problem is undecidable for all
schematic formulations of first-order logic or Peano arithmetic with a binary
function symbol in the language.) Finally, Baaz and Pudlák [1] proved Kreisel’s
conjecture for the theory LΣ1 with the least number principle for Σ1-formulas.

4 Feasible Arithmetic and Proof Lengths

At first glance, the two topics of feasibility in theories of arithmetic and of
length of first-order proofs seem to have little in common. However, subsequent
to the publication of the two papers of Parikh’s, surprisingly close connections
have been discovered between bounded arithmetic and proof length. Firstly,
Paris and Wilkie [34] give a direct translation between provability in I∆0

and provability in constant depth propositional theories. Secondly, Cook [9]
introduced an equational theory PV of polynomial time computable functions
and showed that PV -proofs can be translated into schematic propositional
proofs; thus, by the conservativity of S1

2 over PV [3], the same holds for proofs
in the fragment S1

2 of bounded arithmetic. In this way, there are two ways
of obtaining direct connections between provability in theories of bounded
arithmetic and lengths of proofs in propositional logic: this has led to renewed
interest in the lengths of proofs in both propositional and first-order logic, and
a large number of significant results in this area have been obtained, largely
inspired by the connections to computational complexity. It is beyond the
scope of this paper to survey this research, but the the book length treatment
by Kraj́ıček [21] contains a comprehensive and fairly up-to-date treatment of
recent progress in this area.
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