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ABSTRACT OF THE DISSERTATION

Division Algebras Over Generalized Local Fields

by

Frank H. Chang

Doctor of Philosophy in Mathematics

University of California San Diego, 2004

Professor Adrian Wadsworth, Chair

We call F a generalized local field (abbreviated GLF) if F is Henselian and F , the

residue field of F , is finite. In this thesis, we prove several results on finite-dimensional

division algebras over GLF’s. The aim of the first half of the thesis is to give formulas

for understanding the underlying division algebra and subfields of a given algebra. We

first show that every division algebra over a GLF is isomorphic to a tensor product of

cyclic algebras. Also, we give formulas for computing the degree, value group, residue

field, and underlying division algebra of any algebra of the form N ⊗F T , where N is

nicely semi-ramified over F and T is tame and totally ramified over F . In addition.

we show how to compute the index of D ⊗F K, where K is a finite-degree extension

of F .

The second half of this thesis is devoted to the corestriction map, a generalization

of the norm map to higher cohomology groups. We focus on corestriction of characters

and algebras for any finite-degree extension of fields L/F , with the goal of handling

corestriction in the context of GLF’s. We prove several projection-type formulas in

the case where F contains fewer roots of unity than L. The formulas combine to give

a formula for handling corestriction of symbol algebras over radical extensions. The

final section applies these results to corestriction of algebras over generalized local

fields.
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Introduction

Let F be a field and let D be an algebra over F . We let [D : F ] denote the

dimension of D over F as a vector space and Z(D) denote the center of D. In this

work, we will only consider algebras which are finite-dimensional over their center.

We say D is a central simple F -algebra if Z(D) = F , [D : F ] < ∞, and D has

no non-trivial two-sided ideals. We say D is an F -division algebra if Z(D) = F ,

[D : F ] < ∞, and every non-zero element of D is invertible. We will let D(F ) stand

for the set of all F -division algebras.

In 1843, Hamilton constructed the quaternions, H, which provided the first ex-

ample of a noncommutative division ring. The question of existence was answered,

however, one may ask, what types of division algebras exist over a given field? For

example, up to isomorphism, H is the only (finite-dimensional) non-commutative

R-division algebra. By the Wedderburn structure theorem, every central simple F -

algebra, A, is isomorphic to some size matrices over some D ∈ D(F ). This D is

unique up to isomorphism and is called the underlying division algebra of A. We

say that two algebras are similar if they represent the same class in Br(F ) (written

A ∼ B). Similarity gives an equivalence relation on central simple F -algebras. The

resulting set of equivalence classes form the Brauer group Br(F ) under tensor product

(taken over F ). For any central simple F -algebra, A, the dimension of A over F is

always a perfect square. Thus, we may define the degree, deg(A) =
√

[A : F ], and

the Schur index, ind(A) = deg(D), where D is the underlying division algebra of A.

(Note that ind(A) = deg(A) if and only if A ∈ D(F ).)

1
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We now introduce a very important type of central simple algebra. Let F ⊆ K

be a finite-dimensional Galois extension of fields, and let G be the Galois group

Gal(K/F ). Suppose that f : G × G → K∗ is a 2-cocycle, i.e., for all σ, τ, ρ ∈ G,

f(σ, τ)f(σρ, τ)−1f(ρ, στ) = τ(f(ρ, σ)). We will write (K/F, G, f) for the crossed

product algebra defined by the conditions:

1. (K/F,G, f) is a right K-vector space with base {uσ | σ ∈ G}.

2. For all c ∈ K,σ ∈ G, cuσ = uσσ(c).

3. For every σ, τ ∈ G, uσ · uτ = uστf(σ, τ).

The crossed product (K/F, G, f) is a central simple F -algebra of degree |G| with

maximal subfield K. By Köthe’s Theorem (cf. [Rei75, Th. 7.15(ii)]), every D ∈ D(F )

has a maximal subfield separable over F . Thus, every central simple F -algebra is

similar to a crossed product (cf. Section 1.2.1). We define the relative Brauer group,

Br(K/F ), to be the subgroup of Br(F ) consisting of all algebras for which A⊗F K ∼
K. If K is a maximal subfield of A, then [A] ∈ Br(K/F ). The correspondence

defined by [A] ↔ [f ] is an isomorphism between Br(K/F ) and H2(G, K∗). Also,

Br(Fsep/F ) = Br(F ), whence Br(F ) ∼= H2(GF , F ∗
sep), where GF = Gal(Fsep/F ).

If K is cyclic Galois over F , then the structure of (K/F, G, f) simplifies. Let σ

be a generator for Gal(K/F ). Then, there exists an b ∈ F ∗ such that the 2-cocycle

f ′ defined by

f ′(σi, σj) =





1 if 0 ≤ i, j, i + j < n;

b if 0 ≤ i, j, < n ≤ i + j

differs from f by a 2-coboundary. Define x by cx = xσ(c) for all c ∈ K and xn = b.

Then, {1, x, . . . , xn−1} is a K-base of A. In this case, A = (K/F, G, f) is a called a

cyclic algebra and we will adopt the usual convention of writing A = (K/F, σ, b)n.

Let us write µn for the group of n-th roots of unity and µ∗n for the set of generators

of µn. Assume that µn ∈ F ∗ (so char(F ) - n) and take ω ∈ µ∗n(F ). Fix a ∈ F ∗ such

that aF ∗n has order n in F ∗/F ∗n. Let K = F ( n
√

a) and suppose σ ∈ Gal(K/F )
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satisfies σ( n
√

a) = ω n
√

a. Then for any b ∈ F ∗, the cyclic algebra A = (K/F, σ, b)n

has generators i, j over F such that in = a, jn = b, and ij = ωji, i.e. {ikjl : 0 ≤ k <

n, 0 ≤ l < n} is an F -base for A.

In general, if a, b ∈ F ∗ and µn ⊆ F , then the F -algebra, A, generated over F by

i, j satisfying relations in = a, jn = b, and ij = ωji is a central simple F -algebra (cf.

[Mil71, Theorem 15.1] or [Dra83, p. 78, Th. 1]). We call A a symbol algebra and will

denote A by any of the following expressions

Aω(a, b; F )n, (a, b; F, ω)n , (a, b; F )n , (a, b; ω)n , (a, b)n.

Note deg(A) = n, and A is a cyclic algebra if [F ( n
√

a) : F ] = n. In particular, this

holds if A is a division algebra.

In the early 1930’s, Brauer, Hasse, and Noether showed that if F is a number

field, then every F -division algebra is a cyclic algebra (cf. [BHN32]). However, in

1932, Albert gave an example of a non-cyclic division algebra. Naturally, one would

ask if there were any non-crossed product division algebras. This remained a major

open question for several decades. Thus, it was a major breakthrough, when, in

1972, Amitsur gave the first example of a non-crossed product division algebra. (A

detailed account of Amitsur’s approach can be found in [Row80, Ch. 3], [Jac75], or

[Ami72].) We will briefly summarize his approach and show how valuation theory

helps in constructing a non-crossed product. Amitsur constructs a universal division

ring, UD(F ; n), as the ring of quotients of an algebra generated by generic matrices.

The key theorem he proves in showing that certain UD(F ; n) are not crossed products

is the following:

Theorem. Let G be a finite group of order n. If UD(F ; n) is a crossed product with

Galois group G, then for any division algebra D of degree n over a field M ⊇ F , D

is also a crossed product with Galois group isomorphic to G.

Thus, UD(F ; n) is a non-crossed product if we can construct division algebras

D1, D2 of dimension n2 over fields M1,M2 ⊇ F such that D1, D2 are crossed products
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but for every pair of maximal subfields Ni ⊆ Di, Gal(N1/M2) � Gal(N2/M2). Such

a construction is difficult because there are two questions which are often hard to

answer.

1. Given a central simple algebra, can we determine the underlying division alge-

bra, D, of A?

2. Can we classify or determine all the subfields (up to isomorphism) of a given

division algebra?

If a valuation is present, these questions are often easier to answer. Also, more

recently, there have been other constructions of non-crossed product algebras using

valuation theory, cf. [JW86] and [Bru95].

Let F be a field with valuation v. For any field K ⊇ F , it is well known that v

has at least one, but often many different extensions to valuations on K (cf. [End72,

p. 62, Cor. 9.7]). However, the situation is very different for division algebras. It

was shown by Ershov, and, independently by Wadsworth, that if D ∈ D(F ), then v

extends to D if and only if v has a unique extension to each subfield L ⊆ D containing

F (cf. [Ers82, p. 53-55] and [Wad86]). Thus, unlike the commutative setting, if a

valuation v on F extends to D ∈ D(F ), then the extension is unique.

We say that F is Henselian with respect to v if Hensel’s Lemma holds for v. We

know that F is Henselian with respect to v if and only if v has a unique extension to

every field algebraic over F (cf. [Rib85, Th. 3] and [End72, Cor. 16.6]). Thus, if F

is Henselian, then v has a unique extension to each D ∈ D(F ). For D ∈ D(F ) with

valuation v, we define the valuation ring VD = {d ∈ D∗ | v(d) ≥ 0} ∪ {0}, the unique

maximal ideal MD of VD, MD = {d ∈ D∗ | v(d) > 0} ∪ {0}, the residue division

algebra D = VD/MD, and the value group ΓD = v(D∗). (All of the definitions and

notation pertaining to valuation theory can be found in Section 1.3.)

Tignol and Wadsworth answered question 2 above for tame and totally ramified

(TTR) algebras over Henselian fields in [TW87] (i.e. D ∈ D(F ) such that [D : F ] =

|ΓD : ΓF | and char(F ) - [D : F ]). In the same paper, they answered question 1, but for
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tensor products of symbol algebras over strictly Henselian fields; i.e. Henselian fields

which have separably closed residue field. In [TW87, Th. 3.8], Tignol and Wadsworth

showed that, if D is a tame and totally ramified (TTR) division algebra over F , then

there is a 1-1 correspondence between isomorphism classes of F -subalgebras of D and

subgroups of ΓD/ΓF . In order to obtain this classification, Tignol and Wadsworth

introduce the idea of an armature; for a central simple algebra, A, an armature, A is an

abelian subgroup of A∗/F ∗ such that F [A] = A and |A| = [A : F ] (cf. Section 1.4.1).

Another important tool used in the paper is the following non-degenerate bilinear

symplectic pairing when D is TTR

CD : (ΓD/ΓF )× (ΓD/ΓF ) → F
∗

given by (v(a)+ΓF , v(b)+ΓF ) 7→ aba−1b−1 (cf. Section 1.4). We call CD the canonical

pairing of v on D. If A is a central simple algebra with an armature, A, then the

valuation v induces a map w : A → (Q ⊗Z ΓF )/ΓF (cf. Section 1.4). If A has

exponent s, then w is given by w(a) = 1
s
v(as) + ΓF for aF ∗ ∈ A. In the classification

of subalgebras of D, a subalgebra A is a subfield if and only if w(A) = ΓA/ΓF is a

totally isotropic subgroup of ΓD/ΓF (with respect to CD).

This classification of the subfields of a given TTR division algebra allows us to

construct quite easily division algebras D1 and D2 with the properties described in

the paragraph preceding questions 1 and 2. This construction is given in detail in

[Wad02, Examples 5.2].

In the case that F is strictly Henselian, i.e. F is Henselian and F is separably

closed, Tignol and Wadsworth provide an algorithm (cf. [TW87, Th. 4.3]) for explic-

itly computing the underlying division algebra, D, of a given algebra, A, when A is

presented as a tensor product of symbol algebras. The resulting D is always TTR,

whence, by Draxl’s Theorem (Th. 1.4.5), a tensor product of symbol algebras. More

recently, in [Bru01] Eric Brussel gives another algorithm using alternating matrices.

In this thesis, we will study division algebras over generalized local fields (GLF),

i.e. fields F such that F is Henselian and F is finite. These fields are the next step
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up in complexity from strictly Henselian fields in the following ways. First, if F is

strictly Henselian, then all division algebras over F are TTR. Although this is not the

case when F is a GLF, every D ∈ D(F ) has the form D ∼ N ⊗F T where N is nicely

semi-ramified (abbreviated NSR, cf. Section 1.3) and T is TTR over F . So it is not

necessarily the case that D is the tensor product of symbol algebras. However, we

will show that D is necessarily a tensor product of cyclic algebras and in the process,

show how to compute D from a given N ⊗F T decomposition. Second, although

Br(F ) is trivial because F is finite, F is no longer separably closed, so F has non-

trivial unramified field extensions, i.e. fields K over F such that [K : F ] = [K : F ]

and K is separable over F . Thus, the subfields of a given division algebra no longer

necessarily TTR as in the strictly Henselian case.

As the name suggests, generalized local fields are a generalization of the local

fields studied in number theory. It is well-known that non-Archmedian local fields

have finite residue and satisfy Hensel’s Lemma. The difference is that local fields

are discrete (i.e. ΓF
∼= Z), whereas GLF’s are allowed to have as value group any

totally ordered abelian group. For example, for any finite field, K, the Laurent

series field K((x)) =

{ ∞∑
i=k

aix
i| k ∈ Z, ai ∈ k

}
is a GLF with respect to the valuation

v

( ∞∑
i=k

aix
i

)
= min{i| ai 6= 0}. More generally, we form the n-fold iterated Laurent

series, F = K((x1))((x2)) . . . ((xn)) (cf. Section 2.1). Then F has is a generalized

local field with ΓF = Zn, F = K. The added flexibility in value group allows for

greater complexity in the division algebras over F . For example, it is not necessarily

true that every division algebra over a GLF is cyclic as was the case over a local field.

We will first generalize the results from [TW87] and provide an answer to both

questions above for F , a GLF, and for D ∈ D(F ) presented as a tensor product

N ⊗F T . In Chapter 2, we prove a few basic results concerning question 1 above for

division algebras over F a GLF. We show in Proposition 2.1.4 that the decomposition
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D ∼ N ⊗F T gives us a nice formula for computing deg(D), ΓD and D, namely

deg(D) =
deg(N) · deg(T )

|(ΓN ∩ ΓT ) : F | ,

ΓD = ΓN + ΓT ,

[D : F ] =
deg(N)

|(ΓN ∩ ΓT ) : F | .

Note that, since F is finite, D is a field and is determined by its degree over F . We

show in Theorem 2.2.1 that the algorithm in [TW87, Th. 4.3] holds more generally,

as follows.

Theorem. Suppose (F, v) is a valued field, and A is a central simple F -algebra with

armature A. Assume that char(F ) - [A : F ]. Let s = exp(A), so F contains a

primitive s-th root of unity. Suppose that for any a ∈ A∗ with aF ∗ ∈ K = ker(vA)

we have as ∈ F ∗s. If D is the underlying division algebra of A, then [D : F ] =

|K⊥ : (K ∩ K⊥)|, ΓD/ΓF = vA(K⊥) ⊆ ∆/ΓF , and the canonical pairing on ΓD/ΓF is

isometric (via vA) to the pairing on K⊥/(K ∩ K⊥) induced by BA. In particular,

1. A is a division algebra if and only if vA is injective.

2. If K⊥ ⊆ K, then A is split.

This helps us prove (cf. Theorem 2.4.1)

Theorem. Every division algebra over a GLF is isomorphic to a tensor product of

cyclic algebras.

Eric Brussel at Emory University has proven this result using a different method,

although we have just recently received his proof. In proving this result, we also

obtain a way of computing the underlying division algebra, D, the value group, ΓD,

and the residue, D of a given tensor product N ⊗F T with N NSR and T TTR. We

show also that, although D ∼ N ⊗F T for some N ,T which are NSR and TTR over

F , this D need not be isomorphic to the tensor product of an NSR algebra with a
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TTR algebra. However, D always can be written as D ∼= C⊗F T , where C is a cyclic

algebra and T is TTR. This answers question 1 above for F a GLF and any A written

as N ⊗F T .

In Chapter 3, we address question 2 concerning subfields of algebras. Suppose

that K ⊇ F is a finite degree extension of GLF’s. We would like to get information

about DK , the underlying division algebra of D⊗F K, i.e. what happens to D under

the restriction map res
F/K

: Br(F ) → Br(K). Note that K is isomorphic to a subfield

of D if and only if ind(DK) = ind(D)/[K : F ] (cf. Prop. 1.2.2), so computing DK

gives us information about the subfield structure of D. By primary decomposition

(cf. Prop. 1.2.1), it is enough to consider the case where D is p-primary; i.e. deg(D)

is a power of a prime p. For unramified field extensions of F , we have the following

result (cf. Prop. 3.3.1).

Proposition. Suppose K is the unramified field extension of F with [K : F ] = pk.

Say D ∼ N ⊗F T with N NSR and T TTR over F . Let deg(N) = pn and let

|(ΓN ∩ ΓT ) : ΓF | = pm. Then deg(D) = p`0 · deg(DK), where `0 = min{n −m, k}.
Also, ΓDK

= [K : F ]ΓN + ΓT and [DK : K] = pn−m−`0.

The result shows that the amount of reduction in the index of D depends on the

size of the field extension [I : F ] as well as degree of N and the overlap in value

group, ΓN ∩ ΓT . The totally ramified field extension case is much more complicated.

Since F is Henselian, if K is tame and totally ramified over F , then K is totally

ramified of radical type (TRRT) [Sch50, p. 64, Theorem 3]. Thus, K can obtained

from F by a series of cyclic totally ramified radical extensions. Even in the cyclic

case, the result is quite complex. Suppose D ∼ N ⊗F T is p-primary. Then, we have

(cf. Theorem 3.3.3)

Theorem. Suppose K is a cyclic TTR field extension of F with ΓK ⊆ ΓD. Let

pk = [K : F ], pn = deg(N), pm = |(ΓN ∩ ΓT ) : ΓF |. Let σ, σω, γ, θ, and ρ be as

defined preceding Theorem 3.3.3 and let 〈−,−〉 denote the armature pairing on T .
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Then,

ind DK =
`

pk
· ind D,

where

` = ordQ/Z

(
〈θ̃, ρ̃〉+ λpn−m+γ−k

)
, (0.1)

and λ ∈ comp(σω, σ) is prime to p.

The constants in the formula show that the index of DK depends on pn =

deg(N), pm = |(ΓN ∩ ΓT ) : ΓF |, pk = [K : F ], as well as γ (which measures the

relative size of K ∩ T to |(ΓK/ΓF ) ∩ (ΓT /ΓF )|), λ (a compatibility factor), and θ̃, ρ̃

(which depends on how ΓK lies in ΓD = ΓN + ΓT ). With these formulas, we are able,

in principle to answer question 2 by computing DK for various extensions K of F .

In particular, K is isomorphic to a subfield of D if and only if ` = 1. Note also that

` is the order of a sum of terms, so ` could be smaller than the order of 〈θ̃, ρ̃〉 or

λpn−m+γ−k; i.e. it is possible for K to be a subfield of D for a non-obvious reason.

Finally, in Chapter 4, we provide some methods for how to compute corestriction.

Let L/F be a finite degree separable field extension. The corestriction map is dual to

the restriction map in that cor
L/F

: Br(L) → Br(F ) and the composition cor
L/F
◦res

L/F

is multiplication by [L : F ]. Also, the corestriction map is a generalization of the norm

map to higher cohomological dimension (cf. 1.6.1). In general, the corestriction map

is very difficult to compute. Rosset and Tate give a complicated recursive formula

for corestriction in [RT83]. In a few cases, the formula simplifies; Merkurjev gives a

few basic corestriction formulas in [Mer85]. In the case where F is Henselian, Hwang

gave extensive calculations concerning corestriction (cf. [Hwa95a], [Hwa95b]).

The majority of the material in the thesis on corestriction is handled outside the

context of valuation theory, but is motivated by GLF’s. These results rely on either

decomposing cyclic and symbol algebras into cup products (cf. Section 1.5) or finding

an algebra that restricts to the algebra in question. The corestriction map cor
L/F

is less difficult if F has enough roots of unity, e.g. if F and L have the same roots

of unity. For example, we have the classical projection formula at our disposal for
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symbol algebras with a slot in F (cf. Theorem 4.2.3). However, if F has fewer roots

of unity than L, then the map is more complicated. For example, by using characters

and a projection formula for cup products, we prove the following projection-type

formula for symbol algebras (cf. Theorem 4.2.4)

Theorem. Let F be a field with char(F ) - n and let L = F (µn), where µn is the set

of n-th roots of unity. Then for a, b ∈ F ∗ and ζ ∈ µ∗n, we have

cor
L/F

(a, b; L, ζ)n =
(
a, b; F, ηn/d

)
d
,

where d is the order of N
L/F

(ζ) and η ∈ µ∗n satisfies N
L/F

(η) = ζn/d.

The situation becomes more complicated if the symbol algebra over L has one slot

which does not lie in F . The next proposition appears as Prop. 4.2.15.

Proposition. Let F be a field and p be a prime. If p = 2, assume µ4 ⊆ F. Take

ζ ∈ µ∗
pk for some k ≥ 1 and let L = F (ζ). Let ω ∈ L be pN root of unity for some

N ∈ N. Let θ be any pk-th root of ω. Suppose µpk ∩ F = µpr and let p` = [L(θ) : L].

Then for any b ∈ F ∗,

cor
L/F

(ω, b; L, ζ)pk = (E/F, σ|
E
, b) ,

where E is determined by F ⊆ E ⊆ L(θ) and [E : F ] = p`, and σ is a generator of

Gal(L(θ)/F ) which satisfies σ[L:F ](θ) = ζpk−`
θ.

By using group extensions and the cup product, we can handle corestriction over

cyclotomic extensions (cf. Section 4.5.1 and 4.5.2). This allows us to remove the

assumption µ4 ⊆ F in the proposition above. These results together with some

basic results about radical extensions (cf. [GV81] or [Alb03]) allow us to compute

cor
L/F

(a, b; L, ζ)n, where a, b ∈ L are radical over F (i.e. some power of a and of b

lies in F ).

Theorem. Suppose F ⊆ N is a finite degree field extension. Suppose µn ⊆ N for

some n. Let s1, s2 ∈ N be elements such that s1, s2 each have finite order in N∗/F ∗.

Then we can compute cor
N/F

(s1, s2; N)n via Theorem 4.7.1 and Theorem 4.7.2.
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The formula in Theorem 4.7.2 is very complicated, however, it allows us to recover

some of Hwang’s results in greater generality (F has a valuation, but is not necessarily

Henselian). For example, in the p-primary case, we have (cf. Theorem 4.8.4)

Theorem. Let F be a valued field. Suppose that K = F (t1, t2) is a totally ramified

extension of F with respect to v such that o(tiF
∗) = pmi for mi ∈ N. Suppose

T = (t1, t2; K)pk is a TTR symbol algebra over K. Let T ′ = cor
K/F

T . Then

T ′ =
(
(−1)ε1tp

l1

1 td2, (−1)ε2tp
m2

2 ; F
)

pk
,

with ε1, ε2, and d as defined in Theorem 4.7.2. Also, T ′ is TTR over F and

ΓT ′ =
1

pk
(〈v(t1), v(t2)〉 ∩ ΓF ) + ΓF ⊆ ΓT .

Finally, we show in Section 4.9 that, when L/F is an extension of GLF’s and

D ∈ D(L), we can compute D′ = cor
L/F

(D) as well as obtain the value group, ΓD′

and residue D′.



Chapter 1

Background

In this chapter, we introduce notation and conventions which will be used through-

out this paper. We give a review of basic results in the study of central simple algebras

and noncommutative valuation theory in the first three sections. In Section 1.4, we re-

call a few results from [TW87] on TTR algebras and armatures. Then, in Section 1.5,

we cover some known results about characters, cup products, and cyclic algebras,

some of which can be found in [Ser79]. We define the corestriction and restriction

maps in Section 1.6. Finally, we conclude the chapter by introducing the notation of

compatibility in Section 1.7.

1.1 Notation and Convention

We let N stand for the natural numbers, {1, 2, . . . }. We let Q stand for the field

of rational numbers. Let G be a group. If a ∈ G, we use o(a) to denote the order of

a, i.e. o(a) ∈ N is minimal such that ao(a) = 1 ∈ G. We may sometimes write oG(a)

if G is not clear from context. If G is finite, we write exp(G) = lcm{o(a) : a ∈ G} for

the exponent of G.

For n ∈ N and F a field, we write µn ⊆ F to mean that F contains the set of

n-th roots of unity. We will also write µ(F ), µn(F ), µ∗n(F ) for, respectively, the set

12
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of all roots of unity in F , all n-th roots of unity in F , and all primitive n-th roots of

unity in F . If p is a prime, then we use µp∞ to denote the group of all p-power roots

of unity. Let Falg be a given algebraic closure of F . We write Fsep for the separable

closure of F within Falg.

For a given field extension F ⊆ K, we write Gal(K/F ) for the Galois group of K

over F , i.e. the group of F -automorphisms of K. We write GF for the Galois group

of Fsep over F . If H ⊆ Gal(K/F ), then we write F(H) for the fixed field of H.

1.2 Central Simple Algebras

The material in this section can be found in [Pie82, Ch. 12 to Ch. 14] and [Rei75,

Ch. 7].

If R is a ring, then the center of R is Z(R) = {r ∈ R| for all s ∈ R, rs = sr}.
For F , a field, an F -algebra, A, is a ring (with 1) which contains F in its center,

namely F ⊆ Z(A). A central simple F -algebra is a finite-dimensional F -algebra, A,

with no non-trivial ideals satisfying Z(A) = F . We will frequenty omit “F -” when F

is understood from context. We define A∗ = {a ∈ A | ∃ b ∈ A with ab = ba = 1}, the

group of units of A. A division algebra is an algebra where every non-zero element

is a unit, i.e. A∗ = A\{0}. We let D(F ) represent the set of all finite-dimensional

division algebras over F . We write [A : F ] for the dimension of A over F .

If A is a central simple F -algebra, then Wedderburn’s Theorem tells us that

A ∼= Mn(D), where D is a division algebra over F . Also, D is uniquely determined

up to isomorphism and is called the underlying division algebra of A. Define a relation

on central simple F -algebras by setting A ∼ B if A and B have isomorphic underlying

division algebras. These classes form a group, Br(F ), under the tensor product, ⊗F ;

we call Br(F ) the Brauer group of F . We will denote by [A] the class of A in Br(F ).

We say that A is split if [A] = [F ].

Now, [A : F ] is a always a square in N. We write deg(A) =
√

[A : F ] for the

degree of A. For any subfield K of A containing F , K is a maximal subfield if
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[K : F ] = deg(A). If D is the underlying division algebra of F , then we write

ind(A) =
√

[D : F ] for the (Schur) index of A.

We have the following primary decomposition for division algebras

Proposition 1.2.1. For D ∈ D(F ) with deg(D) = pe1
1 · · · per

r where p1, . . . , pr are

distinct primes, there is a unique (up to isomorphism) decomposition D = D1 ⊗F

. . .⊗F Dr where Di ∈ D(F ) and deg(Di) = pei
i for all i.

Proof. See [Pie82, Th. 14.4].

Now suppose that K ⊇ F is any extension of fields. Then A ⊗F K is a central

simple K-algebra, and we write AK for the underlying division algebra of A⊗F K. We

define the relative Brauer group, Br(K/F ), to be the subgroup of Br(F ) consisting

of all algebras for which AK = K. If K is a maximal subfield of A, i.e. a field K

with [K : F ] = deg(A), then [A] ∈ Br(K/F ). We may detect subfields of a division

algebra D by computing the reduction in index (cf. 1.2.2).

Proposition 1.2.2. If D ∈ D(F ) and K ⊇ F is a finite-degree field extension, then

deg(DK) ≥ deg(D)

[K : F ]
.

Equality holds if and only if K is isomorphic to a subfield of D.

Proof. See [Pie82, §14.4]

Now let F ⊆ K be a finite-dimensional Galois extension of fields, and let G be

the Galois group Gal(K/F ). Suppose that f : G×G → K∗ is a 2-cocycle, i.e., for all

σ, τ, ρ ∈ G, f(σ, τ)f(σρ, τ)−1f(ρ, στ) = τ(f(ρ, σ)). We will write (K/F, G, f) for the

crossed product algebra defined by the conditions:

1. (K/F,G, f) is a right K-vector space with base {uσ | σ ∈ G}.

2. For all c ∈ K,σ ∈ G, cuσ = uσσ(c).

3. For every σ, τ ∈ G, uσ · uτ = uστf(σ, τ).
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The crossed product (K/F, G, f) is a central simple F -algebra of degree |G| with

maximal subfield K. The correspondence defined by [A] ↔ [f ] is an isomorphism

between Br(K/F ) and H2(G,K∗). Moreover, every central simple F -algebra with

maximal subfield K is a K/F crossed product. By Köthe’s Theorem, every D ∈ D(F )

has a maximal subfield separable over F . If L is such a maximal subfield of D and

K is the Galois closure of L over F , then K is a maximal subfield of Mn(D), where

n = [K : L]. Thus, every central simple F -algebra is similar to a crossed product and

Br(Fsep/F ) = Br(F ).

1.2.1 Cyclic and Symbol Algebras

We now describe two important examples of crossed products. Basic results on

cyclic and symbol algebras can be found in [Pie82, Ch. 15], [Rei75, Ch. 7], or [Mil71,

§15].

If K is a field cyclic Galois over F with [K : F ] = n, then the structure of

(K/F, G, f) simplifies. Let σ be a generator for Gal(K/F ). Then, there exists an

b ∈ F ∗ such that the 2-cocycle f ′ defined by, for 0 ≤ i, j,≤ n,

f ′(σi, σj) =





1 if i + j < n;

b if i + j ≥ n

differs from f by a 2-coboundary. There is an x ∈ A such that cx = xσ(c) for

all c ∈ K and xn = b. Then, {1, x, . . . , xn−1} is a K-base of A. In this case,

A = (K/F, G, f) is a called a cyclic algebra and we will adopt the usual convention

of writing A = (K/F, σ, b)n.

Now assume that µn ∈ F ∗ (so char(F ) - n) and take ω ∈ µ∗n(F ). Fix a ∈ F ∗

such that aF ∗n has order n in F ∗/F ∗n. Let K = F ( n
√

a) and suppose σ ∈ Gal(K/F )

satisfies σ( n
√

a) = ω n
√

a. Then for any b ∈ F ∗, the cyclic algebra A = (K/F, σ, b)n

has generators i, j over F such that in = a, jn = b, and ij = ωji, i.e. {ikjl : 0 ≤ k <

n, 0 ≤ l < n} is an F -base for A.
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In general, if a, b ∈ F ∗ and µn ⊆ F , then the F -algebra A, generated over F by

i, j satisfying relations in = a, jn = b, and ij = ωji is a central simple F -algebra (cf.

[Mil71, Theorem 15.1] or [Dra83, p. 78, Th. 1]). We call A a symbol algebra and will

denote A by any of the following expressions

Aω(a, b; F )n, (a, b; F, ω)n , (a, b; F )n , (a, b; ω)n , (a, b)n.

Note that deg(A) = n, and this A is a cyclic algebra if [F ( n
√

a) : F ] = n. In particular,

this holds if A is a division algebra.

We now list many important properties of cyclic and symbol algebras.

Proposition 1.2.3. Let L/F be a cyclic Galois field extension with [L : F ] = n and

let σ be a generator for Gal(L/F ). Take a, b ∈ F ∗ and k ∈ N with k be prime to n.

Suppose F ⊆ E ⊆ L with [E : F ] = m. Then, we have

1. (L/F, σ, a)n ⊗F (L/F, σ, b)n ∼ (L/F, σ, ab)n.

2. (L/F, σk, ak)n
∼= (L/F, σ, a)n.

3. (L/F, σ, an/m)n ∼ (E/F, σ|
E
, a)m.

Proof. See [Pie82, Corollary 15.1a and 15.1b].

Proposition 1.2.4. Take a, b, c ∈ F ∗ and n ∈ N with char(F ) - n. Suppose µn ⊆ F

and ω ∈ µ∗(F ). Then, the following properties hold.

1. (ac, b)n ∼ (a, b)n ⊗ (c, b)n and (a, bc)n ∼ (a, b)n ⊗ (a, c)n.

2. (a, b)n ∼ (b, a−1)n.

3. If i is prime to n, then (a, bi; ωi)n
∼= (a, b; ω)n .

4. If m | n, then (a, bm; ω)n ∼ (a, b; ωm)n/m .

5. (a, b)n is split if and only if b lies in the image of the norm map N : F ( n
√

a)∗ →
F ∗.
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6. (a,−a)n is split.

7. (a, 1− a)n is split.

8. (a, a)n ∼ (a,−1)n. If n = pr, where p is prime, then (a, a)n ∼ (a, (−1)p−1)n.

Proof. The first seven properties can be found in [Mil71, §15] or [Ser79, Ch. XIV,

Prop. 4].

To prove property 1.2.4.8, note that (a, a)n ∼ (a, a−1)n by property 1.2.4.2. So

(a, a)n ∼ (a, a−1)n⊗(a,−a)n ∼ (a,−1)n, using that (a,−a)n is split. Suppose n = pr.

If p = 2, then (a, (−1)p−1)n
∼= (a,−1)n. If p is odd, then (a,−1)n has order dividing

both 2 and p, whence (a,−1)n is split and (a,−1)n ∼ (a, 1)n
∼= (a, (−1)p−1)n.

We conclude this section by recalling a couple of calculations involving cyclic

algebras from [Rei75]. In Prop. 1.2.5, res
E/F

: Br(F ) → Br(E) is the scalar extension

map defined by [A] 7→ [A⊗F E] (see Section 1.6).

Proposition 1.2.5. Let L/F be a finite-degree cyclic Galois extension with generator

σ ∈ Gal(L/F ). Take b ∈ F ∗. Let E/F be any field extension and let EL be the

composite of E and L in some larger field containing both E and L. Let k be the

smallest integer such that σk fixes L ∩ E, so 〈σk〉 = Gal(L/L ∩ E) ∼= Gal(EL/L).

Then,

res
E/F

(L/F, σ, b) = E ⊗F (L/F, σ, b) ∼ (EL/E, σk, b).

Proof. See [Rei75, Thm. 30.8].

Proposition 1.2.6. Suppose F ⊆ L ⊆ E are fields where E is cyclic Galois over

F . Let G = Gal(E/F ) with generator σ ∈ Gal(E/F ) and let H = Gal(E/F ). So

G/H = Gal(L/K) is generated by σ = σH. Then for any b ∈ F ∗,

(L/F, σ, b) ∼ (E/F, σ, b[E:L]).

Proof. See [Rei75, Thm. 30.10].
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1.3 Valuation Theory

In this section, we will review some basic valuation theory and prove a few results

about generalized local fields. The material on noncommutative valuation theory

can be found in [Sch50] and [End72]. All of the material here concerning Henselian

valuations appears in [JW90]. Also, there is now a survey paper on valuation theory

over finite-dimensional division algebras, [Wad02].

Let F be a field and let D be a finite-dimensional F -division algebra. Let Γ be a

totally ordered additive abelian group. A valuation v on D is a function v : D∗ → Γ

satisfying, for all a, b ∈ D∗

1. v(ab) = v(a) + v(b).

2. v(a + b) ≥ min(v(a), v(b)) for a + b 6= 0.

Associated to v we have

the valuation ring VD = {d ∈ D∗ | v(d) ≥ 0} ∪ {0};
the unique maximal (left and right) ideal VD MD = {d ∈ D∗ | v(d) > 0} ∪ {0};
the group of valuation units UD = {d ∈ D∗ | v(d) = 0)};
the residue division algebra D = VD/MD;
the value group ΓD = v(D∗).

We will write ΛD for the relative value group ΓD/ΓF . We will denote the divisible

hull of ΓD by ∆D = ΓD ⊗Z Q. For E a sub-division ring of D, the restriction v|E
is a valuation on E. In this case, ΓE is a subgroup of ΓD. Also, E is canonically

isomorphic to a sub-division ring of D. We call |ΓD : ΓE| the ramification index of D

over E and [D : E] the residue degree of D over E. There is a fundamental inequality,

[Sch50, p. 21]

[D : E] · |ΓD : ΓE| ≤ [D : E].

If v|E is Henselian (see next paragraph) and E = Z(D), Draxl has sharpened the

fundamental inequality to an Ostrowski-type defect theorem, see [Dra84, Th. 2]

[D : E] = qk[D : E] · |ΓD : ΓE|,
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where q = 1 if char(D) = 0 and q = char(D) if char(D) 6= 0, and k ≥ 0 is an integer.

Morandi has proven that this equation is true without the Henselian assumption (see

[?]). We say that D is defectless over E if qk = 1.

For d ∈ D, the conjugation map cd : D → D given by cd(a) = dad−1 induces

an F -automorphism of D which restricts to an F -automorphism of Z(D). Thus, we

have a surjective map, θD : ΛD → Gal(Z(D)/F ) given by θD(v(d) + ΓF ) = cd |Z(D)

(cf. [JW90, Prop. 1.7]).

1.3.1 Henselian fields

Let F be a field with valuation v. We say that F is Henselian with respect to v

if Hensel’s Lemma holds for v. For any field K ⊇ F , it is well known that v has at

least one, but often many different extensions to valuations on K (cf. [End72, p. 62,

Cor. 9.7]). However, the situation is very different for division algebras. It was shown

by Ershov, and, independently by Wadsworth, that if D ∈ D(F ), then v extends to

D if and only if v has a unique extension to each subfield L ⊆ D containing F (cf.

[Ers82, p. 53-55] or [Wad86]). Thus, unlike the commutative setting, if a valuation v

on F extends to D ∈ D(F ), then the extension is unique.

We know that F is Henselian with respect to v if and only if v has a unique

extension to every field algebraic over F (cf. [Rib85, Th. 3] or [End72, Cor. 16.6]).

Thus, if F is Henselian, then v has a unique extension to each D ∈ D(F ).

Let F be a Henselian field and let L be a finite degree field extension of F . We

say L is unramified (or inertial) over F if [L : F ] = [L : F ] and L is separable over

F . If L/F is algebraic of infinite degree, then L is unramified over F if every finite

degree subfield of L is unramified over F . We say L is tamely ramified over F if

char(F ) = 0 or char(F ) = p 6= 0 and L is separable over F , p - |ΓL : ΓF |, and

[L : F ] = [L : F ]|ΓL : ΓF |. We say L is tame and totally ramified (TTR) over F if L

is tamely ramified over F and [L : F ] = |ΓL : ΓF |. By [Sch50, p.64, Th. 3], if L/F is

TTR, then L/F is totally ramified of radical type (TRRT), i.e. there exist n1, . . . , nm
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with n1 . . . nm = n = [L : F ] and t1, . . . tm ∈ F such that L = F ( n1
√

t1, . . . ,
nm
√

tm)

and nv(ti)/ni + nΓF are independent of order ni in ΓF /nΓF .

Fix an algebraic closure, Falg, of F . There is a unique maximal unramified exten-

sion, Fnr of F ; i.e. for every field L with F ⊆ L ⊆ Falg, L is unramified over F if and

only if L ⊆ Fnr. By [End72, §19] or [JW90, p.135], there is a one-to-one correspon-

dence between fields L such that F ⊆ L ⊆ Fnr and fields L such that F ⊆ L ⊆ F sep.

In this correspondence, L is Galois over F if and only if L is Galois over F , in which

case Gal(L/F ) ∼= Gal(L/F ).

1.3.2 Division Algebras Over Henselian fields

Let F be a Henselian field. We now describe a few types of division algebras

over F . Take D ∈ D(F ). We say that D is an inertial division algebra over F if

[D : F ] = [D : F ] and Z(D) = F . We say that D is inertially split if [D] ∈ Br(Fnr/F ).

We say that D is tame if either char(F ) = 0, or char(F ) = p and the p-primary

component of D is inertially split. Equivalently, D is tame if D is defectless over

F , Z(D) is separable over F and char(F ) - |ker(θD)|, where θD is the map defined

in Section 1.3 (cf. [JW90, Lemma 6.1]). We say D is totally ramified over F if

[D : F ] = |ΓD : ΓF |. Finally, D is said to be tame and totally ramified (TTR) over

F if D is totally ramified over F and char(F ) - [D : F ]. We let IBr(F ), SBr(F ),

and TBr(F ) denote the subgroups of Br(F ) consisting of inertial, inertially split, and

tame division algebras respectively.

Remark 1.3.1. If F ⊆ K are Henselian fields and D ∈ TBr(F ), then DK is also

tame, since Fnr ⊆ Knr and pBr(F ) → pBr(K), where pBr(F ) and pBr(K) denote the

p-primary component of Br(F ) and Br(K) respectively.

We now construct an important type of inertially split algebra. Let F be a

Henselian field and suppose L1, . . . , Lk are cyclic Galois unramified extensions of

F such that L1 ⊗F . . . ⊗F Lk is a field. Let σi be a generator for Gal(Li/F ) and

let ni = [Li : F ]. Let n = lcm(n1, . . . , nk) and suppose a1, . . . , ak ∈ F ∗ are such
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that n
n1

v(a1), . . . ,
n
nk

v(ak) generate a subgroup of ΓF /nΓF of order n1 · · ·nk. Let

N = ⊗k
i=1(Li/F, σi, ai)ni

. Then N is split by L1 · · ·Lk = L1 ⊗F . . . ⊗F Lk, so

N ∈ SBr(F ). Note that N has a maximal subfield, L1 · · ·Lk, which is unramified

over F and also a maximal subfield, F ( n1
√

a1, . . . , nk
√

ak), which is TRRT over F .

Also, N = L1 · · ·Lk and ΓN = 〈 1
n1

v(a1), . . . ,
1

nk
v(ak)〉 + ΓF . Thus, deg(N) = [N :

F ] = |ΓN : ΓF | = n1 · · ·nk. We say that such an N is nicely semiramified (NSR) over

F . For more on NSR algebras, see [JW90, §4].

We conclude this section by recalling a condition for determining if a tensor prod-

uct of valued division algebras is still a division algebra. Morandi originally proved

the following result (in greater generality) in [Mor89, Th. 1]; the result can also be

found in [JW90, §1].

Theorem 1.3.2. Let F be a field and let D1 ∈ D(F ) and let D2 be a division ring

with Z(D2) ⊇ F . Suppose there are valuations w1 on D1 and w2 on D2 such that w1

is defectless and w1|F = w2|F . If D1 ⊗F D2 is a division ring and ΓD1 ∩ ΓD2 = ΓF ,

then D1 ⊗F D2 is a division ring with center Z(D2). Furthermore, there is a unique

valuation v on D1⊗F D2 such that v|
Di

= wi for i = 1, 2. Also, D1 ⊗F D2
∼= D1⊗F D2

and ΓD1⊗F D2 = ΓD1 + ΓD2 (in the divisible hull of ΓD2).

1.4 TTR Algebras and Armatures

In this section, we will review several results from [TW87] and define some ter-

minology and conventions that we will use later when dealing with TTR algebras.

These will be used in Chapter 2 and Chapter 3.

In the commutative setting, we have the following classical result, see [TW87,

Prop. 1.4] or [End72, (20.11)].

Proposition 1.4.1. Let F ⊆ K be a TTR extension of valued fields. Let ` =

exp(ΓK/ΓF ).
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1. If K is Galois over F , then there is a perfect pairing γ : Gal(K/F )×(ΓK/ΓF ) →
µ`(F ) given by (σ, v(a) + ΓF ) 7→ σ(a)a−1.

2. If F is Henselian, then K is Galois over F if and only if µ` ⊆ F if and only if

µ` ⊆ F .

Thus, if K is Galois over F , then Gal(K/F ) ∼= ΓK/ΓF , so Gal(K/F ) is necessarily

abelian.

In the noncommutative setting, Tignol and Wadsworth showed that a similar

pairing exists (cf. [TW87, Prop. 3.1]):

Proposition 1.4.2. Let F be a valued field and let D ∈ D(F ) be TTR over F . There

exists a well-defined bilinear symplectic pairing

CD : (ΓD/ΓF )× (ΓD/ΓF ) → F
∗

given by (v(a) + ΓF , v(b) + ΓF ) 7→ aba−1b−1. Furthermore, CD is non-degenerate and

consequently, µ` ⊆ F , where ` = exp(ΓD/ΓF ), and ΓD/ΓF
∼= H ×H for some finite

abelian group H.

We call CD the canonical pairing of v on D.

1.4.1 Armatures

We now describe the notion of an armature. This idea was first introduced in

[TW87] and is a useful tool for dealing with TTR algebras and tensor products of

symbol algberas. Let F be a field and let A be an algebra over F . For t ∈ A, we will

use t̃ to denote tF ∗ ∈ A∗/F ∗.

Definition 1.4.3. Let A be a finite-dimensional F -algebra. A subgroup A of A∗/F ∗

is an armature of A if A is abelian, |A| = [A : F ] and F [A] = A.

For example, if A = (a, b; F, ω)n is a symbol algebra with standard generators i, j

(i.e. in = a, jn = b, and ij = ωji), then A = {̃ikj̃l| 0 ≤ k < n, 0 ≤ l < n} is an

armature for A.
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Suppose A1 and A2 are F -algebras with respective armatures A1 and A2. Then

A = {ã⊗ b : ã ∈ A1, b̃ ∈ A2} is an armature for A1 ⊗F A2. So A ∼= A1 × A2. In

particular, if A is a tensor product of symbol algebras over F , then A has an armature.

Conversely, if Z(A) = F and [A : F ] < ∞, then whenever A has an armature, A is a

tensor product of symbol algebras over F (cf. [TW87, Prop. 2.7]).

There is a well-defined non-degenerate symplectic bilinear pairing associated to

A, namely BA : (αF ∗, βF ∗) 7→ αβα−1β−1. BA takes values in µ(F ). Let s = exp(A).

Define the relative value homomorphism, vA : A → ∆F /ΓF by αF ∗ 7→ 1
s
v(αs) + ΓF ,

where s = exp(A). We have the following result (cf. [TW87, Prop. 3.3].

Proposition 1.4.4. Suppose A ∈ D(F ) is TTR over F and suppose A has an arma-

ture A. Then vA gives an isomorphism A ∼= ΓA/ΓF and BA is isometric to CA via

vA, i.e.

A×A BA- µ(F )

ΓA/ΓF × ΓA/ΓF

(vA, vA)

? CA - µ(F )

ρ

?

is commutative where ρ : VF → F is the natural projection which canonically identifies

µn(F ) with µn(F ) when char(F ) - n. Consequently A ∼= A1 ⊗F . . . ⊗F Ak, where the

Ai are symbol algebras with [Ai : F ] = n2
i > 1 and nk | nk−1 | · · · | n1 are uniquely

determined as the invariant factors of ΓA/ΓF .

Together with [TW87, Prop. 3.5], we see that A is TTR over F if and only if vA

is an isomorphism.

1.4.2 Conventions for TTR Algebras

We have the following theorem proved by Draxl (cf. [Dra84, Th. 1]).

Theorem 1.4.5. Suppose D ∈ D(F ) is TTR over F . If F is Henselian, then D is

isomorphic to a tensor product of symbol algebras.
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It follows, as noted in the previous section, that any such D has an armature. So

Prop. 1.4.4 applies to D. Let p be a prime. Suppose T is a p-primary TTR division

algebra over F . So, by Theorem 1.4.5, T ∼= (a1, b1)pr1 ⊗F . . . ⊗F (ad, bd)prd , where

a1, b1, . . . , ad, bd ∈ F ∗. We will show later in Proposition 1.4.6 that a1, b1, . . . , ad, bd

map to Z/pZ-independent elements in ΓF /pΓF , i.e. for mi, ni ∈ Z
d∑

i=1

miv(ai) + niv(bi) ∈ pΓF if and only if mi, ni ∈ pZ for all i.

Let pr = lcm{pr1 , . . . , prk} and let ω be a primitive pr root of unity. For 1 ≤ ` ≤ k,

we let i`, j` be standard generators of (a`, b`)pr` , i.e.

ip
r`

` = a`, jpr`

` = b`, i`j` = ωpr−r` j`i`.

Also, let T denote the armature of T generated by i1F
∗, j1F

∗, . . . , idF ∗, jdF
∗.

Now, if τ ∈ T is the pre-image of an element τF ∗ ∈ T , then we will call τ an

armature element of T . Suppose τ is an armature element of T . We may write

τ̃ = ĩ1
s1

j̃1
t1

. . . ĩd
sd

j̃d
td

, with each sk and tk uniquely determined up to prk . So, for

some f ∈ F ∗, we have

τ = fis1
1 jt1

1 . . . isd
d jtd

d (1.1)

We call isk
k and jtk

k factors of τ ; if we want to be more specific, then we will say “the

ik factor” or “the jk factor”.

Now suppose that τ̃ has order pe. Note that T is a direct sum of finite groups,

with ĩ1, j̃1, . . . , ĩd, j̃d each generating a different direct summand. Thus, each factor

has order dividing pe (i.e. iskpe

k F ∗ = jtkpe

k F ∗ = F ∗). Furthermore, some factor of τ

must have order pe in T ∗/F ∗; we will call any such factor a leading term or a leading

factor of τ .

Proposition 1.4.6. Suppose T is a p-primary TTR division algeba over F . Then

T ∼= (a1, b1)pr1 ⊗F . . . ⊗F (ad, bd)prd , where a1, b1, . . . , ad, bd ∈ F ∗ map to Z/pZ-

independent elements in ΓF /pΓF .
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Proof. Suppose there exist mi, ni ∈ Z such that

d∑
k=1

miv(ai) + niv(bi) ∈ pΓF .

Let i1, j1, . . . , id, jd be standard generators for T and let T be the armature gener-

ated by i1F
∗, j1F

∗, . . . , idF ∗, jdF
∗. Then, ĩ1

m1pr1−1

, j̃1
n1pr1−1

, · · · , ĩd
mdprd−1

, j̃d
ndprd−1

are Z/pZ-independent in T . Since v : T → ΓT /ΓF is an isomorphism (Theo-

rem 1.4.4), the elements 1
p
v(a1),

1
p
v(b1), . . . ,

1
p
v(ad),

1
p
v(bd) have Z/pZ independent im-

ages in (1/pΓF ∩ ΓT )/ΓF . Thus, v(a1), v(b1), . . . , v(id), v(jd) have Z/pZ-independent

images in ΓF /pΓF .

1.5 Cohomology and Cyclic and Symbol Algebras

In this section, we will use Galois cohomology to describe cyclic and symbol al-

gebras via cup products. The material concerning cyclic algebras and characters is

not new, however, the author cannot find a good reference in the literature. Material

on group and Galois cohomology can be found in [Ser79, Ch. VII], [NSW00], and

[CF67].

1.5.1 Characters and Semi-symbols

Let F ⊆ K be an algebraic Galois extension (possibly of infinite degree). Set

G = Gal(K/F ), a profinite group. We will denote by Homc(G,Q/Z), the group of

continuous homomorphisms from G to Q/Z, i.e. homomorphisms with open kernel

where G has the Krull topology and Q/Z has the discrete topology. This group

is called the character group of G, and its elements are characters of G. Also, we

write Fsep for the separable closure of F and GF for the absolute Galois group of F ,

Gal(Fsep/F ). We will write X(F ) to denote Homc(GF ,Q/Z) and X(K/F ) to denote

Homc(Gal(K/F ),Q/Z).
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Now let A be a discrete Z[G]-module (i.e., A is given the discrete topology and G

acts continuously on A). We will sometimes refer to Z[G]-modules as G-modules, cf.

[Ser79, Ch. VII]. We let Zn(G, A) denote the set of continuous n-cocycles, Bn(G,A)

the set of continuous n-coboundaries, and Hn(G,A) = Zn(G,A)/Bn(G/A) the group

of continuous n-cohomology classes. When G is understood from context, we may

abbreviate Zn(G,A), Bn(G,A), and Hn(G,A) to Zn(A), Bn(A), and Hn(Z) respec-

tively.

In this sections, we construct semi-symbols, which are elements of H2(GF , F ∗
sep)

corresponding to cyclic algebras in Br(F ). This construction is described briefly in

[Ser79, Chapter XIV, §1].

Fix a field F . The exact sequence of discrete GF -modules (with trivial GF -action)

0 → Z→ Q→ Q/Z→ 0,

begets a long exact sequence in cohomology

. . . - H1(GF ,Q) - H1(GF ,Q/Z)
δ- H2(GF ,Z) - H2(GF ,Q) - . . .

From the triviality of the GF -action, we have that H1(GF ,Q/Z) = Z1(GF ,Q/Z) =

Homc(GF ,Q/Z). Also, becauseQ is uniquely divisible, both H1(GF ,Q) and H2(GF ,Q)

are trivial; thus H1(GF ,Q/Z) ∼= H2(GF ,Z) via the connecting homomorphism δ.

Thus, if we take χ ∈ Homc(GF ,Q/Z), then δχ ∈ H2(GF ,Z). Now take an element

b ∈ F ∗ = H0(GF , F ∗
sep). The cup product δχ∪ b is an element of H2(GF ,Z⊗ZF ∗

sep) =

H2(GF , F ∗
sep) = Br(F ). A semi-symbol is an element of the form δχ∪ b. As in [Ser79,

Chapter XIV, §1], we will write (χ, b) for the semi-symbol δχ ∪ b.

Now δ is a group homomorphism and the cup product is bilinear, so for χ1, χ2 ∈
Homc(GF ,Q/Z) and a, b ∈ F ∗ we have

(χ1, b) + (χ2, b) = (χ1 + χ2, b) and (χ1, b) + (χ1, c) = (χ1, bc).
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1.5.2 Relationship to cyclic algebras

We wish to show explicitly that the central simple algebra of degree n = o(χ)

represented by (χ, b) is a cyclic algebra. Let F (χ) denote the fixed field of ker(χ).

Since ker(χ) is open (so of finite index) and normal in GF , F (χ) is a finite degree

Galois extension of F , with Galois group isomorphic to GF /ker(χ). But GF /ker(χ)

is isomorphic to the finite subgroup im(χ) of Q/Z, so Gal(F (χ)/F ) is cyclic. Say

GF /ker(χ) ∼= ( 1
n
Z)/Z. Let σχ = χ−1(1/n), then σχ|F (χ)

is a distinguished generator

of Gal(F (χ)/F ).

Set L = F (χ), σ = σχ, and G = Gal(L/F ). Note that χ is the inflation to GF

of a uniquely determined character of G. For simplicity, consider χ as an element

of Homc(G,Q/Z) and (χ, b) as an element of H2(G,L∗) = Br(L/F ). Note that

b ∈ F ∗ = H0(G,L∗) = H0(GF , F ∗
sep).

Let us chase down the 2-cocycle δχ : G× G → Z, which is the image of χ under

the connecting homomorphism

Z1(G,Q) → Z1(G,Q/Z)

↓ ∂

Z2(G,Z) → Z2(G,Q)

.

Recall that χ(σ) = 1/n mod Z. For 0 ≤ i < n, define χ′(σi) = i/n. Then χ′ maps

to χ under the map of cocycles Z1(G,Q) → Z1(G,Q/Z). So δ(χ) = ∂(χ′) is defined

by ∂(χ′)(σi, σj) = χ′(σi) + χ′(σj) − χ′(σi+j). After simplification, we see that, for

0 ≤ i, j < n,

δ(χ)(σi, σj) =

{
0, if i + j < n

1, if i + j ≥ n

From an easy cup product computation (cf. [Ser79, p.176]), we see that

(δχ ∪ b)(g1, g2) = δχ(g1, g2)⊗Z b = bδχ(g1,g2),

where g1, g2 ∈ G, and the last equality identifies Z⊗ZL∗ with L∗. Thus, the 2-cocycle,
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(χ, b) is defined by, for 0 ≤ i, j < n,

(χ, b)(σi, σj) =

{
1, if i + j < n

b, if i + j ≥ n

Therefore, (χ, b) corresponds to the cyclic algebra (L/F, σ, b)n, where n = o(χ).

1.6 Restriction and Corestriction

We now describe two homological maps with Brauer group interpretations. Most

of the facts from this section can be found in [Ser79, Ch. VIII], [Pie82, Ch. 14], [Rei75,

Ch. 7], or [NSW00].

Let H ⊆ G be groups with |G : H| < ∞. Let A be a G-module. For k ≥ 0,

we define the homological restriction map resk : Hk(G,A) → Hk(H,A) by [f ] 7→
[f |

H × · · · ×H︸ ︷︷ ︸
k times

]. Now suppose K/F is a finite-degree separable field extension. Let

G = GF and H = GK . Since Br(F ) ∼= H2(G, F ∗
sep) and Br(K) ∼= H2(H, F ∗

sep),

we have a corresponding map res
K/F

: Br(F ) → Br(K) given by scalar extension,

[A] 7→ [A⊗F K] (cf. [Pie82, Ch. 14.7]).

There is a corresponding map going in the other direction cork : Hk(H,A) →
Hk(G,A).

Definition 1.6.1. Suppose H ⊆ G are groups with |G : H| < ∞. Let g1, . . . , gm a

fixed set of coset representatives of H in G. Let A be a G-module and for a ∈ AH =

H0(H, A), define

cor0(a) = N
G/H

(a) = (
m∑

i=1

gm)a.

The map cor0 extends to maps at each level cork : Hk(H, A) → Hk(G,A) for

k ≥ 0 (cf. [Ser79, Ch. VII]). For each k, we have cork ◦ resk(f) = mf (cf. [Ser79,

Ch. VII, Prop. 6]). If K/F is a finite-degree separable field extension, then we have

a corresponding map cor
K/F

: Br(K) → Br(F ), however, this map is difficult to
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describe (cf. [Jac96, §3.13, p.149]). An explicit formula for how to compute cor
K/F

cohomologically is given in the appendix of [Hwa95a].

Both res and cor have some important functorial properties.

Proposition 1.6.2. Let H ⊆ G be groups with |G : H| = m < ∞. Let A be a

G-module. Fix k ≥ 0 and let ∂k denote the boundary map ∂k : Hk(·, A) → Hk+1(·, A).

Then the following diagram commutes.

Hk(G, A)
res- Hk(H,A)

cor- Hk(G,A)

Hk+1(G,A)

∂k

?
res- Hk+1(H,A)

∂k

?
cor- Hk+1(G,A).

∂k

?

Proof. See [Bro94, Ch.III, §9], [NSW00, Prop 1.5.2], or [Ser79, Ch. VII, §7].

Proposition 1.6.3. Let F ⊆ L be a finite degree field extension. Then the following

diagram commutes

Br(L)
res

L(x)/L- Br(L(x))

Br(F )

cor
L/F

? res
F (x)/F- Br(F (x))

cor
L(x)/F (x)

?

i.e. res
F (x)/F

cor
L/F

= cor
L(x)/F (x)

res
L(x)/L

. Furthermore, if A ∈ Br(L) and B ∈ Br(F )

satisfy

cor
L(x)/F (x)

res
L(x)/L

(A) = res
F (x)/F

(B),

then cor
L/F

(A) = B.

Proof. Let K be a field and let K[x] and K(x) denote the polynomial ring and

function field in one variable over K respectively. Fix D ∈ D(K). Since D has no

zero-divisors, D⊗K K[x] ∼= D[x] has no zero divisiors. Then, by transitivity of scalar

extension, D ⊗K K(x) ∼= D[x] ⊗K[x] K(x). Because D[x] ⊗K[x] K(x) is a central
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localization of D[x], D⊗K K(x) is a division algebra over K(x) of dimension [D : K].

Since D ∈ D(K) was arbitrary, this shows that res
K(x)/K

is injective.

We may identify Br(F ) and Br(L) with their images respectively in

Br(F (x)) and Br(L(x)) (via the injective maps res
F (x)/F

and res
L(x)/L

). Since

Gal(L(x)/F (x)) ∼= Gal(L/F ), and cor
L/F

is a sum over Gal(L/F ), the maps cor
L/F

and cor
L(x)/F (x)

agree on the image of Br(L) in Br(L(x)). Thus, res
F (x)/F

cor
L/F

=

cor
L(x)/F (x)

res
L(x)/L

.

Applying this to the assumption on A and B, we get res
F (x)/F

cor
L/F

(A) =

res
F (x)/F

(B). The injectivity of res
F (x)/F

finishes the argument.

Proposition 1.6.4. Suppose L/F is a finite Galois extension. Let G = GF , H = GL

and suppose σ1, . . . , σm form a complete set of coset representatives of H in G. If

χ ∈ X(L), then cor
L/F

(χ)(g) =
∑m

i=1 χ(σigσ−1
i′ ), where i′ ∈ {1, . . . , m} is determined

by the condition σigσ−1
i′ ∈ H.

Proof. See [Mer85, 1.3].

1.7 Compatibility Factors

There are two types of compatibility factors which will arise often in our restriction

and corestriction formulae. We will describe them both here. Let G be a group.

Suppose G1, G2 are cyclic subgroups of G with distinguished generators g1, g2

respectively. There are, for i = 1, 2, surjective homomorphisms µi : Gi → G1 ∩ G2

given by µi(g) = g|Gi:G1∩G2|. We define comp(g1, g2) = {c ∈ Z : µ1(g1)
c = µ2(g2)}. For

any c1 satisfying µ1(g1)
c1 = µ2(g2), we have comp(g1, g2) = {c ∈ Z : c ≡ c1 mod |G1∩

G2|}. If c1 ∈ comp(g1, g2) and c2 ∈ comp(g2, g1), then necessarily, c1c2 ≡ 1 mod |G1∩
G2|. We say that g1 and g2 are compatible if 1 ∈ comp(g1, g2).

Suppose instead that G1, G2 are normal subgroups of G where G/Gi are both

cyclic. Let σi be distinguished generators of G/Gi. There are surjective homo-

morphisms πi : G/Gi → G/G1G2 given by πi(σ) = σG1G2. We may similarly de-
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fine comp(σ1, σ2) = {c ∈ Z : π1(σ1)
c = π2(σ2)}. Again, for any c1 satisfying

π1(σ1)
c1 = π2(σ2), we have comp(σ1, σ2) = {c ∈ Z : c ≡ c1 mod |G : G1G2|}. Finally,

if c1 ∈ comp(σ1, σ2) and c2 ∈ comp(σ2, σ1), then necessarily, c1c2 ≡ 1 mod |G : G1G2|
and we say that σ1 and σ2 are compatible if 1 ∈ comp(σ1, σ2).

Remark 1.7.1. In the previous paragraph σ1 and σ2 are compatible if and only if

there is a σ ∈ G for which σGi = σi for i = 1, 2. For, if there exists a σ ∈ G with

σGi = σi, then π1(σ1) = σG1G2 = π2(σ2), so σ1 and σ2 are compatible. For the

converse, suppose σ1 and σ2 are compatible. Let τi ∈ G satisfy τiGi = σi for i = 1, 2.

Then τ1G1G2 = π1(σ1) = π2(σ2) = τ2G1G2, whence there exist gi ∈ Gi such that

τ1g1 = τ2g2. Set σ = τ1g1 = τ2g2, so σG1 = τ1G1 = σ1 and σG2 = τ2G2 = σ2.

Remark 1.7.2. In both cases the set of compatibility factors are cosets of cyclic sub-

groups of Z. If G1 and G2 are cyclic with generators g1 and g2 respectively, then

|G1 ∩ G2| = 1 if and only if comp(g1, g2) = Z. In general, comp(g1, g2) is a coset of

|G1 ∩G2|Z in Z. Similarly, if G/G1 and G/G2 are cyclic with generators σ1, σ2, then

|G/G1G2| = 1 if and only if comp(σ1, σ2) = Z. In general, comp(σ1, σ2) is a coset

of |G : G1G2|Z in Z. Note, however, that comp(g1, g2) and comp(σ1, σ2) will always

contain a integer prime to |G1 ∩G2| and |G/G1G2| respectively.



Chapter 2

Algebras Over Generalized Local

Fields

Recall that we call F a generalized local field (abbrev. GLF) if F is Henselian

and F is a finite field. The study of algebras over GLF’s is motivated by what can be

said in the strictly Henselian case (i.e. the case where F is Henselian and F is sepa-

rably closed). Strictly Henselian fields have abelian profinite absolute Galois groups,

whereas the absolute Galois group of a GLF is abelian by procyclic. Correspondingly,

the structure of division algebras over GLF’s is more complicated. For example, every

division algebra over a strictly Henselian field is isomorphic to a tensor product of

symbol algebras. (For, division algebras are always TTR over their center.) However,

one cannot hope to say the same over a GLF; there exist cyclic NSR division algebras

which cannot be symbol algebras because F doesn’t contain enough roots of unity.

We show in Theorem 2.4.1 that every division algebra over a GLF is isomorphic to

a tensor product of cyclic algebras. Eric Brussel at Emory University has proven

Theorem 2.4.1 using a different method, however, we have just recently received his

proof (cf. [Bru04]).

Also, for tensor products of symbol algebras over a strictly Henselian field, Tignol

and Wadsworth gave an algorithm for computing the underlying division algebra in

32
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[TW87, Th. 4.3]. We may ask, do we have a similar algorithm for over a GLF?

To this end, we first show, in Theorem 2.2.1, that the algorithm given in [TW87,

Th. 4.3] holds more generally; given a valued field F , and A, a tensor product of

symbol algebras (over F ) with an appropriate property, the algorithm in [TW87,

Th. 4.3] will still compute the underlying division algebra. We apply this algorithm

in Theorem 2.4.1 to produce the underlying division algebra over an algebra presented

as N ⊗F T , where N is an NSR division algebra and T is a TTR division algebra.

The chapter is organized as follows. In Section 2.1, we prove several basic facts

about algebras over a GLF. In Section 2.2, we show in Theorem 2.2.1 that [TW87,

Th. 4.3] holds in greater generality. We give applications for Theorem 2.2.1 in Sec-

tion 2.3. Finally, in Section 2.4 we prove Theorem 2.4.1 from Theorem 2.2.1 by using

an index formula, Prop. 2.1.4.

2.1 Background

In this section, we give a few examples of generalized local fields and prove a few

important facts about division algebras over GLF’s.

As mentioned in the introduction, generalized local fields are a generalization of

the local fields studied in number theory. The non-Archimedian local fields of num-

ber theory are fields with complete discrete (rank 1) valuations with finite residue

field. These were the fields for which Hensel proved Hensel’s Lemma. The dif-

ference between local fields and GLF’s is that GLF’s are allowed to have as value

group any totally ordered abelian group. For example, for any finite field, K, the

Laurent series field K((x)) is a local field, whence a generalized local field. In gen-

eral, we may iterate the Laurent series construction; define K((x1))((x2)) . . . ((xi)) =(
K((x1))((x2)) . . . ((xi−1))

)
((xi)). We have a more explicit description of such a

field. Give Zn =
n∏

i=1

Z the right-to-left lexicographical ordering (i.e. (a1, . . . , an) <

(b1, . . . , bn) if there is a k such that ak < bk and ai = bi for all i > k). Then, we define
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the n-fold iterated Laurent series over K,

F = K((x1))((x2)) . . . ((xn)) =

{ ∑
(a1,...,an)∈Zn

ca1,...,anxa1
1 · · · xan

n

∣∣∣∣
{(a1, . . . , an)| ca1,...,an 6= 0}

is well-ordered

}
.

Then F is a GLF with respect to the standard valuation

v

( ∑
(a1,...,an)∈Zn

ca1,...,anxa1
1 · · · xan

n

)
= min{(a1, . . . , an)| ca1,...,an 6= 0}.

In this case, ΓF = Zn and F = K.

We may view the valuation over n-fold iterated Laurent series as the composition

of n discrete valuations. In general, if w is a valuation on K and y is a valuation on

K, then we may form the the composite valuation, v, on K as follows. Let W be

the valuation ring associated to w and let Y ⊆ K be the valuation ring associated

to y. Let V = π−1(Y ) ⊆ K where π : W → K is the canonical epimorphism. Then

V is a valuation ring with quotient field K. The valuation v associated to V is the

composite valuation of w and y. The residue field of K with respect to V is Y and

there is a canonical short exact sequence

0 - Γy
- Γv

- Γw
- 0,

where Γy, Γv, Γw are the value groups with respect to y, v, and w respectively. In

this construction v is Henselian if and only if y and w are each Henselian (see

[Rib85, p. 211, Prop. 10]). This allows us to see that, for K a finite field, F =

K((x1))((x2)) . . . ((xn)) is Henselian with respect to the standard valuation.

Using composite valuations, we may construct other examples of generalized local

fields. For any local field K, the field F = K((x1))((x2)) . . . ((xn)) is a GLF with value

group ΓK +Zn ∼= Zn+1 and residue K. Recently, there has been extensive work done

on higher local fields; these are generalized local fields with valuation constructed as

the composite of n complete discrete valuations. A compilation of recent results (given

in a 1999 conference) in given in [FK00]. In particular, we find a full classification
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of higher local fields as well as a development of the Milnor K-group and generalized

class field theory for higher local fields.

We now prove some properties about division algebras over a GLF.

Proposition 2.1.1. Suppose F is a GLF. If I ∈ D(F ) is inertial over F , then I is

split, i.e. IBr(F ) is trivial.

Proof. Because F is Henselian, [JW90, Th. 2.8] tells us that IBr(F ) ∼= Br(F ). By

a famous result of Wedderburn, since F is finite, every finite-dimensional F -central

division algebra is a field. In other words, D(F ) = {F}, so IBr(F ) ∼= Br(F ) = {[F ]}
is trivial.

Corollary 2.1.2. If D is tame, then D ∼ N ⊗F T where N, T ∈ D(F ), with N NSR

and T TTR.

Proof. Since F is Henselian and D is tame, [JW90, Lemma 6.2] tells us that D ∼
S ⊗F T , where [S] ∈ SBr(F ) and T is tame and totally ramified. By [JW90, Lemma

5.14], S ∼ I ⊗F N , where I ∈ IBr(F ) and N is NSR. But IBr(F ) is trivial, so

D ∼ S ⊗F T ∼ N ⊗F T .

Proposition 2.1.3. Suppose F is a GLF. Then every finite-degree unramified field

extension of F is cyclic Galois over F . Furthermore, unramified fields over F are

classified by degree. In particular, if N is inertially split over F , then the underlying

division algebra of N is cyclic.

Proof. Since F is finite, field extensions of F are cyclic Galois over F and are classified

by their degree. By the correspondence between unramified extensions of F and fields

separable over F (cf. Section 1.3.1), the same is true of unramified field extensions of

F . If N is an inertially split division algebra, then the underlying division algebra,

D, of N is NSR and split by a unramified, whence, cyclic extension. Thus, D is

isomorphic to a cyclic algebra.

For D ∈ D(F ), we write ΛD for ΓD/ΓF .
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Proposition 2.1.4. Let (F, v) be a Henselian valued field. Take N, T ∈ D(F ), with

N nicely semiramified over F and T tame and totally ramified over F . Let D be the

underlying division algebra of N ⊗F T . Then

deg D

deg D
=

deg N · deg T∣∣ΛN ∩ ΛT

∣∣ .

Proof. We will use residue and value group information to recover [D : F ].

We have a surjective map, θN : ΛN → Gal(Z(N)/F ) given by θN(v(d) + ΓF ) =

cd

∣∣
Z(N)

where cd : N → N is induced by conjugation by d (cf. Section 1.3 or [JW90,

Prop. 1.7]). Since N is nicely semiramified over F , we have that N is a field and

|ΛN | = [N : F ]; thus θN is an isomorphism. Nicely semiramified division algebras

are, by definition, inertially split, so we use [JW90, Theorem 6.3] to obtain Z(D) ∼=
F(

θN(ΛN ∩ ΛT )
)
.

[Z(D) : F ] =
[F(

θN(ΛN ∩ ΛT )
)

: F
]

(Theorem 6.3)

=
[
Gal(Z(N)/F ) : θN(ΛN ∩ ΛT )

]
(Galois correspondence)

= |ΛN : (ΛN ∩ ΛT )| (θN is an isomorphism)

= |ΛN |/|ΛN ∩ ΛT |.
Also, [JW90, Theorem 6.3] tells us that ΓD = ΓN + ΓT . Thus, ΛD = ΛN + ΛT , so

|ΛD| = |ΛN ||ΛT |/|ΛN ∩ΛT |. Thus, as D is defectless, we have, by Draxl’s Ostrowski-

type inequality (cf. Section 1.3),

(deg D/deg D)2 = [D : F ]/[D : Z(D)]

= [D : F ] · |ΛD|/[D : Z(D)]

= [Z(D) : F ] · |ΛN ||ΛT |/|ΛN ∩ ΛT |
= |ΛN |2|ΛT |/|ΛN ∩ ΛT |2

= [N : F ] · [T : F ]/|ΛN ∩ ΛT |2.
This shows that deg D/deg D = deg N · deg T/

∣∣ΛN ∩ ΛT

∣∣.

The formula in Prop. 2.1.4 simplifies if D is a field. Note that D is always a field

if F is a GLF.
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Corollary 2.1.5. If D is a field, then deg(D) = deg(N)deg(T )/|ΛN ∩ ΛT |, ΓD =

ΓN + ΓT , and [D : F ] = deg(N)/|ΛN ∩ ΛT |.

Proof. If D is a field, then deg(D) = 1, so Prop. 2.1.4 yields the following formula

for deg(D),

deg(D) =
deg(N)deg(T )

|ΛN ∩ ΛT | .

From [JW90, Theorem 6.3],

ΓD = ΓN + ΓT .

Also, |ΛD| = |ΛN + ΛT | = |ΛN | · |ΛT |/|ΛN ∩ ΛT | = deg N · (deg T )2/|ΛN ∩ ΛT | =

deg D · deg T . Thus,

[D : F ] =
[D : F ]

[ΓD : ΓF ]
=

(deg D)2

|ΛD| =
deg D

deg T
=

deg N

|ΛN ∩ ΛT | .

This gives us the size of the residue.

Remark 2.1.6. If D is a field and we also have ΓN ⊆ ΓT , then ΛN ∩ ΛT = ΛN , so

D = F by Corollary 2.1.5. In this case, D is tame and totally ramified with the same

value group as T . If we pass to the separable closure, we see also that the canonical

pairings, CD and CT are the same.

2.2 Symbol Algebra Algorithm

Our goal in this section is to prove that every division algebra over a GLF is

isomorphic to a tensor product of cyclic algebras. In the process, we will show how to

compute the underlying division algebra of an algebra presented in the form N ⊗F T

where N is NSR and T is TTR. We will need the following generalization of [TW87,

Theorem 4.3] which was given only for non-strictly Henselian fields.

Suppose (F, v) is a valued field, and A is a central simple F -algebra with armature

A. Let s = exp(A) and let vA : A → 1
s
ΓF /ΓF be defined by vA(aF ∗) = 1

s
v(as) + ΓF .

We write K for the kernel of vA. We let BA denote the armature pairing BA : A×A →
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µ(F ). Let K⊥ be the subgroup of A orthogonal to K with respect to BA. If a ∈ A∗

is an armature element, then we write ã for aF ∗.

Theorem 2.2.1. Let F, v, A,A, and K be as described above. Assume that char(F ) -
[A : F ]. Let s = exp(A), so F contains a primitive s-th root of unity. Suppose that for

any a ∈ A∗ with aF ∗ ∈ K we have as ∈ F ∗s. If D is the underlying division algebra of

A, then D is TTR over F , [D : F ] = |K⊥ : (K∩K⊥)|, ΓD/ΓF = vA(K⊥) ⊆ ∆/ΓF , and

the canonical pairing on ΓD/ΓF is isometric (via vA) to the pairing on K⊥/(K∩K⊥)

induced by BA. In particular,

1. A is a division algebra if and only if vA is injective.

2. If K⊥ ⊆ K, then A is split.

Remark 2.2.2. The first part of the proof is similar to the one found in [TW87,

Theorem 4.3].

Remark 2.2.3. Let φs : A → F ∗/F ∗s be the map defined by sending aF ∗ 7→ asF ∗s.

The condition on K translates to the triviality of φs(K). Later, in Theorem 2.3.2, we

will prove that, for φs to be trivial on K, it is enough to check that φs(K) ⊆ T where

T ⊆ F ∗/F ∗s is generated by a set of independent uniformizers.

Remark 2.2.4. The condition on K actually gives us more specific information which

we will frequently use below. Let a ∈ A be an element with as ∈ F ∗s. Set k = o(aF ∗)

in A. We will show that, in fact, ak ∈ F ∗k. Let ak = x ∈ F ∗. By hypothesis, as = ys

for some y ∈ F ∗. Since s = exp(A), we have k | s and F contains an s/k-th root

of unity. Since ys = as = (ak)s/k = xs/k, we get yk = ωx, where ω is some suitably

chosen s/k-th root of unity. Thus, ak = x = (ζy)k, where ζ ∈ F ∗ is any s-th root of

unity satisfying ζk = ω−1. So ak ∈ F ∗k.

Proof. Let n2 = dimF A = |A|. Consider first the case where K⊥ ⊆ K. Then K⊥ is

totally isotropic and there is a maximal totally isotropic subgroup, L, of A containing

K⊥. We have |L| = n and L = L⊥ ⊆ K⊥⊥ = K. Set L = F [L], which is commutative,
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as L is totally isotropic. Since L is finite abelian, L = ⊕Li, where each Li is cyclic.

Then F [L] = ⊕F [Li]. Suppose liF
∗ is a generator of Li, and |Li| = ki. Then

L = ⊕F [Li] ∼= ⊕F [xi]/(x
ki
i − lki

i ). However, li ∈ L, means liF
∗ ∈ L ⊆ K. Thus, by

Remark 2.2.4, lki
i = fki

i for some fi ∈ F ∗. Thus, L ∼= F ⊕ · · · ⊕ F (n times). So A

contains a family of n orthogonal idempotents, whence A is split. This completes the

case where K⊥ ⊆ K.

Now we return to the general case. Since K⊥ ∩ K is the radical of K⊥, BA

induces a non-degenerate symplectic pairing on K⊥/(K ∩ K⊥). Choose pre-images

s1, t1, . . . , s`, t` ∈ A such that their images, s̃i, t̃i, in K⊥/(K ∩ K⊥) form a symplectic

base.

Let ni = o(s̃i) = o(t̃i) in K⊥/(K ∩ K⊥). Then s̃i
ni ∈ (K ∩ K⊥) ⊆ K. Let

mi = o(s̃i
ni) in K. Again, by Remark 2.2.4, we see that (sni

i )mi = cmi
i for some

ci ∈ F ∗. In the same manner, let hi = o(t̃i
ni

), whence (tni
i )hi = dhi

i for some di ∈ F ∗.

Let E = (c1, d1; ω1)n1 ⊗ · · · ⊗ (c`, d`; ω`)n`
, where ωi = BA(s̃i, t̃i). Then E has an

armature, E , generated by images mod F ∗ of the standard generators, ik, jk, of each

symbol algebra. Let BE denote the pairing associated to E . We have the following

commutative diagram,

E vE- ∆/ΓF

K⊥
(K ∩ K⊥)

?
vA- ∆/ΓF ,

wwwwwwwww

where the vertical map is the isometry ĩk 7→ s̃k, j̃k 7→ t̃k. The bottom map is injective,

whence, by [TW87, Prop. 3.5], E is a tame and totally ramified division algebra and v

extends to a valuation on E. Also, ΓE/ΓF = vA(K⊥), [E : F ] = |E| = |K⊥ : (K∩K⊥)|.
We claim that E is the underlying division algebra of A. To this end, we would

like to show that A ⊗F Eop is split. Let E ′ denote the armature of Eop. Then A ⊥
E ′ = {(a⊗ e)F ∗ | aF ∗ ∈ A, eF ∗ ∈ E} is an armature for A⊗F Eop. For convenience,
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we will denote by (ã, ẽ) the element (a ⊗ e)F ∗. Also, let y : A ⊥ E → ∆/ΓF be the

associated valuation homomorphism sending (ã, ẽ) 7→ vA(ã) + vE(ẽ). Let M be the

kernel of y. By the case handled above, it suffices to show that M⊥ ⊆ M and for

any a⊗ e ∈ A⊗F Eop with (ã, ẽ)F ∗ ∈M, we have (ã, ẽ)s ∈ F ∗s.

Denote by g : K⊥ → E the composition of surjective maps

K⊥ → K⊥/(K⊥ ∩ K) → E

where the last map the isometry from the previous commutative diagram. So,

BE(g(ã), g(̃b)) = BA(ã, b̃) (2.1)

for any ã, b̃ ∈ K⊥. In addition, vE(g(s̃k)) = vE(ĩk) = 1
nk

v(ck) + ΓF = vA(s̃k). Sim-

ilarly, vE(g(t̃k)) = vA(t̃k). Since g(s̃1), g(t̃1), . . . , g(s̃`), g(t̃`) generate im(g), we have

vE(g(ã)) = vA(ã) for all ã ∈ K⊥.

Take any (ã, ẽ) ∈ M⊥. There is a p̃ ∈ K⊥ such that g(p̃) = ẽ. Fix r̃ ∈ K⊥. Then

y(r̃, g(r̃)−1) = vA(r̃) + vE(g(r̃)−1) = 0. So (r̃, g(r̃)−1) ∈M, thus,

1 = BA⊥E ′((ã, ẽ), (r̃, g(r̃)−1))

= BA(ã, r̃) ·BE ′(ẽ, g(r̃)−1)

= BA(ã, r̃) ·BE(g(p̃), g(r̃))

= BA(ã, r̃) ·BA(p̃, r̃)

= BA(ãp, r̃).

Since r̃ ∈ K⊥ was arbitrary, ãp ∈ K⊥⊥ = K. Thus,

0 = vA(ãp) = vA(ã) + vA(p̃) = vA(ã) + vE(ẽ) = y(ã, ẽ).

So (ã, ẽ) ∈M, whence M⊥ ⊆M.

It remains to show that, for any a ⊗ e ∈ A ⊗F Eop with (ã, ẽ) ∈ M, we have

(a ⊗ e)s ∈ F ∗s. Note that ni | s for all i (see Remark 2.2.5 below), so exp(E) =

exp(E ′) | s, whence exp(A ⊥ E ′) = s. Also, by Remark 2.2.5 below, mi | s/ni, so by

the construction of the sk, we have

isk = (inkmk
k )s/nkmk = (cmk

k )s/nkmk = (snimi
k )s/nkmk = ss

k.
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Similarly, js
k = tsk. Write e = fip1

1 jq1

1 . . . ip`

` jq`

` , where f ∈ F ∗ and pk, qk ≥ 0. Since the

map K⊥/(K∩K⊥) → E given by s̃k 7→ ĩk, t̃k 7→ j̃k is an isometry (see equation (2.1),

we have, for some ω determined solely by the armature pairing (BA, BE)

es = f s(ip1

1 jq1

1 . . . ip`

` jq`

` )s

= f sisp1

1 jsq1

1 . . . isp`

` jsq`

` ω

= f sssp1

1 tsq1

1 . . . ssp`

` tsq`

` ω

= f s(sp1

1 tq1

1 . . . sp`

` tq`

` )s.

Thus, es = f sbs, where b = sp1

1 tq1

1 . . . sp`

` tq`

` ∈ A is an armature element with b̃ ∈ K⊥
(as s̃k, t̃k ∈ K⊥). So, (a⊗ e)s = as · f sbs. Also, (ã, ẽ) ∈M implies that y((ã, ẽ)) ∈ ΓF ,

whence vA(ãb) = 1
s
v((ab)s)+ΓF = 1

s
v((fab)s)+ΓF = 1

s
v((ae)s)+ΓF = y((ã, ẽ))+ΓF =

ΓF . So ãb ∈ K. By the condition on K, (ab)s ∈ F ∗s. Note that

BA(̃b, ã) = BA(̃b, ãb) = 1,

since b̃ ∈ K⊥ and ãb ∈ K. So a and b commute in A∗, whence (a ⊗ e)s = asf sbs =

f s(ab)s ∈ F ∗s.

Remark 2.2.5. Note that E is independent of the choices of ci and di. If zi = o(s̃i) in

K⊥ ⊆ A and ni = o(s̃i) in K⊥/(K ∩ K⊥), then ni | zi | s. However, sni
i

(zi/ni)F ∗ = F ∗,

so mi = o(s̃ni
i ) | zi/ni | s/ni. (Note that, in fact, mini = zi.) Thus, mini | s, so

F ∗ contains an mini-th root of unity; i.e. any mi-th root of unity is an ni-th power

in F ∗. Since the ci are determined up to a mi-th root of unity, the symbol algebra,

(ci, di)ni
, is independent of the choice of ci. A similar argument for di provides the

uniqueness of E up to isomorphism.

2.3 Applying Earlier Results

Let F be a valued field. We wish to apply Theorem 2.2.1 in a special case to help

compute the underlying division algebra of certain tensor products of TTR symbol

algebras.
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Let p be a prime and let s be any power of p. Let t1, . . . , tn ∈ F be elements

whose images in ΓF /pΓF are linearly independent. Let T be the subgroup of F ∗/F ∗s

generated by t1, . . . , tn. Then,

Proposition 2.3.1. The map w : T → ΓF /sΓF induced by v is injective.

Proof. Let w be the map induced by v sending F ∗/F ∗s → ΓF /sΓF . Then w is a

well-defined group homomorphism. Since, v(t1), . . . , v(tn) are linearly independent in

ΓF /pΓF , they must be linearly independent in ΓF /sΓF . Thus, w is one-to-one.

Theorem 2.3.2. Suppose p is odd. Let T ⊆ F ∗/F ∗s be as defined preceding Prop. 2.3.1.

Let A = (a1, b1)pr1 ⊗F · · · ⊗F (ak, bk)prk , where aiF
∗s, biF

∗s ∈ T for all i and for

s = max{pri}. Then the underlying division algebra of A is a TTR division algebra

over F and can be computed via Theorem 2.2.1.

Proof. Let B be the group of armature elements of A∗ and let K ≤ B be the subgroup

defined by K/F ∗ ∼= K. In order to use Theorem 2.2.1, we need to verify that for

any z ∈ K we have zs ∈ F ∗s. Let φs be the s-th power map. Then φs maps

B/F ∗ → F ∗/F ∗s. We claim that, because p is odd, im(φs) ⊆ T .

Note, for any x, y ∈ B, we have xyx−1y−1 = ζ ∈ µs. Then,

(xy)s = ζ1+2+···+(s−1)ysxs. (2.2)

But p is odd, so s is odd and

1 + 2 + · · ·+ (s− 1) =
s(s− 1)

2
∈ sZ. (2.3)

Hence, (xy)s = xsys, i.e. φs is a group homomorphism.

Let i1, j1, . . . , ik, jk be a set of standard generators for B. We assumed aiF
∗s, biF

∗s ∈
T for all i, so φs(il), φs(jl) ∈ T . Since φs is a group homomorphism, this shows that

im(φs) ⊆ T .

Suppose now that z ∈ K, i.e. v(zF ∗) = ΓF . Then v(zsF ∗s) = sΓF . We have the

following composition of maps

B/F ∗ φs→ T
w→ ΓF /sΓF ,
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where the last map is injective by Proposition 2.3.1. By assumption w(φs(zF
∗)) =

v(zsF ∗s) ∈ sΓF , so zF ∗ ∈ ker(φs); in other words, zs ∈ F ∗s, which was to be

shown.

Remark 2.3.3. Theorem 2.3.2 holds in greater generality. The key to the proof lies in

showing that φs(K) ⊆ T . If p = 2 and for all x, y ∈ K we have xyF ∗ has order less

than s (in K), or, if p = 2 and µ2s ⊆ F , then φs|K is a group homomorphism, whence

φs(K) ⊆ T and the result still holds.

Remark 2.3.4. Let C = 〈t1, . . . , tk〉 ⊆ F ∗. We want to show that, whenever The-

orem 2.2.1 applies, the underlying division algebra of A is isomorphic to a tensor

product of symbol algebras whose slots are in C. The slots of A can be altered by

s-th powers in F ∗, whence, A = (a1, b1)pr1 ⊗F · · ·⊗F (ak, bk)prk where ai, bi ∈ C. Since

v(t1), . . . , v(tk) are independent in ΓF /pΓF , we have that C/pmC maps injectively

into F ∗/F ∗pm

for any m ∈ N. Consequently, C ∩ F ∗pm

= pmC.

Let i1, j1, . . . , ik, jk be a set of standard generators for A and let

B = 〈i1, j1, . . . , ik, jk〉.

Then, B ∩ F ∗ ⊆ C. Suppose D is the underlying division algebra of A produced by

Theorem 2.2.1. Let s1, t1, . . . , s`, t` ∈ B map to a symplectic base of K⊥/(K ∩ K⊥).

Let pni = o(siF
∗) = o(tiF

∗) modulo K ∩ K⊥ and let pmi = o(spni

i F ∗) = o(tp
ni

i F ∗). In

the proof of Theorem 2.2.1, we saw that spni+mi

i , tp
ni+mi

i ∈ F ∗pmi . Since si, ti ∈ B and

B∩F ∗∩F ∗pmi ⊆ C∩F ∗pmi = pmiC, we have spni+mi

i , tp
ni+mi

i ∈ pmiC. Thus, there exist

ci, di ∈ C, such that spni+mi

i = cpmi

i and tp
ni+mi

i = dpmi

i , whence D ∼= ⊗`
i=1 (ci, di; F )pni

as desired.

Remark 2.3.5. Here is an example showing that Theorem 2.3.2 does not always hold

if p = 2. Let A = (t1, t1)2 with v(t1) /∈ 2ΓF and suppose µ4 * F , so µ4 * F . Then

A = (−1, t1)2 is an NSR division algebra which is not split, hence A is not TTR. Note

here that A has standard generators i, j such that i2 = j2 = t1 and ij = −ji. We

have that jiF ∗ ∈ K since v(ji) = v(t1) ∈ ΓF , however, (ji)2 = jiji = −j2i2 = −t2i /∈
〈t1F ∗2〉 as −1 /∈ F ∗2.
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2.4 Structure of Division Algebras Over a GLF

In this section, we show that every division algebra over a GLF, F , is isomorphic

to a tensor product of cyclic algebras (cf. Theorem 2.4.1). The proof allows us to

compute the underlying division algebra of an algebra presented as N ⊗F T where

N is NSR over F and T is TTR over F . Finally, we show that, even though every

algebra is similar to N ⊗F T (cf. Cor. 2.1.2), there exist division algebras which are

not isomorphic to N ⊗F T for any choice of N NSR and T TTR over F .

Theorem 2.4.1. If F is a generalized local field, then every tame D ∈ D(F ) is

isomorphic to a tensor product of cyclic algebras.

Proof. Since D is the tensor product of its primary components (cf. Prop. 1.2.1), it

suffices to prove the theorem for each primary component of D.

Assume that D is p-primary. Since D is tame, p 6= char(F ) or D is inertially split.

If D is inertially split, then D ∼= N , where N is a cyclic NSR algebra over F (cf.

2.1.3). Thus, D is cyclic. Thus, we assume henceforward that D is not inertially split

and p 6= char(F ).

Let D ∼ N ⊗F T where N and T are NSR and TTR division algebras over F

respectively. Then N , T are p-primary as well. Now we will aim to show that the

underlying division algebra of N ⊗F T is isomorphic to a tensor product of cyclic

algebras.

By Prop. 2.1.3, N ∼= (L/F, σ, c)pn where L/F is an unramified extension of degree

pn with 〈σ〉 = Gal(L/F ) and c ∈ F ∗ satisfies v(c) /∈ pΓF . Since, by Prop. 2.1.1, all in-

ertial algebras over F are split, for any valuation unit x ∈ F ∗, we have (L/F, σ, c)pn ∼
(L/F, σ, c)pn ⊗F (L/F, σ, x)pn ∼ (L/F, σ, cx)pn . By comparison of dimensions,

N ∼= (L/F, σ, c)pn ∼= (L/F, σ, cx)pn .

Since T is tame and totally ramified, Draxl’s Theorem (Theorem 1.4.5) tells us

that T ∼=
d⊗

k=1

(ak, bk)prk , where a1, b1, . . . , ad, bd map to a Z/pZ-independent set in
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ΓF /pΓF . Thus, we can write

N ⊗F T ∼= (L/F, σ, xc)pn ⊗F (a1, b1)pr1 ⊗F · · · ⊗F (ad, bd)prd ,

where x ∈ F ∗ is a valuation unit to be specified later. Also, for 1 ≤ k ≤ d, we will let

ik and jk denote the standard generators of the symbol algebra (ak, bk)prk . Finally,

we will let T be the armature of T generated by {ikF ∗, jkF
∗ | 1 ≤ k ≤ d}.

If ΛN and ΛT are disjoint, then N ⊗F T is already a division algebra via the

Morandi criterion (Theorem 1.3.2) or Prop. 2.1.4, whence D is isomorphic to a tensor

product of cyclic algebras. Thus, assume that ΛN ∩ ΛT is non-trivial. Since ΛN is

generated by 1
pn v(c) + ΓF , we have that ΛN ∩ ΛT is generated by 1

pm v(c) + ΓF , for

some m ∈ N, 0 < m ≤ n.

Simplifications:

Let τ ∈ T be an armature element with v(τ) = 1
pm v(c). There exist f ∈ F ∗ and

non-negative integers sk, tk such that

τ = fis1
1 jt1

1 . . . isd
d jtd

d . (2.4)

By [TW87, Prop. 3.3] (cf. Prop. 1.4.4), T ∼= ΓT /ΓF via the relative valuation map,

so o(τF ∗) = o(v(τ) + ΓF ). Thus, τF ∗ has order pm. Assume that j1 is a leading term

of τ and let t1 = qpα (cf. Section 1.4.2). Let z be any multiplicative inverse of q

modulo pr1 . By Prop. 1.2.3, (L/F, σ, c)pn ∼= (L/F, σz, cz)pn , so we may replace σ, c, τ

with σz, cz, τ z and assume q = 1. Since o(j̃t1
1 ) = o(τ̃) = pm, we have

m ≤ α + m = r1. (2.5)

Now τ pm
= ωf pm

is1pm

1 jt1pm

1 . . . isdpm

d jtdpm

d , where ω ∈ µ(F ) is determined by the

armature pairing on T . For 1 ≤ k ≤ d, the elements ikF
∗, jkF

∗ are all independent

in T ; in fact, they generate separate cyclic subgroups of T . Thus, for all k, iskpm

k and

jtkpm

k are in F ∗. So,

τ pm

= ωf pm

is1pm

1 jt1pm

1 . . . isdpm

d jtdpm

d

= ωf pm

as1pm−r1

1 bt1pm−r1

1 . . . asdpm−rd

d btdpm−rd

d ,
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where skp
m−rk , tkp

m−rk are non-negative integers for 1 ≤ k ≤ d. Since v(ω) = 0,

v(c) = v(τ pm

) = v(fpm

as1pm−r1

1 bt1pm−r1

1 . . . asdpm−rd

d btdpm−rd

d ),

whence, for some valuation unit u ∈ F ∗, we obtain the equality

uc = f pm

as1pm−r1

1 bt1pm−r1

1 . . . asdpm−rd

d btdpm−rd

d . (2.6)

We showed above that N ∼= (L/F, σ, uc)pn . Thus, we may replace c by cu; since

v(c) = v(cu), we still have v(τ) = 1
pm v(c). We noted above in (2.5) that α = r1 −m,

so t1 = pα = pr1−m. This gives us the following equations

c = fpm

as1pm−r1

1 b1a
s2pm−r2

2 bt2pm−r2

2 . . . asdpm−rd

d btdpm−rd

d , (2.7)

v(τ) =
1

pm
v(c) = v(fis1

1 jpr1−m

1 is2
2 jt2

2 . . . isd
d jtd

d ). (2.8)

Case r1 ≥ n:

For this case, we may let x = 1, i.e., (L/F, σ, xc)pn = (L/F, σ, c)pn . We will

argue by induction on d.

We can write

(L/F, σ, c)pn ∼ (L/F, σ, as1pm−r1

1 b1)pn ⊗F (L/F, σ, a−s1pm−r1

1 b−1
1 c)pn .

Then,

N ⊗F T ∼ (L/F, σ, as1pm−r1

1 b1)pn ⊗F (a1, b1)pr1

⊗F (L/F, σ, a−s1pm−r1

1 b−1
1 c)pn ⊗F (a2, b2)pr2 ⊗F · · · ⊗F (ad, bd)prd

∼ T1 ⊗F N1 ⊗F T2,

where T1 is the underlying algebra of (L/F, σ, as1pm−r1

1 b1)pn ⊗F (a1, b1)pr1 , N1 is the

underlying NSR algebra of (L/F, σ, a−s1pm−r1

1 b−1
1 c)pn , and T2 = (a2, b2)pr2 ⊗F · · · ⊗F

(ad, bd)prd . Since r1 ≥ n, the value group of (L/F, σ, as1pm−r1

1 b1)pn is contained in

value group of (a1, b1)pr1 . Thus, Remark 2.1.6 tells us that T1 is a TTR division

algebra, with value group generated over ΓF by 1
pr1

v(a1) and 1
pr1

v(b1). So T1 is in fact
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cyclic. Let D1 be the underlying division algebra of N1 ⊗F T2. From equation (2.7),

a−s1pm−r1

1 b−1
1 c = f pm

as2pm−r2

2 bt2pm−r2

2 . . . asdpm−rd

d btdpm−rd

d , so ΓT1 and ΓD1 = ΓN1 + ΓT2

are disjoint mod ΓF . Thus, D ∼= T1⊗F D1 by Theorem 1.3.2, and it remains to show

that D1 is isomorphic to a tensor product of cyclic algebras.

If d = 1, then the above calculation shows that D = T1, which is a cyclic algebra.

For d > 1, note that we have reduced the problem to looking at N1 ⊗F T2, where T2

is a product of d− 1 TTR symbol algebras, whence we are done by induction.

Case r1 < n:

Let us tensor N ⊗F T with the split algebra (a1, xc)pr1 ⊗F (a1, (xc)−1)pr1 . Thus,

N ⊗F T ∼ (L/F, σ, xc)pn ⊗F (a1, xc)pr1

⊗F (a1, (xc)−1)pr1 ⊗F (a1, b1)pr1 ⊗F · · · ⊗F (ad, bd)prd

∼ (L/F, σ, xc)pn ⊗F (a1, xc)pr1

⊗F (a1, (xc)−1b1)pr1 ⊗F (a2, b2)pr2 · · · ⊗F (ad, bd)prd .

(2.9)

Let C be the underlying division algebra of (L/F, σ, xc)pn ⊗F (a1, xc)pr1 . For

i = 1, 2, define χi : GF → Q/Z by χ1(σ) = 1/pn and χ2(γ) = 1/pr1 , where γ( pr1
√

a1) =

ζ pr1
√

a1 for ζ = i1j1i
−1
1 j−1

1 . Thus, (L/F, σ, xc)pn and (a1, xc)pr1 correspond to the

semi-symbols to (χ1, xc) and (χ2, xc) (cf. Section 1.5). By the bilinearity of semi-

symbols, (L/F, σ, xc)pn ⊗F (a1, xc)pr1 corresponds to the semi-symbol (χ1 + χ2, xc),

i.e. C is similar to a cyclic algebra of degree at most pn.

Now let

B = (a1, (xc)−1b1)pr1 ⊗F (a2, b2)pr2 · · · ⊗F (ad, bd)prd .

Then, by (2.9),

N ⊗F T ∼ C ⊗F B. (2.10)

We will use i0, j0 to denote the generators of the symbol algebra (a1, (xc)−1b1)pr1 .

Let B be the armature of B generated by i0F
∗, j0F

∗, i2F ∗, j2F
∗, . . . , idF ∗, jdF

∗. Set

K = {bF ∗ ∈ B| v(b) ∈ ΓF} = ker(vB), where vB : B → ΓB/ΓF is the relative valuation

homomorphism. Let us determine K and show that the hypotheses of Theorem 2.2.1

are met.
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Determining K:

Note that v(i0) = 1
pr1

v(a1) = v(i1) ∈ ΓT . Also, for k ≥ 2, we already have

v(ik), v(jk) ∈ ΓT . T is TTR, so the relative valuation map on the armature of T is

injective. Let H be the subgroup of B generated by i0F
∗, i2F ∗, j2F

∗, . . . , idF ∗, jdF
∗;

vB is injective on H.

A typical element in B will have the form jt
0hF ∗, where hF ∗ ∈ H. From the

injectivity on H, we have vB(jt
0hF ∗) = 0 if and only if vB(jt

0F
∗) = −vB(hF ∗). Thus,

it suffices to compute 〈vB(j0F
∗)〉 ∩ vB(H).

Recall from (2.5) that m ≤ r1. Also, v(j0) = 1
pr1

v((xc)−1b1) = 1
pr1

v(c−1b1) and

v(i0) = v(i1). Using equation (2.8), we obtain

v(jpr1−m

0 is1
0 is2

2 jt2
2 . . . isd

d jtd
d ) =

1

pm
v(b1c

−1) + v(is1
1 is2

2 jt2
2 . . . isd

d jtd
d )

= v(is1
1 jpr1−m

1 is2
2 jt2

2 . . . isd
d jtd

d )− 1

pm
v(c) (2.11)

= −v(f) ∈ ΓF .

Thus, vB(jpr1−m

0 F ∗) ∈ vB(H). Let ` ≥ 0 be the smallest non-negative integer such

that vB(jp`

0 F ∗) generates 〈vB(j0F
∗)〉 ∩ vB(H). So, ` ≤ r1 −m. Note that

v(jp`

0 ) =
p`

pr1
v(c−1b1) = − p`

pr1
v(c) + p`v(j1).

We saw above that vB(H) ⊆ ΓT /ΓF . By assumption, vB(jp`

0 F ∗) ∈ vB(H), so v(jp`

0 ) ∈
ΓT . Also, v(j1) ∈ ΓT , whence p`

pr1
v(c) ∈ ΓT . But we assumed that 1

pm v(c) + ΓF

generates the cyclic subgroup of 1
pn v(c)+ΓF contained in ΓT . Thus, 1

pm | p`

pr1
, whence

pr1−m | p`, so r1 −m ≤ `. So ` = r1 −m.

Therefore, we conclude that K = 〈κF ∗〉, where κ = jpr1−m

0 is1
0 is2

2 jt2
2 . . . isd

d jtd
d . Since

j1 is a leading term of τ and o(τF ∗) = pm, we must have is2
2 F ∗, jt2

2 F ∗, . . . ,

isd
d F ∗, jtd

d F ∗ all have order less than or equal to pm. Also, o(is1
0 ) = o(is1

1 ) ≤ pm.

Since o(jpr1−m

0 ) = pm, we have |K| = pm.

Using Theorem 2.2.1:
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Since commutators of ik, jk are roots of unity in F ∗, we have

κpm

=
(
is1
0 jpr1−m

0 is2
2 jt2

2 · · · isd
d jtd

d

)pm

= ω′is1pm

0 jpr1

0 is2pm

2 jt2pm

2 · · · isdpm

d jtdpm

d ,

where ω′ ∈ F ∗ is some root of unity. With the help of equation (2.7), we obtain

ω′is1pm

0 jpr1

0 is2pm

2 jt2pm

2 . . . isdpm

d jtdpm

d

= ω′as1pm−r1

1 b1(xc)−1as2pm−r2

2 bt2pm−r2

2 . . . asdpm−rd

d btdpm−rd

d

= ω′x−1f−pm

. (2.12)

Now, we choose x = ω′, so κpm
= f−pm ∈ F ∗pm

Since pm | pr1 | exp(B), the hypotheses

of Theorem 2.2.1 are fulfilled.

Thus, Theorem 2.2.1 shows that the underlying division algebra, D1, of B is

TTR, whence isomorphic to a tensor product of cyclic algebras. Since K is cyclic,

K ∩ K⊥ = K, we have |K| · |K ∩ K⊥| = |K|2 = p2m. Thus, by Theorem 2.2.1,

[D1 : F ] =
|K⊥|

|K ∩ K⊥| =
[B : F ]

|K||K ∩ K⊥| =
[B : F ]

p2m
.

Let A = D1⊗F C, so A ∼ N ⊗F T via (2.10) and A is isomorphic to a tensor product

of cyclic algebras. Since deg(C) ≤ pn = deg(N) and deg(B) = deg(T ), we have

ind(N ⊗F T ) = ind(A) ≤ deg(A)

= deg(D1)deg(C) =
deg(B)

pm
deg(C) ≤ deg(T )deg(N)

pm
.

Yet, |ΛN ∩ ΛT | = pm, so Corollary 2.1.5 tells us that ind(N ⊗F T )

= deg(N)deg(T )/pm. Thus, deg(A) = deg(N)deg(T )/pm and A is the underlying

division algebra of N ⊗F T .

Remark 2.4.2. In the proof of Theorem 2.4.1, we showed that the underlying division

algebra, D, of N ⊗F T is a tensor product of cyclic algebras by explicitly producing

D. This gives us the following corollary:
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Corollary 2.4.3. Let F be a GLF. Let N be an NSR division algebra over F and

let T be a TTR division algebra over F . Then we can compute D, the underlying

division algebra of N ⊗F T using the method given in the proof of Theorem 2.4.1.

Remark 2.4.4. Note that [JW90, Theorem 6.3] and the remarks following Prop. 2.1.4

allow us to compute the degree, value group and residue field of D independent of

the theorem. In fact, deg(D) = pn−mdeg(T ), ΓD = ΓN + ΓT , and [D : F ] = pn−m.

Remark 2.4.5. Note that Theorem 2.4.1 shows that, for D ∈ D(F ) tame and F GLF,

D ∼= C ⊗F T where C is a cyclic algebra and T is TTR. Suppose F is a GLF with

dimZpΓF /pΓF ≥ 2. This holds, for example, if ΓF
∼= Zn for n ≥ 2. We can use

value group and degree information to construct a division algebra D over F such

that D � N ⊗F T for any choice of N NSR and T TTR over F . Let a, b ∈ F be

elements whose images have independent values in ΓF /pΓF . Let L be the unramified

extension of F of degree p2 and let σ be a generator for Gal(L/F ). Now let D be

the underlying division algebra of N ⊗F T where N = (L/F, σ, b)p2 and T = (a, b)p.

Then ΓN ∩ ΓT = 〈1
p
v(b)〉+ ΓF , so by Remark 2.4.4, deg(D) = p2, [D : F ] = p, and

ΓD = ΓN + ΓT = 〈(1/p)v(a), (1/p2)v(b)〉+ ΓF ,

which has exponent p2 mod ΓF . Suppose

D ∼= N ′ ⊗F T ′, (2.13)

where N ′ is NSR over F and T ′ is TTR over F . Since [D : F ] 6= deg(D), we have D

is not an NSR division algebra over F . Similarly, [D : F ] 6= 1, so D is not TTR over

F . Thus, N ′ and T ′ in (2.13) are both non-split. Since deg(D) = p2, we must have

deg(N) = p = deg(T ). So exp(ΛN), exp(ΛT ) | p, whence exp(ΛD) | p as ΓD = ΓN +ΓT .

But exp(ΛD) = p2, which is a contradiction. Thus, D is not isomorphic to N ′ ⊗F T ′

for any choice of N ′ NSR and T TTR over F . Note that this D is a cyclic algebra.



Chapter 3

Restriction

In this chapter, we describe an algorithm for computing the restriction of a (tame)

division algebra over a GLF. A classification of subfields of TTR algebras was given

by Tignol and Wadsworth in [TW87, Th. 3.8]. Over a strictly Henselian field, i.e. F

Henselian with F separably closed, every tame division algebra is TTR, so [TW87,

Th. 3.8] essentially gives a classification for subfields of all tame division algebras over

strictly Henselian fields. In the GLF situation, not every division algebra is TTR,

but will be a product of a TTR algebra with an NSR algebra. Thus, the situation is

more complicated.

The starting point is a description of our algebras in the form N ⊗F T where N

is NSR and T is TTR over F (cf. Cor. 2.1.2). Let K ⊇ F be a finite degree field

extension and take D ∈ D(F ). Then K is isomorphic to a subfield of D if and only

if DK has degree deg(D)/[K : F ] (cf. Prop. 1.2.2). Thus, we may detect subfields of

D by computing deg(DK).

Let K ⊇ F be a finite-degree extension of GLF’s. If K ⊇ F is a tame, then

we may realize K as an unramified extension of F followed by a tame and totally

ramified extension. The unramified case is handled in Theorem 3.3.1. If K ⊇ F is

TTR, then by [Sch50, p. 64, Theorem 3], K is totally ramified of radical type (TRRT)

(cf. Section 1.3). This case is handled in Theorem 3.3.3. If K is not a tame extension

51
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of F (so char(F ) | [K : F ]), then the formula given in Lemma 3.1.1 computes ind(DK)

(see Section 3.2).

The chapter is organized as follows. First, in Section 3.1, we prove a lemma on

inertially split algebras using the character theory developed in [JW90, §5]. Then, in

Section 3.2 we define several constants for an algebra presented as N ⊗F T where N

is NSR and T is TTR over F . Finally, in Section 3.3, we give formulas for computing

DK where D ∈ D(F ) is tame and K ⊇ F is any finite-degree extension.

3.1 A Sum Formula

We begin this chapter by proving a lemma which utilizes the character theory

developed for inertially split algebras by Jacob and Wadsworth (cf. [JW90, §5]).

Let (F, v) be a Henselian valued field and suppose N1, . . . , Nk are (tame) algebras

over F with Ni
∼= (Li/F, σi, ci)ni

, where Li is unramified over F , i.e. Ni are inertially

split algebras. Suppose further that there exists a finite degree cyclic field extension

L ⊇ F with Li ⊆ L for 1 ≤ i ≤ k. Let σ be a generator for Gal(L/F ) and set

n = [L : F ].

Lemma 3.1.1. Let F , L, N1, . . . , Nk be as described above. If D is the underlying

division algebra of N1 ⊗F . . .⊗F Nk, then D is similar to a cyclic algebra and ΓD is

generated over ΓF by
`1

n1

v(c1) + · · ·+ `k

nk

v(ck),

where, for 1 ≤ i ≤ k, the `i satisfy σ`i
i = σ

∣∣
Li

.

Proof. Since σ is a generator for Gal(L/F ), we have σ`i
i = σ

∣∣
Li

is a generator for

Gal(Li/F ). Thus, `i is prime to ni. Thus, using the cyclic algebra identities in

Prop. 1.2.3 Ni
∼= (Li/F, σi, ci)ni

∼= (Li/F, σ`i
i , c`i

i )ni
∼ (L/F, σ, c

`in/ni

i )n. Thus,

D ∼ N1 ⊗F . . .⊗F Nk ∼ (L/F, σ,
k∏

i=1

c
`in/ni

i )n.
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Now, let γ : H2(GF , F ∗
nr) → Homc(GF , ∆/ΓF ) be the map described in [JW90, §5].

Let σ be the image of σ in Gal(L/F ). Set h = γ([D]). It was shown in [JW90,

§5] that im(h) = ΓD/ΓF , so ΓD is generated over ΓF by h(σ) = 1
n
v
( k∏

i=1

c
`in/ni

i

)
=

k∑
i=1

`i

ni
v(ci).

Remark 3.1.2. The hypothesis about the existence of L is always fulfilled if F is a

generalized local field and N1, . . . , Nk are inertially split. In this case, we may take

L to be the unique unramified field extension of F of degree lcm(n1, . . . , nk); cf.

Prop. 2.1.3. In addition, F is finite and D is inertially split, so D is actually NSR.

Remark 3.1.3. Using the same notation as in Lemma 3.1.1, we have `i ∈ comp(σi, σ)

(cf. Section 1.7). If σ1 extends to a generator, σ1, of Gal(L/F ), then we can choose

`1 = 1 by setting σ = σ1. In this case, `i ∈ comp(σi, σ1) for i > 1.

3.2 Notation

The following notation will be valid for the rest of this chapter.

Let F be a generalized local field and let D ∈ D(F ) be tame division algebra.

By primary decomposition (cf. Prop. 1.2.1), D ∼= D1 ⊗F . . . ⊗F Dk, where Di is pi-

primary. Recall that, for K a field containing F , we write DK for the underlying

division algebra of D ⊗F K. Then DK
∼= (D1)K ⊗F . . .⊗F (Dk)K , so we may reduce

to the case that D is p-primary. By Cor. 2.1.2, D ∼ N ⊗F T , where N is NSR and

T is TTR and both N and T are p-primary for some prime p. Since D is tame, D is

inertially split or p 6= char(F ). If p = char(F ), then D ∼= N and the scalar extensions

of D are easily understood (e.g. by using Prop. 1.2.5 and Lemma 3.1.1 with k = 1).

Therefore, for the rest of the chapter, we will focus on the more interesting case: we

will assume throughout that p 6= char(F ).

For some c ∈ F with v(c) /∈ pΓF ,

N ∼= (L/F, σ, c)pn ,
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where L/F is the unramified extension of F of degree pn. Also,

T ∼= (a1, b1)pr1 ⊗F . . .⊗F (ad, bd)prd ,

where a1, b1, . . . , ad, bd map to independent elements in ΓF /pΓF and µpri ⊆ F . Let

pr = exp(T ) = lcm{pr1 , . . . , prd} and let ω be a primitive pr root of unity in F . For

1 ≤ k ≤ d, we let ik, jk be standard generators of (ak, bk)prk , i.e.

ip
rk

k = ak, jprk

k = bk, ikjk = ωpr−rk jkik.

Also, let T denote the armature of T generated by i1F
∗, j1F

∗, . . . , idF ∗, jdF
∗. We let

〈−,−〉 denote the armature pairing 〈−,−〉 : T × T → µpr given by 〈θF ∗, τF ∗〉 =

θτθ−1τ−1. We will identify µpr with 1
prZ/Z by identifying ω with 1

pr + Z.

Finally, let ΓN∩ΓT = 〈 1
pm v(c)〉+ΓF , where n ≥ m ≥ 0. Thus, by Proposition 2.1.4,

ind D =
1

pm
(ind N)(ind T ).

3.3 Restriction Calculations

We maintain the notation and hypotheses set up in the previous section. So F is

a generalized local field and p 6= char(F ).

Proposition 3.3.1. Suppose K ⊇ F is the unramified field extension with [K : F ] =

pk. Then ind D = p`0 · ind DK, where `0 = min{n − m, k}. Also, ΓDK
= [K :

F ]ΓN + ΓT and [DK : K] = pn−m−`0.

Proof. Because T is TTR, we have that TK is also TTR and has the same degree and

value group as T .

Suppose k < n − m. Then K ⊆ L ⊆ N by the uniqueness of unramified field

extensions over a generalized local field. So NK = CN(K) ∼= (L/K, σpk
, c)pn−k (cf.
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Prop. 1.2.5). Also, n − k > m, so 1
pm v(c) ∈ ΓNK

, thus, ΓNK
∩ ΓTK

= 〈 1
pm v(c)〉 + ΓF ,

since (〈 1
pn v(c)〉+ ΓF ) ∩ ΓT = 〈 1

pm v(c)〉+ ΓF . So, by Prop. 2.1.4

ind DK =
ind NK · ind TK

pm
=

ind N · ind T

pm+k
=

ind D

pk
.

Now suppose instead that k ≥ n−m. Either NK is split or NK
∼= (L/K, σpk

, c)pn−k

as before. However, n− k ≤ m, so, in either case, ΓNK
⊆ 〈 1

pm v(c)〉+ ΓF ⊆ ΓTK
, thus,

by Remark 2.1.6, DK ∼ NK ⊗F TK is TTR with the same value group and index as

TK . Therefore,

ind DK = ind TK = ind T =
ind D

pn−m
.

Since ΓNK
= [K : F ]ΓN and ΓTK

= ΓT , we have ΓDK
= ΓNK

+ΓTK
= [K : F ]ΓN +

ΓT . Finally, [DK : K] = ind(NK)/|(ΓNK
∩ ΓTK

) : ΓF | = pn/pm−`0 = pn−m−`0 .

Remark 3.3.2. If I is a field unramified over F with [I : F ] prime to p, then L and

I are linearly disjoint over F . Then, by Prop. 1.2.5, NI = (LI/I, σ, c)pn , where σ is

an extension of σ to LI; note that NI has the same value group and residue degree

as N . Similarly, TI is TTR and has the same degree and value group as T . Thus,

DI = NI ⊗F TI has the same degree, value group, and residue degree as D.

Proposition 3.3.1 and Remark 3.3.2 allows us to obtain index, value group, and

residue information after extending scalars to an arbitrary finite-degree unramified

field extension of F . For, if K/F is unramified, then K/F is cyclic Galois (by

Prop. 2.1.3), whence there exists a field I such that [I : F ] is prime to p and [K : I]

is a power of p. Recall that every tame finite-degree extension of Henselian fields can

be realized as an unramified extension followed by a totally ramified extension. We

now turn to the totally ramified case.

Suppose K ⊇ F is a totally ramified extension with ΓK ⊆ ΓN∩ΓT = 〈 1
pn v(c)〉+ΓT .

Then |ΓK : ΓF | = [K : F ] is a power of p, so char(F ) - [K : F ] and K ⊇ F is tame. By

[Sch50, p. 64, Theorem 3], every TTR field extension is a totally ramified extension

of radical type (TRRT) (cf. Section 1.3). The rest of this section will be devoted

to giving an index formula for the case where K is a cyclic TRRT extension of F .
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Combined with Prop. 3.3.1, this provides a way of computing DK for an arbitrary

field K tame over F by breaking the extension from K to F into a succession of

unramified or cyclic TRRT extensions.

Set K = F ( pk√
π), where π ∈ F and v(π) /∈ pΓF . Since 1

pk v(π) ∈ 〈 1
pn v(c)〉 + ΓT ,

there exist non-negative integers α and β such that α ≤ n, β ≤ r, and g with

0 < g < p, we have
1

pk
v(π) =

g

pα
v(c) +

1

pβ
v(t), (3.1)

where t ∈ F satisfies 1
pβ v(t) ∈ ΓT and v(t) /∈ pΓF . This decomposition is not unique;

in fact, we may alter the last two terms by elements from ΓN ∩ ΓT . If α ≤ m, then

1
pα v(c) ∈ ΓT , whence 1

pk v(π) ∈ ΓT , so ΓK ⊆ ΓT . In this case, we may eliminate the

term involving α in (3.1). However, if α > m, then α is unique in expression (3.1),

even though g, β, and t are not. For, suppose we had two decompositions of 1
pk v(π),

g

pα
v(c) +

1

pβ
v(t) =

g′

pα′ v(c) +
1

pβ′ v(t′).

Since 1
pβ v(t) and 1

pβ′ v(t′) are in ΓT , we must have g
pα v(c) − g′

pα′ v(c) ∈ ΓT . Also, we

assumed in (3.1) that α, α′ ≤ n, so g
pα v(c) − g′

pα′ v(c) ∈ ΓN ∩ ΓT = 〈 1
pm v(c)〉 + ΓF .

Thus, max{α, α′} ≤ m or α = α′; i.e. α = α′.

We know from [TW87, Th. 3.8] that subalgebras of TTR algebras are classified

up to isomorphism by their value group. Let E ⊇ F be the subfield of K satisfying

ΓE = ΓK ∩ ΓT . Say E = F ( pe√
π), where 0 ≤ e ≤ k. Write π = xπ0, where x ∈ UF

and F ( pe√
π0) ⊆ T . Here, π0 is determined up to pe powers in F ∗ by the classification

of subalgebras of T , thus, so is x. Let τ ∈ T be an armature element such that

τ pe

= π0.

As discussed in Section 1.4.2, τ always has a leading term; say i1. Suppose that i1

appears with exponent s1 = qps in (1.1) from Section 1.4.2, where q is prime to p.

Let z be any multiplicative inverse of q modulo pr1 . Now replace π, x, π0, τ , g, and

t with πz, xz, πz
0, τ z, zg, and tz. Since z is prime to p, we still have K = F ( pk√

π),
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π = xπ0, τ pe
= π0. However, the factor of i1 appearing in (1.1) now becomes ps. Let

γ be the largest integer such that x ∈ Upγ

F and γ ≤ r1; so x = xpγ

0 for some x0 ∈ F ∗

and pγ | exp(T ) = pr. Referring to the decomposition of v(π) in (3.1), let θ, ρ ∈ T be

armature elements such that

v(θ) =
1

pm
v(c) and v(ρ) =

1

pβ
v(t). (3.2)

Note that pe = o(ip
s

1 F ∗) = pr1−s, which gives us the following inequalities

0 ≤ e = r1 − s ≤ r1 ≤ r. (3.3)

Also,

pk−e = |ΓK : (ΓK ∩ ΓT )| = |(ΓK + ΓT ) : ΓT | (3.4)

≤ |(ΓN + ΓT ) : ΓT | = |ΓN : (ΓN ∩ ΓT )| = pn−m.

Let M = F ( pr1
√

x); this is an unramified Kummer extension of F of degree pr1−γ. Also,

let σω ∈ Gal(M/F ) be defined by σω( pr1
√

x) = ωpγ
( pr1
√

x). Recall that σ ∈ Gal(L/F )

and N ∼= (L/F, σ, c)pn .

Theorem 3.3.3. Suppose K is a cyclic TTR field extension of F with ΓK ⊆ ΓD. Let

k, n, m, γ, θ, and ρ be defined as above and let 〈−,−〉 denote the armature pairing

on T . Then,

ind DK =
`

pk
· ind D,

where

` = ordQ/Z

(
〈θ̃, ρ̃〉+ λpn−m+γ−k

)
, (3.5)

and λ ∈ comp(σω, σ) is prime to p. Moreover, if K0 ⊆ K is the largest subfield of K

lying in D, then K0 is determined by [K0 : F ] = pk/`.

Theorem 3.3.3 is proved after Corollary 3.3.8 below.

Remark 3.3.4. For any decomposition into (3.1), α ≤ m if and only if ΓK ⊆ ΓT .

For, clearly, if α ≤ m, then ΓK ⊆ ΓT . We assumed that n ≥ α, so if α > m, then

1
pα v(c) ∈ ΓN\ΓT , whence ΓK * ΓT .
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Remark 3.3.5. We want to explain how (3.5) is well-defined and independent of our

(cumbersome) notational setup. We know n = deg(N), m = |(ΓN ∩ ΓT ) : ΓF |, and

k = [K : F ] are uniquely defined. The constant γ depends uniquely on the choice of

x. However, x is determined from T up to pe-th powers in F ∗, and our convention

when x ∈ Upi

F for all i is to set pγ = pr1 . Thus, if γ ≥ e, then γ is not well-defined,

since we may alter x by a pe-th power in F ∗ and perhaps force γ = e. However,

whenever γ ≥ e, the λpn−m+γ−k term in (3.5) drops out, whence (3.5) is independent

of the choice of x and γ. For, by (3.4), k− e ≤ n−m. If γ ≥ e, then n−m ≥ k− γ,

whence n−m+γ−k ≥ 0, so λpn−m+γ−k ∈ Z and (3.5) is independent of the choice of

x and γ. Note that γ ≥ e if and only if E ⊆ T . So (3.5) reduces to ` = ordQ/Z

(
〈θ̃, ρ̃〉

)

when γ ≥ e. Thus, we obtain the following corollary to Theorem 3.3.3.

Corollary 3.3.6. If n−m ≥ k−γ, then ind(DK) = `
pk ind(D) where ` = ordQ/Z(〈θ̃, ρ̃〉).

This occurs if E ⊆ T (which is equivalent to γ ≥ e).

Now we will show that (3.5) is independent of the choice of λ ∈ comp(σω, σ). Since

(3.5) depends on λ only if ordQ/Z(〈θ̃, ρ̃〉) = ordQ/Z(p
n−m+γ−k), we may assume that

ordQ/Z(〈θ̃, ρ̃〉) = ordQ/Z(p
n−m+γ−k) = pb for some b. Note that b = max{−(n −m +

γ−k), 0}. Also, since θ̃ has order pm, we must have b ≤ m. So, n−m+γ−k ≥ −m,

i.e. n + γ − k ≥ 0.

Recall 〈σ〉 = Gal(L/F ) ∼= GF /GL and 〈σω〉 = Gal(M/F ) ∼= GF /GM . Since F is

a GLF and L, M are unramified over F of p-power degree, either L ⊆ M or M ⊆ L.

Thus, GF /GLGM
∼= Gal((L∩M)/F ) and |GF : GLGM | = pa where a = min{n, r1−γ}.

By Remark 1.7.2, we have comp(σom,σ) is a coset of paZ, thus λ is determined up

to paZ. Recall from (3.3) that r1 ≥ e, so

a + (n−m + γ − k) = min{n + n−m + γ − k, n−m + r1 − k}
= min{(n + γ − k) + (n−m), (n−m + e− k) + (r1 − e)} ≥ 0,

as all the terms in the parentheses are non-negative. Thus, papn−m+γ−k ∈ Z and

the different choices for λ change 〈θ̃, ρ̃〉) − λpn−m+γ−k by an integer, whence (3.5) is

independent of the choice of λ.
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Finally, we will show that (3.5) is well-defined with respect to ρ. Recall v(ρ) =

1
pβ v(t) . Suppose we have two decompositions as in (3.1)

g2

pα2
v(c) +

1

pβ2
v(t2) =

g1

pα1
v(c) +

1

pβ1
v(t1).

Let ρ2 and ρ1 be armature elements of T such that v(ρi) = 1
pβi

v(ti). Then

v(ρ1ρ
−1
2 ) =

(
g1

pα1
− g2

pα2

)
v(c) ∈ ΓN ∩ ΓT = 〈v(θ)〉+ ΓF .

Thus, 1 = 〈θ̃, ρ̃1ρ
−1
2 〉, so 〈θ̃, ρ̃1〉 = 〈θ̃, ρ̃2〉, whence (3.5) is independent of the choice of

ρ.

Remark 3.3.7. There are some cases where (3.5) simplifies. We observed above in

Corollary 3.3.6 that λpn−m+γ−k ∈ Z if E ⊆ T . In this case, we get full index reduction

(i.e. K ⊆ D) only if 〈θ̃, ρ̃〉 = 1.

Now set H = F (θ), so H ⊆ T and TH = CT (H). Then, ΓTH
is generated by values

of armature elements of T whose images in T are orthogonal to θ̃. So 〈θ̃, ρ̃〉 = 1 if

and only if v(ρ) ∈ ΓTH
. By (3.1), ΓK is generated by 1

pk v(π) = g
pα v(c) + 1

pβ v(t) =
g

pα−m v(θ)+v(ρ), so v(ρ) ∈ ΓTH
if and only if ΓK ⊆ ΓN +ΓTH

. This yields the following

corollary to Theorem 3.3.3

Corollary 3.3.8. Say ΓK ⊆ ΓN + ΓTH
where H = F (θ). Let ` = ordQ/Z(p

n−m+γ−k).

Then ind(DK) = `
pk ind(D). This occurs if ΓN ∩ ΓT = ΓF (i.e. D ∼= N ⊗F T ).

The formula in Corollary 3.3.8 is similar to the formula in Proposition 3.3.1 in the

following manner. Set p`0 = pk

`
. . Then, ` = ordQ/Z(p

n−m+γ−k), so

` =





pk−(n−m+γ), if k > n−m + γ;

1, if k ≤ n−m + γ.

This gives us

p`0 =
`

pk
=





p−(n−m+γ), if k > n−m + γ;

p−k, if k ≤ n−m + γ.
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So, ind(D) = p`0 ind(DK) where `0 = min{k, n−m + γ}.
Note that when ΓN ∩ ΓT = ΓF , then θ ∈ F ∗, so H = F and T = TH . So, in this

case, the corollary applies to any K with ΓK ⊆ ΓN +ΓT . Also, m = 0, so the formula

reduces to ind(D) = p`0 ind(DK) where `0 = min{k, n + γ}.

We will now prove Theorem 3.3.3.

Proof. There are three steps to the proof. First, we construct division algebras N ′

and T ′, with N ′ NSR and T ′ TTR, such that D ∼ N ′ ⊗F T ′ and E ⊆ T ′. We then

extend scalars to K and compute the value group of the NSR and TTR parts of DK .

Finally, we compute the overlap in these value groups to get index information.

1. Computing N ′ and T ′

We have τ ∈ T with τ pe
= π0, so τ̃ = τF ∗ has order pe in T ∗/F ∗. Recall from

(1.1) in Section 1.4.2 that τ factors into

τ = fis1
1 jt1

1 . . . isd
d jtd

d , (3.6)

where f ∈ F ∗. Also, we assumed that i1 is the leading term for τ for which we

arranged s1 = ps. Recall that ĩ1 has order pr1 , so s + e = r1 (cf. equation (3.3)).

Let

T ′ = (xa1, b1)pr1 ⊗F (a2, b2)pr2 . . .⊗F (ad, bd)prd .

Write T ∼ (x−1, b1)pr1 ⊗F T ′. Note that ΓT = ΓT ′ since x ∈ UF . Let i′1, j
′
1, . . . , i

′
d, j

′
d

be the corresponding generators for T ′ and set τ ′ = fi′1
s1j′1

t1 . . . i′d
sdj′d

td . Then, since

T and T ′ have the same canonical pairing, we have, for some ζ ∈ µpr determined by
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the canonical pairing,

τ ′p
e

= fpe(
i′1

s1j′1
t1 . . . i′d

sdj′d
td
)pe

= ζf pe

i′1
ps+e(

j′1
t1i′2

s2j′2
t2 . . . i′d

sdj′d
td
)pe

= ζf pe

xa1

(
j′1

t1i′2
s2j′2

t2 . . . i′d
sdj′d

td
)pe

= xζf pe

ip
e+l

1

(
j1

t1i2
s2j2

t2 . . . id
sdjd

td
)pe

= xfpe(
is1
1 j1

t1 . . . id
sdjd

td
)pe

= xτ pe

= xπ0 = π.

So E = F ( pe√
π) ∼= F (τ ′) ⊆ T ′.

Let N ′ be the underlying division algebra of

N ′ ∼ N ⊗F (x−1, b1)pr1 ,

so D ∼ N ⊗F T ∼ N ′⊗F T ′. Recall that we assumed γ ≤ r1. Since pr1 | exp(T ) = pr,

we have pγ ≤ exp(T ). Recall from before the statement of Theorem 3.3.3 that

x = xpγ

0 and M = F ( pr1
√

x) = F ( pr1−γ√x0). Using the symbol identity Prop. 1.2.4.4,

we have (x−1, b1)pr1 ∼ (x0, b
−1
1 )pr1−γ , where the last symbol is now NSR. Then N ′ is

the underlying division algebra of (L/F, σ, c)pn ⊗F (M/F, σω, b−1
1 )pr1−γ . Since F is a

GLF, LM is a cyclic unramified extension of F which contains both L and M . Let

σ′ be a generator of Gal(LM/F ) such that σ′|
L

= σ. Then, by Lemma 3.1.1, N ′ is

NSR and ΓN ′ is generated over ΓF by µ where

µ =
1

pn
v(c)− λ

pr1−γ
v(b1) =

1

pn
v(c)− λpγv(j1), (3.7)

and where λ ∈ comp(σω, σ) is chosen prime to p.

2. Extending scalars to K

Since N ′ is inertially split, we see from [JW90, Corollary 5.13] that

ΓN ′
K

= ΓN ′ + ΓK = 〈µ〉+ ΓK . (3.8)

On the other hand E ⊆ T ′, so T ′
E = CT ′(E). Also,

ΓT ′E = {v(ξ′) | ξ′ an armature element of T ′ and 〈ξ̃′, τ̃ ′〉 = 1}.
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By construction, T and T ′ have isometric armatures, and corresponding armature

elements have the same value. Thus,

ΓT ′E = {v(ξ) | ξ ∈ T, ξ an armature element of T ′ and 〈ξ̃, τ̃〉 = 1} ⊆ ΓT . (3.9)

Finally, ΓE ⊆ ΓK ∩ ΓT ′E ⊆ ΓK ∩ ΓT = ΓE, so T ′
E ⊗E K is a division algebra by

Theorem 1.3.2 with D1 = T ′
E, D2 = K. Thus, ΓT ′K = ΓT ′E + ΓK and ind(T ′

K) =

ind(T ′
E).

3. Computing ΓN ′
K
∩ ΓT ′K

Let h be minimal among the z such that zµ ∈ ΓT ′K . In other words, h = o(µ+ΓT ′K )

in ΓN ′
K
/(ΓN ′

K
∩ ΓT ′K ). Then, h = [ΓN ′

K
: (ΓN ′

K
∩ ΓT ′K )]. Thus,

[
(ΓN ′

K
∩ ΓT ′K ) : ΓK

]
= [ΓN ′

K
: ΓK ]/h. (3.10)

Case 1: Suppose α ≤ m.

From (3.8), we have ΓN ′
K
/ΓK = 〈µ + ΓK〉. Note that ind(N ′

K) is a power of p

and coincides with the order of µ + ΓK . By the definition of h, we have hµ ∈ ΓT ′K ⊆
ΓT ′ = ΓT . However, by (3.7), hµ = h

pn v(c) − hλpγv(j1). Since v(j1) ∈ ΓT , we must

have h
pn v(c) ∈ ΓT . Also, 1

pn v(c) ∈ ΓN , so h
pn v(c) ∈ ΓN ∩ ΓT = 〈 1

pm v(c)〉 + ΓF (by the

definition of pm in Section 3.2). Thus, pn−m | h.

Let h = pn−mh′ with h′ ∈ Z. Note that

hµ =
h′

pm
v(c)− h′λpn−m+γv(j1) = h′v(θ)− h′λpn−m+γv(j1) = h′v

(
θj−λpn−m+γ

1

)
.

Since α ≤ m, we saw in the paragraphs following (3.1) that ΓK ⊆ ΓT , K = E, and

k = e. In this case, ΓT ′K = ΓT ′E ⊆ ΓT .

Let CT denote the canonical pairing on (ΓT /ΓF ) × (ΓT /ΓF ). Recall from (3.3)

and (3.6) that e + r1 = s and τ = fis1
1 jt1

1 . . . isd
d jtd

d . Then, by [TW87, Proposition 3.3]
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(see Prop. 1.4.4 above), we have

CT (hµ, v(τ)) = h′〈θ̃j̃1
−λpn−m+γ

, τ̃〉
= h′

(〈θ̃, τ̃〉 − λpn−m+γ〈j̃1, τ̃〉
)

= h′
(〈θ̃, τ̃〉 − λpn−m+γ〈j̃1, ĩ1

ps

〉)

= h′
(〈θ̃, τ̃〉+ λpn−m+γ+s−r1

)

= h′
(〈θ̃, τ̃〉+ λpn−m+γ−e

)

= h′
(〈θ̃, τ̃〉+ λpn−m+γ−k

)
.

Set `′ = ordQ/Z
(〈θ̃, τ̃〉+ λpn−m+γ−k

)
. From (3.1), we obtain

v(τ) =
1

pe
v(π) =

1

pk
v(π) =

g

pα
v(c) +

1

pβ
v(t) = v(θgpm−α

ρ),

so 〈θ̃, τ̃〉 = 〈θ̃, θ̃gpm−α
ρ̃〉 = 〈θ̃, ρ̃〉, thus `′ = ordQ/Z

(〈θ̃, ρ̃〉+ λpn−m+γ−k
)

= `, where ` is

defined in the statement of Theorem 3.3.3. By (3.9), hµ ∈ ΓT ′K = ΓT ′E if and only if

CT (hµ, v(τ)) = 1 if and only if h′
(〈θ̃, τ̃〉 + λpn−m+γ−k

)
= 1. Now h is minimal when

h′ is minimal, which occurs when h′ = `. Therefore, h = `pn−m. Thus,

h/pe = `pn−m−k, (3.11)

as e = k. We will show later in (3.14) that (3.11) and (3.10) imply ind DK = `
pk ·ind D.

Case 2: Suppose α > m.

Recall we defined m by 〈 1
pn v(c) + ΓF 〉 ∩ ΓT = 〈 1

pm v(c) + ΓF 〉. Thus, by (3.1) and

(3.4),

pα−m = o
( g

pα
v(c) + ΓT

)
= o

( 1

pk
v(π) + ΓT

)
= |(ΓK + ΓT ) : ΓT | = pk−e.

So,

e = k − (α−m), (3.12)

whence, by equation (3.1) and (3.2), we get

v(τ) =
1

pe
v(π) =

1

pk−(α−m)
v(π) =

g

pm
v(c) +

1

pβ−(α−m)
v(t) = v(θgρpα−m

). (3.13)
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Set κ = 1
pk v(π), so ΓK = 〈κ〉 + ΓF . Recall that we defined h = o(µ + ΓT ′K ). Since

ΓT ′K = ΓT ′E + ΓK , there exists an z ∈ Z such that hµ + zκ ∈ ΓT ′E . From part 2,

ΓT ′E ⊆ ΓT ′ = ΓT , so we use (3.7) and (3.1) to see that ΓT contains

hµ + zκ =
h

pn
v(c)− hλpγv(j1) +

gz

pα
v(c) +

z

pβ
v(t)

=
h + gzpn−α

pn
v(c)− hλpγv(j1) + zv(ρ).

Since v(j1), v(ρ) ∈ ΓT , we must have h+gzpn−α

pn v(c) ∈ ΓT , whence pn−m | (h + gzpn−α).

Also, α > m, so pn−α | pn−m | (h + gzpn−α). This gives us pn−α | h.

Let h = pn−αh′. Since pn−m | (h+gzpn−α) = pn−α(h′+gz), we see that pα−m | (h′+
gz). Thus, by (3.2),

hµ + zκ =
h + gzpn−α

pn
v(c)− hλpγv(j1) + zv(ρ)

=
h′ + gz

pα−m
· 1

pm
v(c)− h′λpγ+n−αv(j1) + zv(ρ)

= v(θ(h′+gz)pm−α

j−h′λpγ+n−α

1 ρz).

Again, let CT denote the canonical pairing on (ΓT /ΓF ) × (ΓT /ΓF ). Recall from

(3.3) and (3.6) that e + s = r1 and τ = fis1
1 jt1

1 . . . isd
d jtd

d . Then, by (3.13), (3.12), and

[TW87, Proposition 3.3] (see Prop. 1.4.4), we have

CT (hµ + zκ, v(τ)) = 〈θ̃(h′+gz)pm−α

j̃1
−h′λpγ+n−α

ρ̃z, τ̃〉

=
h′ + gz

pα−m
〈θ̃, τ̃〉 − h′λpγ+n−α〈j̃1, τ̃〉+ z〈ρ̃, τ̃〉

=
h′ + gz

pα−m
〈θ̃, θ̃gρ̃pα−m〉 − h′λpγ+n−α〈j̃1, ĩ1

ps

〉+ z〈ρ̃, θ̃gρ̃pα−m〉

= (h′ + gz)〈θ̃, ρ̃〉+ h′λpγ+n−α−e + gz〈ρ̃, θ̃〉
= h′

(〈θ̃, ρ̃〉+ λpγ+n−α−(k−(α−m))
)

= h′
(〈θ̃, ρ̃〉+ λpn−m+γ−k

)
.

Now hµ + zκ ∈ ΓT ′E if and only if CT (hµ + zκ, v(τ)) = 1 if and only if h′
(〈θ̃, ρ̃〉+

λpn−m+γ−k
)

= 1. From the statement of the theorem,

` = ordQ/Z

(
〈θ̃, ρ̃〉+ λpn−m+γ−k

)
.
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Now h is minimal when h′ is minimal, whence h′ = ` and h = `pn−α. Thus, we again

have (cf. equation (3.11)),

h/pe = `pn−m−k.

This completes Case 2.

Recall from (3.10) that
[
(ΓN ′

K
∩ ΓT ′K ) : ΓK

]
= [ΓN ′

K
: ΓK ]/h. Recall also that

T ′
E = CT ′(E), so ind(T ′

E) = ind(T ′)/pe. Thus, by (3.11), which we have seen holds in

Case 1 and in Case 2,

ind DK =
ind N ′

K · ind T ′
K[

(ΓN ′
K
∩ ΓT ′K ) : ΓK

] (3.14)

=
[ΓN ′

K
: ΓK ] · ind(T ′

E)

[ΓN ′
K

: ΓK ]/h

= hind(T ′)/pe

= `pn−m−kind(T )

=
`

pk
· ind N · ind T

|(ΓN ∩ ΓT ) : ΓF |
=

`

pk
· ind(D).

It remains to determine the largest subfield of K lying in D. Let Ki = F ( pk−i√
π)

where 0 ≤ i ≤ k. Let us apply the part of Theorem 3.3.3 which we have already

proven to Ki over F . We must recompute the constants k, n,m, γ, θ, and ρ for Ki in

place of K.

The constants n = deg(N) and m = |(ΓN∩ΓT ) : ΓF | remain the same. We defined

θ as any armature element of T such that v(θ) = 1
pm v(c), so we may leave θ unchanged.

Also, the uniformizer π has not changed. Since x is determined from π and T (by

π = xπ0 where π0 has some p-power root in T ), we may make the same choice of x,

whence γ does not change. However, we let pki = [Ki : F ] = pk/[K : Ki] = pk−i.

Also, the decomposition (3.1) becomes

1

pk−i
v(π) =

g

pα−i
v(c) +

1

pβ−i
v(t). (3.15)
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Then, so we may choose ρi = ρpi ∈ T as our armature element with value 1
pβ−i v(t).

Then

ind DKi
=

`i

pki
· ind D = `i

ind(D)

[Ki : F ]
, (3.16)

where

`i = ordQ/Z

(
〈θ̃, ρ̃i〉+ λpn−m+γ−ki

)

= ordQ/Z

(
pi〈θ̃, ρ̃〉+ piλpn−m+γ−k

)

= max

(
p−iordQ/Z

(
〈θ̃, ρ̃〉+ λpn−m+γ−k

)
, 1

)

= max(l/pi, 1).

Thus, (3.16) shows Ki is isomorphic to a subfield of D if and only if `i = 1, if and only

if ` ≤ pi, if and only if [Ki : F ] = pk−i ≤ pk/`. The largest such subfield is F ( pk/
√̀

π).

Note that this “accounts for” all the index reduction from D to DK , in that,

if we let K0 = F ( pk/
√̀

π), then ind(DK0) = ind(D)/[K0 : F ] (as K0 ⊆ D) and

ind(DK) = ind(DK0).

Remark 3.3.9. We have another description of the constant γ defined preceding (3.2).

Apply Theorem 3.3.3 to T in place of D. Then n = m = 0, k = e, and θ ∈ F ∗,

however, π, π0 remain the same, so γ remains unchanged. The ` of Theorem 3.3.3

reduces to ` = ordQ/Z(p
γ−k). Then Theorem 3.3.3 shows that ind(TK) = `

pe ind(T ).

Let `0 = min{e, γ}, so pe/` = p`
0 and p`0 is the degree of the largest subfield, K0, of

K lying in T , i.e. for γ ≤ e, [K0 : F ] = pγ.

Remark 3.3.10. In the proof of Theorem 3.3.3, we gave a decomposition of DK into

N ′
K ⊗F T ′

K , with N ′
K NSR and T ′

K TTR. First, this allows us to compute the value

group of DK . By [JW90, Theorem 6.3], ΓDK
= ΓN ′

K
+ΓT ′K , where ΓN ′

K
= 〈µ〉+ΓK for

µ described in (3.7) and ΓT ′K = ΓT ′E + ΓK with ΓT ′E described in (3.9). Second, this

allows us to compute the residue, D; by applying Corollary 2.1.5 and (3.14) above,

D is the unique extension of F of degree

ind N ′
K[

(ΓN ′
K
∩ ΓT ′K ) : ΓK

] =
[ΓN ′

K
: ΓK ]

[ΓN ′
K

: ΓK ]/h
= h =

`pn

pmax{m,α} .
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Remark 3.3.11. We may generalize Theorem 3.3.3 by dropping the assumption that

ΓK ⊆ ΓD = ΓN + ΓT . For, if ΓK * ΓN + ΓT , let K ′ be the subfield of K with

ΓK′ = ΓK ∩ (ΓN + ΓT ). Then ind(DK) = ind(DK′), since, by applying Theorem 1.3.2

with D1 = DK′ and D2 = K, we have DK′ ⊗K′ K is a division algebra. Note

that ind(DK′) is computable by Theorem 3.3.3. In addition, ΓDK
= ΓDK′ + ΓK and

DK = DK′ .

Remark 3.3.12. Let K be any finite degree TRRT field extension of F . There exist

fields Ki with F = K0 ⊆ K1 ⊆ · · · ⊆ Kn−1 ⊆ Kn = K, such that Ki is TTR cyclic

over Ki−1. By applying the theorem iteratively to DKi
∼ NKi

⊗F TKi
, we are able

compute ind(DK). So the theorem allows us, in principle, to compute restriction over

arbitrary finite degree TRRT extensions of F .



Chapter 4

Corestriction

As mentioned in the introduction, the corestriction map is not very well-understood.

In [RT83], Rosset and Tate give a complicated recursive formula for corestriction. In

a few cases, the formula simplifies; Merkurjev gives a few basic corestriction formu-

las in [Mer85]. In the case where F is Henselian, Hwang gave extensive calculations

concerning corestriction (cf. [Hwa95a], [Hwa95b]).

The chapter is organized as follows. The first seven sections concern corestriction

of algebras over a field that does not necessarily have a valuation. In Section 4.1, we

show how symbol algebras can be decomposed into a triple cup product. Using this

decomposition, we prove the following projection-type formula (Theorem 4.2.4)

cor
L/F

(a, b; L, ζ)n =
(
a, b; F, ηn/d

)
d
,

where ζ ∈ µ∗n(L), L = F (µn), a, b ∈ F , d = o(N
L/F

(ζ)) and N
L/F

(η) = ζn/d. In

Section 4.2, we prove Theorem 4.2.4 and give various norm formulas. Next, in Sec-

tion 4.3 and Section 4.4, we show how to compute the corestriction of characters

over a quadratic or abelian extension. These formulas allow us, in Section 4.5, to

compute cor
L/F

(χ, b), where b ∈ L, χ ∈ X(L) and L/F is a cyclotomic extension.

In Section 4.6, we review some basic material on radical extensions, and prove two

propositions about intersections of radical extensions.

In Section 4.7, we show how to compute cor
N/F

(t1, t2; N)n where N/F is a finite

68
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degree extension, µn ⊆ N , and t1, t2 ∈ N have finite order in N∗/F ∗ (cf. Theo-

rem 4.7.4); this is the main result in this chapter. We first look at the case where n is

a prime power. By the projection-type formula, Theorem 4.2.4, we can reduce to the

case where N = F (t1, t2). Then, using results on radical extensions from Section 4.6,

we compute cor
N/F (µq)

(t1, t2; N)pn , where, if p is odd, then q = p, otherwise, q = 4.

Finally, the formulas in Section 4.5 finish the computation.

Now let F be a valued field and let L be a finite-degree extension of F . For D ∈
D(L), let cD stand for the underlying division algebra of cor

L/F
[D]. The remaining

sections, 4.8 and 4.9, show how Theorem 4.7.2 can be used to compute cD, ΓcD and cD.

In Section 4.8, we give a generalization to one of Hwang’s results (cf. Theorem 4.8.6

and Corollary 4.8.8). In Section 4.9, we give corestriction calculations for NSR and

TTR division algebras over an extension of GLF’s.

4.1 Decomposition of symbol algebras

Take n ∈ N with char(F ) - n and suppose µn ∩ F = µk for some k
∣∣ n. Let

A = (a, b; ζ)k be a degree k symbol algebra over F . We will assume that aF ∗k has

order k in F ∗/F ∗k (i.e. [F ( k
√

a) : F ] = k by Kummer theory).

Let K = F ( k
√

a) and let σζ ∈ Gal(K/F ) be the element such that σζ( k
√

a) =

ζ k
√

a. Then A ∼= (K/F, σζ , b), so A corresponds to a semi-symbol (χ, b) where χ ∈
H1(GF ,Q/Z) has order k with F (χ) = K and σχ = σζ . If we identify ( 1

n
Z)/Z with

Zn, then we may consider χ as an element of H1(GF ,Zn) with im(χ) ⊆ n/kZn. Define

µ̂n = Hom(µn,Zn). Our goal is to construct f ∈ H0(GF , µ̂n) and g ∈ Z1(GF , µn)

such that χ corresponds to f ∪ [g] (see Theorem 4.1.2). Thus, A can be realized as a

triple cup product.

For the remainder of this section, we will abbreviate H i(GF , ·) to H i(·). Take

σ ∈ GF , ω ∈ µn, and f ∈ µ̂n. We make µ̂n into a GF -module by defining

σf(ω) = σ
(
f

(
σ−1(ω)

))
= f

(
σ−1(ω)

)
, (4.1)
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where the last equality holds because GF acts trivially on Zn. Then, H0(µ̂n) = µ̂GF
n =

{f ∈ µ̂n : σf = f for all σ ∈ GF} = {f ∈ µ̂n : f = f ◦ σ−1 for all σ ∈ GF}.

Lemma 4.1.1. Take f ∈ µ̂n and suppose µn∩F = µk. Then f ∈ H0(µ̂n) if and only

if im(f) ⊆ (n/k)Zn. Furthermore, |H0(µ̂n)| = k.

Proof. Fix ζ ∈ µ∗n and take f ∈ µ̂n. Note that f is completely determined by f(ζ).

Since ζ l ∈ F ∗ if and only if (n/k)
∣∣ l, it is enough to show that f ∈ H0(µ̂n) if and

only if ζf(ζ) ∈ F ∗. For, if this holds, then im(f) ⊆ (n/k)Zn and |H0(µ̂n)| = |{f(ζ) :

f ∈ H0(µ̂n)}| = n/(n/k) = k.

First, for σ ∈ GF , let σ(ζ) = ζkσ , where kσ is determined modulo n. Now, if

f ∈ H0(µ̂n), then, for all σ ∈ GF , we have f(ζ) = f (σ−1(ζ)) = f(ζkσ−1 ) = kσ−1f(ζ),

whence

σ
(
ζf(ζ)

)
= σ(ζkσ−1f(ζ)) = σ(σ−1(ζ)f(ζ)) = ζf(ζ).

Thus, ζf(ζ) ∈ F(GF ) = F. On the other hand, if ζf(ζ) ∈ F ∗, then for all σ ∈
GF , we have ζf(ζ) = σ−1(ζf(ζ)) = ζkσ−1f(ζ), whence f(ζ) ≡ kσ−1f(ζ) mod n. Thus,

f(σ−1(ζ)) = f(ζkσ−1 ) = kσ−1f(ζ) = f(ζ) modulo n. So f ∈ H0(µ̂n), which completes

the proof.

Now identify the GF -modules µ̂n⊗µn and Zn via f ⊗ ζ 7→ f(ζ). The cup product

∪ : H0(µ̂n)⊗H1(µn) → H1(Zn) is computed by

(f ∪ [g])(σ) = f ⊗ g(σ) = f(g(σ)),

where σ ∈ GF , f ∈ H0(µ̂n), and g ∈ Z1(µn) (cf. [Ser79, Appendix to Ch. XI,

p.176]). However, Lemma 4.1.1 tells us that Im(f) ⊆ (n/k)Zn, as µn ∩ F = µk, so

(f ∪ g) : GF → (n/k)Zn. This shows that the number of roots of unity in F gives a

constraint on the order of characters obtained as cup products in this manner.

Consider the exact sequence 0 → µn → F ∗
sep → F ∗

sep → 0, where the maps are

inclusion and the n-th power map. Since H0(F ∗
sep) = F ∗ and H1(F ∗

sep) = 0 by Hilbert’s

Theorem 90, we get the exact sequence F ∗ → F ∗ → H1(µn) → 0, where the first map

is again the n-th power map. So F ∗/F ∗n ∼= H1(µn), with the isomorphism given by
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tF ∗n 7→ [αn,t], where αn,t is the 1-cocycle given by αn,t(σ) = σ( n
√

t)/ n
√

t for σ ∈ GF

and any fixed n-th root of t.

We will now decompose χ as a cup product.

Theorem 4.1.2. Let χ ∈ H1(Zn) and suppose o(χ) = k, F (χ) = F ( k
√

a), and

ζ = σχ( k
√

a)/ k
√

a ∈ µ∗k. Let αn,a ∈ Z1(µn) be as described just above and let ω ∈ µ∗n
be any n/k-th root of ζ. Then χ = fχ ∪ [αn,a], where fχ ∈ H0(µ̂n) is determined by

fχ(ω) = n/k.

Proof. Take τ ∈ GF . Since τ( n
√

a)/ n
√

a = ωi for some i, we have τ( k
√

a)/ k
√

a =

(ωn/k)i = ζ i. So τ |
F (χ)

= σi
χ, whence χ(τ) = χ(σi

χ) = i · n/k. By Lemma 4.1.1,

fχ ∈ H0(µ̂n). We have (fχ ∪ [αn,a])(τ) = fχ(τ( n
√

a)/ n
√

a) = fχ(ωi) = i · n/k = χ(τ).

Thus, fχ ∪ [αn,a] = χ.

4.2 Projection Formulas and Norms

Our main goal in this section is to give a few basic projection formulas. All of the

formulas involving symbol algebras essentially come from the projection formula for

cup products, which can be found in [Bro94, Ch. V, 3.8], [CF67, Ch. IV, Prop. 9], or

[NSW00, Prop. 1.5.3]. We will give formulas for cor
L/F

(a, b; L)n and cor
L/F

(ω, b; L)n,

where a, b ∈ F and ω ∈ µ(L). We begin the section by stating the projection formula

for cup products.

Theorem 4.2.1. Fix p, q ≥ 0 and let G be a profinite group with H ⊆ G a subgroup of

finite index. If A,B are discrete G-modules, then for a ∈ Hp(H, A) and b ∈ Hq(G, B),

we have corG
H

(
a ∪ resG

H(b)
)

= corG
H(a) ∪ b.

Remark 4.2.2. In [CF67], the result is proven for G finite, however, we can use inverse

limits to obtain the result for the case where G is profinite (cf. [Ser79, Ch. X, §3]).

The result in [Bro94] does not assume that G is finite, but is in the context of group

cohomology and not continuous group cohomology.
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Theorem 4.2.3 is a Brauer group version of the previous projection formula; this

formula can be found in [Dra83, p.88], [Ser79, Ch. XIV], or [Tig87].

Theorem 4.2.3. Let L/F be a finite-dimensional separable field extension with µn ⊆
F . If a ∈ F ∗ and b ∈ L∗, then

cor
L/F

(a, b; L)n = (a,N
L/F

(b); F )n.

Theorem 4.2.3 is well-known and deducible from Theorem 4.2.1, but the author

cannot find a good reference for such a cohomological proof. A thorough proof that

does not use cohomological machinery can be found in [Tig87]. Tignol points out

that the exposition in [Dra83] contains a mistake in the proof of a key proposition

(cf. [Dra83, line 3, p.55]) which could be easily amended (cf. [Tig87, Theorem 2.5]).

Serre gives 4.2.3 as an exercise (cf. [Ser79, Ch. XIV, §1]).

In Section 4.1, we showed how to decompose a symbol algebra into a triple cup

product. We may think of the components of the product as representing the slots of

the symbol and the root of unity which relates how elements in the algebra commute.

Above, we saw that corestriction corresponds to a norm when one of the slots lies in

F and µn ⊆ F . We now show what happens when µn * F, but a, b ∈ F ∗.

Theorem 4.2.4. Let F be a field with char(F ) - n and let L = F (µn). Then for

a, b ∈ F ∗ and ζ ∈ µ∗n, we have

cor
L/F

(a, b; L, ζ)n =
(
a, b; F, ηn/d

)
d
,

where d is the order of N
L/F

(ζ) and η ∈ µ∗n satisfies N
L/F

(η) = ζn/d.

Remark 4.2.5. Note that ηn/d and ζn/d are both primitive d-th roots of unity, so there

is a c prime to d such that ηcn/d = ζn/d. Thus,

cor
L/F

(a, b; L, ζ)n =
(
a, b; F, ηn/d

)
d

=
(
a, bc; F, ζn/d

)
d
.

Also, d is independent of ζ, since for any m prime to n, we have N
L/F

(ζm) =

(N
L/F

(ζ))m ∈ µ∗d, since m is necessarily prime to d. This allows us to determine

d by N
L/F

(µn) = µd.
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Proof. Assume first that [L( n
√

a) : L] = n. Let A = (a, b; L, ζ)n correspond to the

semi-symbol (χ, b) and let θ be a fixed n-th root of a, so L(χ) = L(θ) and σχ(θ) = ζθ.

By Theorem 4.1.2, χ = fζ ∪ [αn,a], where fζ ∈ H0(GL, µ̂n) and αn,a ∈ Z1(GL, µn)

are defined by fζ(ζ) = 1 ∈ Zn and αn,a(σ) = σ(θ)/θ. Since a, b ∈ F ∗, both αn,a and

b ∈ H0(GL, L∗sep) are in the image of resGF
GL

; let [αn,a] = res
L/F

[α′n,a], where α′n,a(τ) =

τ(θ)/θ for τ ∈ GF . Using Theorem 4.2.1 and the commutativity of corestriction with

the connecting homomorphism ∂ (cf. Prop. 1.6.2), we get

cor
L/F

(A) =cor
L/F

(∂χ ∪ b) = ∂(cor
L/F

(χ)) ∪ b

= ∂(cor
L/F

(fζ ∪ res
F/L

[α′n,a])) ∪ b = ∂
(
cor

L/F
(fζ) ∪ [α′n,a]

)
∪ b,

where we have identified Br(F ) with H2(GF , F ∗
sep).

Let χ′ = cor
L/F

(fζ) ∪ [α′n,a]. For σ ∈ GF , we have σfζ = fζ ◦ σ−1 (cf. equation

(4.1)). Since fζ ∈ H0(GL, µ̂n), we get cor
L/F

(fζ) =
∑

σ∈G(L/F ) σfζ = fζ ◦ N
L/F

(cf.

Definition 1.6.1). Let f ′ = fζ ◦ N
L/F

, so χ′ = f ′ ∪ [α′n,a].

Let d = o(N
L/F

(ζ)), so the norm map maps onto µd in F ∗. Take η ∈ µ∗n such that

N
L/F

(η) = ζn/d. We claim that F (χ′) = F (θn/d). Since µd = 〈N
L/F

(ζ)〉 ⊆ F, we have

F (θn/d) = F ( d
√

a) is a Kummer extension of F . Then, for τ ∈ GF , if τ(θ)/θ = ηj,

then χ′(τ) = f ′(α′n,a(τ)) = f ′(τ(θ)/θ) = fζ(NL/F
(ηj)) = fζ(ζ

jn/d) = jn/d ∈ Zn. Since

j ranges over all congruence classes mod n, as [F (θ) : F ] = [L( n
√

a) : L] = n, we

have im(χ′) = 〈n/d〉Zn, so χ′ has order d. Let γ = θn/d. When τ(θ)/θ = ηj, we have

τ(γ)/γ = ηjn/d and χ′(τ) = jn/d ∈ Zn. Therefore, τ ∈ ker(χ′) iff d
∣∣ j iff τ(γ) = γ,

so F (χ′) = F (γ), as claimed.

Now choose τ ∈ GF with τ(θ) = ηθ. Since χ′(τ) = n/d, we have τ |
F (χ′) = σχ′ ,

so σχ′(γ)/γ = τ(γ)/γ = ηn/d. Thus, ∂χ′ ∪ b corresponds to (F ( d
√

a)/F, σχ′ , b) ∼=(
a, b; F, ηn/d

)
d
.

If [L( n
√

a) : L] 6= n, then we pass to the rational function field L(x) and write

res
L(x)/L

(A) ∼ (ax, b; L(x), ζ)n ⊗ (x−1, b; L(x), ζ)n . We have [L(x, n
√

ax) : L(x)] =
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[L(x,
n
√

x−1) : L(x)] = n since ax and x are both irreducible in L[x]. Thus,

cor
L(x)/F (x)

res
L(x)/L

(A) =
(
ax, b; F (x), ηn/d

)
d
⊗F (x)

(
x−1, b; F (x), ηn/d

)
d

=
(
a, b; F (x), ηn/d

)
d

= res
F (x)/F

(
a, b; F, ηn/d

)
d
.

By Proposition 1.6.3, cor
L/F

(A) =
(
a, b; F, ηn/d

)
d
.

Remark 4.2.6. In Theorem 4.2.4, we sometimes have ηn/d = N
L/F

(ζ), so the result

can then be stated purely in terms of ζ. For j ∈ Z, let ϕj denote the j-th power

map. Let N
L/F

(ζ) = ζtn/d, for some t ∈ Z which is determined mod d. If we write

η = ζ i, then ζn/d = N
L/F

(η) = ζ itn/d, so it ≡ 1 mod d. The condition ηn/d = N
L/F

(ζ)

is equivalent to ζ in/d = ζtn/d, i.e. i ≡ t mod d. This holds if and only if t2 ≡ 1 mod d.

We will give an example below in 4.2.10 of when the formula in 4.2.4 does not

simplify in the manner described in Remark 4.2.6. We need a basic norm formula.

Proposition 4.2.7. Let p be a prime and F be a field with p - char(F ). Suppose

µpk ∩ F = µpr for some k ≥ r ≥ 0, and take ζ ∈ µ∗
pk . If p is odd, or, if p = 2 and

r ≥ 2 (i.e. µ4 ⊆ F ), then N
F (ζ)/F

(ζ) = (−1)pk−r−1ζpk−r
= −(−ζ)pk−r

. If p = 2 and

r = 1 (i.e. µ4 * F ), then N
F (ζ)/F

(ζ) ∈ {−1, 1}.

Proof. Let L = F (ζ). If p is odd and r ≥ 1 (i.e. µp ⊆ F ), or, p = 2 and r ≥
2 (i.e. µ4 ⊆ F ), then xpk−r − ζpk−r

is the minimal polynomial of ζ over F (cf.

Proposition 4.6.3). In this case, N
L/F

(ζ) = (−1)pk−r−1ζpk−r
. On the other hand, if p

is odd and r = 0 (i.e. µp * F ), or, p = 2 and r = 1 (i.e. µ4 * F ), then N
L/F

(ζ) ∈ F ∗

is a product of elements from µpk . If p is odd, the only such product lying in F is 1,

so N
L/F

(ζ) = 1 = ζpk−r
= (−1)pk−r−1ζpk−r

. If p = 2, then the product could be 1 or

−1, so N
L/F

(ζ) ∈ {1,−1}.

Remark 4.2.8. Here is an explicit description of N
F (ζ)/F

(ζ) in Proposition 4.2.7 for

the case p = 2 and r = 1. (We omit the proof.) N
F (ζ)/F

(ζ) = −1, if and only if ζ

has maximal order in the 2-torsion of F (ζ)∗ and either F has prime characteristic or
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char(F ) = 0 and F ∩Q(ζ) = R ∩Q(ζ). Otherwise N
F (ζ)/F

(ζ) = 1. Thanks to Adrian

Wadsworth for pointing this out.

Corollary 4.2.9. Let F be a field with char(F ) - n and let L = F (µn). Suppose n

has prime factorization pa1
1 . . . pal

l , and µn ∩ F = µm with m = pb1
1 . . . pbl

l . For ζ ∈ µ∗n
with ζ = ζ1 . . . ζl, where ζi ∈ µ∗pi

ai , we have

N
L/F

(ζ) = ε

l∏
i=1

ζ
[F (ζ):F (ζi)]p

ai−bi

i .

If pi are all odd, then ε = 1. Otherwise, assume that p1 = 2. Then

ε =
N

F (ζ1)/F
(ζ1)

[F (ζ):F (ζ1)]

ζ
[F (ζ):F ]
1

.

Proof. The result follows by applying Proposition 4.2.7 to each ζi.

Example 4.2.10. Suppose ζ ∈ µ∗35 and ζ = αβ, where α ∈ µ∗5 and β ∈ µ∗7. Let

F = Q(α) and L = Q(ζ), so [L : F ] = 6. Now N
L/F

(ζ) = α6 = α, so n = 35

and d = o(N
L/F

(ζ)) = 5 in the setup of Theorem 4.2.4. If we set η = ζ2, then

N
L/F

(η) = α2 = ζ35/5, so N
L/F

(η) = ζn/d. But ηn/d = η35/5 = ζ14 = α4 6= N
L/F

(ζ). So

N
L/F

(η) = ζn/d, but N
L/F

(ζ) 6= ηn/d. In the context of Remark 4.2.6, N
L/F

(ζ) = α =

(ζ35/5)3, so t = 3, but 32 6≡ 1 mod 5.

If n is a prime power, the formula in Theorem 4.2.4 simplifies as follows because

ηn/d = N
L/F

(ζ). This result is not new and could be proved by induction on [L : F ]

using [Mer85, 1.7] (although, one should perhaps be careful if [F ( pk√
a) : F ] < pk).

Corollary 4.2.11. Let p be a prime and F be a field with p - char(F ). Take ζ ∈ µ∗
pk

and let L = F (ζ) and d = o(N
L/F

(ζ)). Suppose µpk ∩ F = µpr . Then, for a, b ∈ F ∗,

cor
L/F

(a, b; L, ζ)pk =
(
a, b; F, N

L/F
(ζ)

)
d

=
(
a, be; F, ζpk−r

)
pr

, (4.2)

where e = 1 unless p = 2 and either k > r ≥ 2 or N
L/F

(ζ) = 1 (so r = 1), in which

case e = 1 + 2r−1.
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Remark 4.2.12. If p = 2 and N
L/F

(ζ) = 1, then
(
a, b; F, N

L/F
(ζ)

)
d

is split. It may

seem redundant to write
(
a, b; F, N

L/F
(ζ)

)
d

=
(
a, be; F, ζpk−r

)
pr

where e = 2. (Note

that N
L/F

(ζ) = 1 only occurs when pr = 21 = 2, cf. Proposition 4.2.7.) However, we

need a formula which gives symbols in terms of compatible roots of unity.

Proof. Set n = pk and set d = o(N
L/F

(ζ)). If k = r, then L = F and the result is

clear. Assume now that k > r.

By Proposition 4.2.7, if p is odd, then N
L/F

(ζ) = ζpk−r
. So d = o(ζpk−r

) = pr.

Thus, N
L/F

(ζ) = ζn/d. If p = 2 but µ4 * F (i.e. r = 1), then, by Proposition 4.2.7,

N
L/F

(ζ) ∈ {1,−1}. Then d = 1 or 2, and, in either case, N
L/F

(ζ) = ζn/d. Take η = ζ,

so N
L/F

(η) = N
L/F

(ζ) = ζpk−r
= ζn/d = ηn/d. The first equality in equation (4.2) then

follows from Theorem 4.2.4.

If instead p = 2 and µ4 ⊆ F, then r ≥ 2 and N
L/F

(ζ) = (−1)pk−r−1ζpk−r
=

−ζpk−r
by Proposition 4.2.7. Since o(ζpk−r

) = pr > 2 = o(−1), we have d =

o(−ζpk−r
) = pr. Now let η = ζ1+2r−1

. Since r ≥ 2, we have 1 + 2r−1 is odd. Then,

N
L/F

(η) =
(
N

L/F
(ζ)

)1+2r−1

= (−ζ2k−r
)1+2r−1

= −ζ2k−r
ζ2k−1

= ζ2k−r
, as ζ2k−1

= −1.

So N
L/F

(η) = ζ2k−r
= ζn/d and ηn/d = η2k−r

= ζ2k−r(1+2r−1) = −ζ2k−r
= N

L/F
(ζ), and

the first equality in equation (4.2) follows from Theorem 4.2.4.

Finally, the last equality in equation (4.2) is clear when p is odd. If p = 2

and N
L/F

(ζ) = 1, then r = 1 (cf. Proposition 4.2.7), whence 1 + 2r−1 = 2, so(
a, be; F, ζpk−r

)
pr

is split by Proposition 1.2.4.4; this gives the last equality in (4.2)

in this case. If p = 2 and r ≥ 2, then N
L/F

(ζ) = −ζ2k−r
= ζ2k−r(1+2r−1). Since

(1 + 2r−1)2 ≡ 1 mod 2r, the last equality in equation (4.2) is a consequence of a basic

symbol algebra identity (cf. Proposition 1.2.4.3).

Corollary 4.2.13. Let F ⊆ K be a finite degree field extension and suppose µn ⊆ K

for some n. Then for a, b ∈ F ∗ and ζ ∈ µ∗n, we have

cor
K/F

(a, b; K, ζ)n =
(
a, b; F, ηn/d

)[K:F (µn)]

d
,

where d is the order of N
F (µn)/F

(ζ) and η ∈ µ∗n satisfies N
F (µn)/F

(η) = ζn/d.
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Proof. Let L = F (µn). Theorem 4.2.3 tells us that

cor
K/L

(a, b; K, ζ)n = (a, b; L, ζ)[K:L]
n .

We then apply Theorem 4.2.4 (or the simpler Corollary 4.2.11 if n is a prime power)

to get the result.

The next few results concern cyclic algebras. In Proposition 4.2.15, we see how

the corestriction of a symbol algebra is not necessarily another symbol algebra when

the smaller field has fewer roots of unity.

Lemma 4.2.14. Let F ⊆ L ⊆ M be fields where F ⊆ M is cyclic. For any generator

σ of Gal(M/F ) and any b ∈ F,

cor
L/F

(M/L, σ[L:F ], b) = (E/F, σ|
E
, b),

where E is determined by F ⊆ E ⊆ M and [E : F ] = [M : L].

Proof. By Proposition 1.2.5, (M/L, σ[L:F ], b) = res
L/F

(M/F, σ, b). Because F ⊆ M is

cyclic, there is a unique field E satisfying F ⊆ E ⊆ M and [E : F ] = [M : L], so, by

Proposition 1.2.6, we get

cor
L/F

(M/L, σ[L:F ], b) =

cor
L/F

res
L/F

(M/F, σ, b) = (M/F, σ, b)[L:F ] = (E/F, σ|
E
, b).

Proposition 4.2.15. Let F be a field and p be a prime. If p = 2, assume µ4 ⊆ F.

Take ζ ∈ µ∗
pk for some k ≥ 1 and let L = F (ζ). Let ω ∈ µp∞(L) and let θ be any

pk-th root of ω. Suppose µpk ∩ F = µpr and let pl = [L(θ) : L]. Then for any b ∈ F ∗,

cor
L/F

(ω, b; L, ζ)pk = (E/F, σ|
E
, b) ,

where E is determined by F ⊆ E ⊆ L(θ) and [E : F ] = pl, and σ is a generator of

Gal(L(θ)/F ) which satisfies σ[L:F ](θ) = ζpk−l
θ.
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Remark 4.2.16. We show later that we can obtain similar formulas to Proposition 4.2.15

when p = 2 and µ4 * F (cf. Remark 4.3.10). These formulas, together with

the primary decomposition and projection formulas, make it possible to compute

cor
L/F

(ω, b; L, ζ)n, where n ≥ 1, L is any finite degree extension of F , ω ∈ µp∞(L),

and b ∈ F ∗.

Proof. Let θ be any pk-th root of ω and set M = L(θ) = F (θ). Then [M : L] = pl for

some l ≤ k. Because, µpk ⊆ L, we have M is a pl-Kummer extension of L. Now M

is a cyclotomic extension of F so M is a cyclic extension of F (This uses µ4 ⊆ F if

p = 2). Thus, Gal(M/F ) maps onto Gal(M/L) via the [L : F ] power map. So there

exists a generator, σ, of Gal(M/F ) such that σ[L:F ](θ) = ζpk−l
θ, as ζpk−l ∈ µ∗

pl . So

σ[L:F ] is a generator of Gal(M/L). Then in Br(L),

(ω, b; L, ζ)pk =
(
θpk

, b; L, ζ
)

pk

=
(
θpl

, b; L, ζpk−l
)

pl

= (M/L, σ[L:F ], b),

where the second equality comes from the symbol algebra identity given in Proposi-

tion 1.2.4.4. Apply Lemma 4.2.14 to obtain

cor
L/F

(ω, b; L, ζ)pk = (E/F, σ|
E
, b) ,

where F ⊆ E ⊆ M and [E : F ] = [M : L] = pl. Thus, E = F (µpr+l).



79

4.3 Quadratic Corestriction of Characters

In this section, we discuss the corestriction of characters over a separable quadratic

extension L ⊇ F . Take χ ∈ X(L). If χ = χ1 . . . χk is the primary decomposition of

χ, then cor
L/F

(χ) = cor
L/F

(χ1) . . . cor
L/F

(χk). Thus, we need only consider the case

where o(χ) = pm, where p is prime. We will only handle the cases where either L(χ)

is Kummer over L (i.e. µpm ⊆ L) or L(χ) is a cyclotomic extension of F .

4.3.1 Case: L(χ) ⊇ L is a Kummer Extension

Let M = L(χ) and suppose µpm ⊆ L. Let τ generate Gal(L/F ). Set M ′ = τ(M),

K = MM ′, and L′ = M ∩M ′; we are not ruling out the possibility M = M ′. Then

K is the normal closure of M over F . Set r = [M : L′] = [M ′ : L′] = [K : M ] and

s = [L′ : L]. Then rs = [M : L] = pm and r2s = [K : L].

Suppose that a ∈ L∗/L∗rs generates the Kummer group corresponding to M (so

M = L(
rs
√

ã), where a = ãL∗rs). Since τ(L∗) ⊆ L∗ and τ(L∗rs) ⊆ L∗rs, we have a

well-defined action of τ on L∗/L∗rs. Set b = τ(a). Then 〈ar〉 and 〈br〉 each correspond

to L′, whence 〈ar〉 = 〈br〉, so aru = br for some u with u2 ≡ 1 mod s. There are up

to four possible values for u determined mod s. We will choose u ∈ Z from the set

{1,−1, 1 + (s/2),−1 + (s/2)} where u ∈ {1 + (s/2),−1 + (s/2)} can only occur if

8 | s. Furthermore, if s ≤ 2, then we set u = 1, and if s = 4, then we will choose

u ∈ {1,−1}. Let Eu be the field corresponding to 〈a−ub〉 and let B = 〈a, b〉.

4.3.2 Determining Gal(K/L) and Gal(K/F )

Let G denote the abelian group Zrs ×Zrs with generators a0 = (1, 0), b0 = (0, 1).

Make G into a 〈τ〉-module by setting τ(a0) = b0 and τ(b0) = a0. The map π : G → B

defined by π(a0) = a, π(b0) = b is a 〈τ〉-module homomorphism. Let H = ker(π).

Then H = 〈a−ur
0 br

0〉 is a 〈τ〉-submodule of G. We have a short exact sequence of
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〈τ〉-modules

1 - H
ι - G

π - B - 1.

For A, an abelian group, let A∗ = Hom(A, µrs). If A is a 〈τ〉-module, we may make

A∗ into a 〈τ〉-module by setting (τ · γ)(g) = τ(γ(τ−1(g))) for γ ∈ A∗ and g ∈ A.

Applying Hom(−, µrs) to the previous sequence, we obtain

1 - B∗ π∗ - G∗ ι∗ - H∗ - 1 (†)

This last sequence is exact. For, we can identify µrs with a subgroup of Q/Z;, then

the exactness follows from [Rot79, Lemma 3.51] as G is rs-torsion. (Alternatively,

we could apply the Fundamental Theorem of Modules over a PID to see |B∗| =

|B|, |G∗| = |G|, |H∗| = |H|. Together with the left exactness of Hom(−, µrs), this

gives exactness at the right end in (†).) One checks easily that π∗ and ι∗ are each

〈τ〉-module homomorphisms. Fix ζrs ∈ µ∗rs and define α, β ∈ G∗ by α(a0) = ζrs,

α(b0) = 1 and β(a0) = 1, β(b0) = ζrs (i.e. {α, β} is dual to {a0, b0}). Then {α, β}
generates G∗ as an abelian group (and as a free Zrs-module).

Suppose τ(ζrs) = ζv
rs. Since µrs ⊆ L and τ ∈ Gal(L/F ) has order 2, we must

have v2 ≡ 1 mod rs. Again, there are up to four possible values of v determined

mod rs. We will choose v ∈ Z in the same manner that we chose u, i.e. from the

set {1,−1, 1 + rs
2
,−1 + rs

2
} with v ∈ {1 + rs

2
,−1 + rs

2
} occurring only if 8 | rs. Then

(τ ·α)(a0) = τατ−1(a0) = τα(b0) = 1 and (τ ·α)(b0) = τατ−1(b0) = τα(a0) = τ(ζrs) =

ζv
rs, whence τ(α) = βv. Similarly, τ(β) = αv.

Note that B∗ = {αiβj : ι∗(αiβj) = 1} = {αiβj : αiβj(a−ur
0 br

0) = 1} = {αiβj :

j ≡ iu mod s}. The last equality holds because αiβj(a−ur
0 br

0) = ζ
r(j−iu)
rs , whence

αiβj(a−ur
0 br

0) = 1 if and only if rs | r(j − iu), i.e. s | j − iu. So B∗ is generated as a

group by {αs, βs, αβu}. Since B is the Kummer subgroup of L∗/L∗rs corresponding

to K, we will identify B∗ with Gal(K/L). We get the following diagrams of fields,

Kummer groups, and Galois groups.
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Now, we wish to describe Gal(K/F ) as an extension of Gal(K/L) by 〈τ〉. These

extensions are classified by H2(〈τ〉, B∗).

For A, a 〈τ〉-module, we define N(a) = τ(a)a for a ∈ A, N(A) = {N(a) : a ∈ A},
and Aτ = {a ∈ A : τ(a) = a}. Also, we will abbreviate H2(〈τ〉, A) to H2(A). By

[Rot79, Theorem 10.35], H2(A) ∼= Aτ/N(A).

Returning to B∗, recall that B∗ = 〈αs, βs, αβu〉 = 〈αs, αβu〉. Thus, N(B∗) =

〈(αβv)s, αuv+1βu+v〉. Since v(uv+1) ≡ u+v mod rs, we have αuv+1βu+v = (αβv)uv+1,

whence

N(B∗) = 〈(αβv)d〉, where d = gcd(s, uv + 1).

Also, B∗τ = B∗ ∩ G∗τ = B∗ ∩ 〈αβv〉. Set e = s/gcd(s, u − v). Since u is a unit

mod s, we have gcd(s, u − v) = gcd(s, u(u − v)) = gcd(s, u2 − uv) = gcd(s, 1 − uv).

Thus, e = s/gcd(s, 1 − uv). Since 〈(αβv)s〉 ⊆ B∗τ , we may ask if there is an i < s

with (αβv)i ∈ B∗τ . If so, then necessarily (αβv)i = (αβu)iβsk for some k. Comparing

exponents of β on both sides shows s | (v−u)i, or e | i. Thus, B∗τ ⊆ 〈(αβv)e〉. On the

other hand, (v−u)e = (v− u)s/gcd(s, u− v) ∈ sZ, so (αβv)e = (αβu)eβ(v−u)e ∈ B∗τ ,

whence,

B∗τ = 〈(αβv)e〉, where e = gcd(s, uv − 1).



83

Theorem 4.3.1. We have the following table for B∗τ , N(B∗), and |H2(B∗)|

s uv mod s e B∗τ d N(B∗) |H2(B∗)|
s, odd 1 1 〈αβv〉 1 〈αβv〉 1

s, even 1 1 〈αβv〉 2 〈(αβv)2〉 2

s, odd −1 s 〈(αβv)s〉 s 〈(αβv)s〉 1

s, even −1 s/2 〈(αβv)s/2〉 s 〈(αβv)s〉 2

8 | s 1 + s
2

2 〈(αβv)2〉 2 〈(αβv)2〉 1

8 | s −1 + s
2

s/2 〈(αβv)s/2〉 s/2 〈(αβv)s/2〉 1

Proof. Case uv ≡ 1 mod s

In this case, d = gcd(s, uv+1) = gcd(s, 2) and e = s/gcd(s, 1−uv) = s/gcd(s, 0) =

s/s = 1. If s is odd, then d = 1 and e = 1, whence N(B∗) = 〈αβv〉 = B∗τ

and |H2(B∗)| = 1. On the other hand, if s is even, then d = 2 and e = 1 so

N(B∗) = 〈(αβv)2〉, B∗τ = 〈αβv〉 and |H2(B∗)| = 2.

Case uv ≡ −1 mod s

In this case, d = gcd(s, uv + 1) = gcd(s, 0) = s and e = s/gcd(s, 1 − uv) =

s/gcd(s, 2). If s is odd, then d = s = e, whence N(B∗) = 〈(αβv)s〉 = B∗τ and

|H2(B∗)| = 1. On the other hand, if s is even, then d = s, but e = s/2 so N(B∗) =

〈(αβv)s〉, B∗τ = 〈(αβv)s/2〉 and |H2(B∗)| = 2.

Case uv ≡ 1 + (s/2) mod s; 8 | s

In this case, d = gcd(s, uv +1) = gcd(s, 2+ (s/2)) = 2 and e = s/gcd(s, 1−uv) =

s/gcd(s, s/2) = 2. Thus, N(B∗) = 〈(αβv)2〉 = B∗τ and |H2(B∗)| = 1.

Case uv = −1 + (s/2) mod s; s | 8

In this case, d = gcd(s, uv + 1) = gcd(s, s/2) = s/2 and e = s/gcd(s, 1 − uv) =

s/gcd(s, 2− (s/2)) = s/2. Thus, N(B∗) = 〈(αβv)s/2〉 = B∗τ and |H2(B∗)| = 1.

Let 1 → B∗ → Γuv,f → 〈τ〉 → 1 be the group extension corresponding to uv and

a choice of f ∈ H2(B∗). We will write H2(B∗) multiplicatively. So f ∈ {−1, 1} as

|H2(B∗)| ≤ 2. Let τ be any preimage of τ in Γuv,f . Since τ has order 2, we must have
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τ 2 ∈ B∗ ∩ (Γuv,f )
τ = B∗τ . If f = 1, then τ 2 ∈ N(B∗) (cf. [Rot79, Th. 5.6ii, Cor 5.8];

if [ , ] is the factor set corresponding to the lift τ 7→ τ , then [τ, τ ] = τ 2 = τ(c)c for

some c ∈ B∗.) So whenever f = 1, we may choose τ so that τ 2 = 1 (cf. [Rot79,

Cor. 5.8]), and Γuv,f is a semi-direct product. However, if f 6= 1, then τ 2 /∈ N(B∗),

but (τ 2)2 = ττ 2τ−1τ 2 = τ(τ 2) · τ 2 ∈ N(B∗). Finally, in all cases, Γuv,f = B∗ ∪ τB∗,

so every element g ∈ Γuv,f has the form τ ic, where c ∈ B∗ and i ∈ {0, 1}.
Remark 4.3.2. We can compute u, v, and f (and hence Gal(K/F )) by the action of

τ on L. Recall that τ(ar) = (ar)u and τ(ζrs) = ζv
rs. We saw in Theorem 4.3.1 that

f ∈ {1,−1} and f = −1 can only occur when uv ≡ ±1 mod rs and 2 | s. The next

proposition distinguishes which of the two values of f occurs.

Proposition 4.3.3. Let a1 ∈ L∗ be any pre-image of a ∈ L∗/L∗rs. Suppose that

Gal(K/F ) ∼= Γuv,f . Then

1. There exists y ∈ L∗ such that ysau
1 = τ(a1).

2. f = 1 if and only if a
(u2−1)/s
1 yuτ(y) ∈ µs/d (for any y from 1.), where d =

gcd(s, u + v)

Remark 4.3.4. If y1, y2 each satisfy ys
i a

u
1 = τ(a1), then y1 = ζy2 for some ζ ∈ µs.

Then a
(u2−1)/s
1 yu

1 τ(y1) = a
(u2−1)/s
1 yu

2 τ(y2)ζ
uτ(ζ) = a

(u2−1)/s
1 yu

2 τ(y2)ζ
u+v. Note that

o(ζu+v) | s/d, where d = gcd(s, u + v), i.e. ζu+v ∈ µs/d, so the condition in 2. is

independent of the choice of y.

Remark 4.3.5. The first step in the proof of Proposition 4.3.3 is to reduce to Gal(L′/F ).

This reduction can be viewed homologically. Let A be the Kummer group correspond-

ing to L′. Set C = B/A ∼= Zr×Zr and we get the short exact sequence 1 → A → B →
C → 1. Apply Hom(−, µrs) to the sequence, and we obtain 1 → C∗ → B∗ → A∗ → 1.

We can show that H2(C∗) = 1, whence, H2(B∗) ∼= H2(A∗). Thus, we can compute f

by looking at the corresponding extension of A∗, i.e. Gal(L′/F ).

After this reduction, we could just apply [HLW03, Theorem 3.4(3)] to get the

result, since L′ is now a Kummer extension of L which is Galois over F .
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Proof. Note that f = 1 if and only if there is an extension τ of τ to Gal(K/F )

such that τ has order 2. This condition is equivalent to τ 2|
L′ = id

L′ . For, suppose

τ is any extension of τ . If τ 2|
L′ = id

L′ , then τ 2 ∈ 〈αs, βs〉 and τ 2 ∈ 〈αβv〉. Thus,

τ 2 ∈ 〈(αβv)s〉 ⊆ N(B∗), i.e. f = 1. On the other hand, if f = 1, then there is an

extension of τ of τ with τ 2 = id
K
, so τ 2|

L′ = id
L′ .

Recall that u was defined by aru = τ(ar) ∈ L∗/L∗rs. Then there exists y0 ∈ L∗

such that yrs
0 aru

1 = τ(ar
1). Taking r-th roots, we obtain ys

0ωau
1 = τ(a1) for some

ω ∈ µr(L). But µrs ⊆ L by assumption, so ys
0ω = ys for some y ∈ L∗. This proves 1.

Now suppose θ ∈ L′ is any s-th root of a1. Note that L′ = L(θ). Let τ be an

extension of τ to L′. By part 1., we obtain τ(θ)s = ysau
1 for some y ∈ L∗. Note that

τ is completely determined by its action on θ as L′ = F (θ). Pick an arbitrary ζ ∈ µs.

Then,

τ ζ(θ) = yθuζ

defines an extension of τ to L′; note that [L′ : L] = s, so by Galois theory, there are

s distinct extensions of τ to L′. We observed that f = 1 if and only if there exists a

ζ such that τ 2
ζ is trivial on L′ (i.e. τ 2

ζ(θ) = θ). Applying τ ζ to the displayed equation

above gives

τ 2
ζ(θ) = τ ζ(y)τ ζ(θ)

uτ ζ(ζ) = τ(y)(yθuζ)uζv.

Then τ 2
ζ(θ)/θ = τ(y)yuθu2−1ζu+v. Note that u2 ≡ 1 mod s, so (u2 − 1)/s ∈ Z.

Hence, f = 1 if and only if there exists a ζ ∈ µs such that 1 = τ(y)yuθu2−1ζu+v, i.e.

ζ−u−v = a
(u2−1)/s
1 τ(y)y. Now −u−v has order d = gcd(s, u+v) in Zs, so µu+v

s = µs/d.

Therefore, f = 1 if and only if a
(u2−1)/s
1 τ(y)y ∈ µs/d.

4.3.3 Corestriction in the Kummer Extension Case

We continue to assume χ ∈ X(L) with M = L(χ) and |χ| = [M : L] = rs,

where r, s are both powers of p, a prime number. View χ : Gal(K/L) → Zrs. We

identify τ with a fixed preimage of τ in Γuv,f . Then {1, τ} maps to a complete
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set of coset representatives of Gal(K/L) in Gal(K/F ). Let χ′ = cor
L/F

(χ). For

σ ∈ Gal(K/F ), Proposition 1.6.4 (=[Mer85, 1.3]) says that χ′(σ) =
∑

i∈{τ,1} χ(iσi−1
1 ),

where i1 ∈ {τ, 1} is chosen so that iσi−1
1 ∈ Gal(K/L). This gives us the two equations,

for c ∈ Gal(K/L)

χ′(c) = χ(τcτ−1) + χ(c) (4.3)

χ′(τc) = χ(ττc) + χ(τcτ−1) (4.4)

= χ(τ 2) + χ′(c).

Recall that, for k ∈ K, τcτ−1(k) = τ · c(k), so χ′(c) = χ(N(c)) (where N is

the 〈τ〉-module norm on B∗). Now B∗ ∼= Gal(K/L) via the correspondence σ 7→



rs
√

a 7→ σ(a) rs
√

a

rs
√

b 7→ σ(b) rs
√

b.
. We use this isomorphism to identify Gal(K/L) with B∗. Since

M = L( rs
√

a), σ|
M

is determined by σ(a). Let ζrs = σχ(a)/a ∈ µ∗rs. Identify µrs with

Zrs via ζrs ↔ 1. Then χ(αiβj) = i, as αiβj(a) = i. Let τ 2 = (αβv)l. Using equation

(4.3), we have,

χ′(αβu) = χ(αuvβv) + χ(αβu) = uv + 1 (4.5)

χ′(αs) = χ(βsv) + χ(αs) = s

χ′(βs) = χ(αsv) + χ(βs) = sv

χ′(τ) = χ(τ 2) = l

Since Γuv,f is generated by αβu, αs, and τ , it is enough to compute χ′(αβu), χ′(αs),

and χ′(τ) to determine im(χ′). Set d = gcd(uv+1, s). Because v2 ≡ 1 mod s, we have

d = gcd(uv +1, s) = gcd((uv +1)v, s) = gcd(u+ v, s). Also, set g = s/gcd(s, u+ v) =

s/d. We next determine the orders of χ′(αβu), χ′(αs), χ′(τ).

Let us make a convention about choosing extensions of τ . Whenever f = 1, i.e.

Γuv,f is a semi-direct product, we will choose τ such that τ 2 = 1. In this case, l = 0, so

χ′(τ) = 0 and |χ′(τ)| = 1. On the other hand, if f = −1, we know from Theorem 4.3.1

that τ 2 ∈ (αβv)d/2〈(αβv)d〉. In this case, we choose τ such that τ 2 = (αβv)d/2, whence

l = d/2, so χ′(τ) = d/2 and |χ′(τ)| = rs/(d/2) = 2rs/d = 2rg.
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Since χ′(αs) = s, we always have |χ′(αs)| = r. Now either d = s or d 6= s. If

d 6= s, then d and uv + 1 generate the same ideal in Zs and in Zrs. Thus, there is a q

prime to rs such that q(uv + 1) ≡ d mod rs. Then,

χ′((αβu)q) = q(uv + 1) ≡ d mod rs. (4.6)

Finally, if d 6= s, then χ′(αβu) = uv + 1 has order g = s/d > 1 in Zs, whence

χ′(αβu)has order rg in Zrs. Also, d = s if and only if g = 1 and d 6= s if and only if

g > 1 (as g = s/d).

Now (u + v)g = (u + v)s/gcd(u + v, s) ∈ sZ, so (αβ−v)g = (αβu)gβ−(u+v)g =

(αβu)g(βs)−(u+v)g/s ∈ B∗. So, by (4.5), χ′((αβ−v)g) = χ′((αβu)g(βs)−(u+v)g/s) =

g(uv + 1)− (u + v)gvs ≡ 0 mod rs, since v2 ≡ 1 mod rs. Thus, 〈(αβ−v)g〉 ⊆ ker(χ′).

Since g is a divisor of s, we have |(αβ−v)g| = rs/g. Also, whenever f = 1, we have

τ 2 = 1 and τ ∈ ker(χ′). Now Gal(K/F ) has order 2r2s, so |ker(χ′)| = 2r2s/|σχ′|. This

gives us the following chart for the orders of χ′(αβu), χ′(αs), χ′(τ), σχ′ , and ker(χ′).

To avoid extra subscripts, we give σχ′ in terms of an element in Gal(K/F ) instead of

its restriction to F (χ′).

f = 1 f = −1

g = 1 g > 1 g = 1 g > 1

|χ′(αβu)| ≤ r rg ≤ r rg

|χ′(αs)| r r r r

|χ′(τ)| 0 0 2r 2rg

σχ′ αs (αβu)q τ τ

|χ′| r rg 2r 2rg

ker(χ′) 〈τ, αβ−v〉 〈τ, (αβ−v)g〉 〈αβ−v〉 〈(αβ−v)g〉

This shows that χ′ depends completely on the cocycle class f and the constant g,

which is determined by uv + 1 and s. We may translate this information to see what

happens to χ′ depending on Gal(K/F ) and s.
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Theorem 4.3.6. We have the following data on χ′ for corresponding values of s, uv

and cocycle class f ∈ H2(B∗)

Gal(K/F ) s τ 2 σχ′ |χ′| ker(χ′)

Γ1,1 s ≤ 2 1 αs r τ, αβ−v

Γ1,1 s, odd and s ≥ 3 1 (αβu)q rs 〈τ, αβ−v〉
Γ1,1 s, even and s ≥ 4 1 (αβu)q rs

2
〈τ, (αβ−v)s/2〉

Γ1,−1 s, even αβv τ rs 〈(αβ−v)s/2〉
Γ−1,1 any s 1 αs r 〈τ, αβ−v〉
Γ−1,−1 s, even (αβv)s/2 τ 2r 〈αβ−v〉

Γ1+(s/2),1 s ≥ 8 1 (αβu)q1 rs
2

〈τ, (αβ−v)s/2〉
Γ−1+(s/2),1 s ≥ 8 1 (αβu)q2 2r 〈τ, (αβ−v)2〉

where, for d = gcd(uv + 1, s), we have (uv + 1)q ≡ d mod rs.

Proof. We need only compute g for each case. Note that if f = −1, then the result

is essentially independent of g; we always have σχ′ = τ , |χ′| = 2rg and ker(χ′) =

〈(αβ−v)g〉. We know from Theorem 4.3.1 that s is even and uv ≡ ±1 mod s. If

uv ≡ 1 mod s, then uv + 1 ≡ 2 mod s and d = 2, g = s/2. If uv ≡ −1 mod s, then

s | uv + 1, so d = s and g = 1. This handles all the cases where f = −1.

Suppose first that Gal(K/F ) ∼= Γ1,1, i.e. uv ≡ 1 mod s and f = 1. If s ≤ 2, then

uv + 1 ≡ 0 mod s, whence d = s and g = 1. If s ≥ 3 and s is odd, then uv + 1 is

prime to s, whence d = 1 and g = s. If s ≥ 4 and s is even, then uv + 1 ≡ 2 mod s,

whence d = 2 and g = s/2.

Next, suppose Gal(K/F ) ∼= Γ−1,1, i.e. uv ≡ −1 mod s. Then s | uv + 1, so d = s

and g = 1.

Next, suppose Gal(K/F ) ∼= Γ1+(s/2),1, i.e. uv ≡ 1 + (s/2) mod s. By Theo-

rem 4.3.1, we must have 8 | s. Also, uv + 1 ≡ 2 + (s/2) mod s so d = 2 and g = s/2.

Finally, suppose Gal(K/F ) ∼= Γ−1+(s/2),1, i.e. uv ≡ −1 + (s/2) mod s. By

Theorem 4.3.1, we must have 8 | s. Also, uv + 1 ≡ s/2 mod s so d = s/2 and

g = 2.
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4.3.4 Case: L(χ) ⊇ L is a 2-ary Cyclotomic Extension

We continue to assume that L is a separable quadratic extension of F . Suppose

now that L(χ) = F (µ2α) for some α and χ has order 2m for some m ≥ 1. If µ4 ⊆
F , then L(χ) is cyclic over F so χ is in the image of res

L/F
so the corestriction is

easy to compute (cf. Proposition 4.3.7 below). Thus, we may assume µ4 * F and

L = F (µ4). Let M = L(χ) so [M : L] = 2m, where m ≥ 1. We will first give a

condition on when M is cyclic over F . (If M is not cyclic over F , then necessarily,

Gal(M/F ) ∼= Gal(M/L) × Z2). This condition is most likely well-known, but the

author is unaware of a reference.

Proposition 4.3.7. Let F ⊆ E be fields with χ ∈ X(E). Suppose E(χ) is a cyclic

extension of F . Let χ′ = cor
E/F

(χ). Let σ be a generator of Gal(E(χ)/F ) such

that σχ = σ[E:F ]. Then, F (χ′) is the field determined by F ⊆ F (χ′) ⊆ E(χ) and

[F (χ′) : F ] = [E(χ) : E]. Also, σχ′ = σ|
F (χ′).

Proof. Define χ0 ∈ X(E(χ)/F ) by χ0(σ) = 1/[E(χ) : F ] ∈ Q/Z, where σ is defined

in the statement of the Proposition. Then res
E/F

(χ0) = χ since res
E/F

(χ0)(σχ) =

[E : F ]/[E(χ) : F ] = 1/[E(χ) : E]. So χ′ = cor
E/F

(χ) = cor
E/F

res
E/F

(χ0) = [E :

F ]χ0. Thus, χ′ has order [E(χ) : F ]/[E : F ] = [E(χ) : E]. Since E(χ) is cyclic over

F , this shows that F (χ′) is the field determined by F ⊆ F (χ′) ⊆ E(χ) and [F (χ′) :

F ] = [E(χ) : E]. Finally, χ′(σ) = [E : F ]χ0(σ) = 1/[E(χ′) : E] = 1/[F (χ′) : F ],

which shows σχ′ = σ|
F (χ′) .

Define k by µ2∞ ∩ L = µ2k . Note that k ≥ 2 as µ4 ⊆ L. Since [M : L] = 2r, we

have M = L(µ2k+r). Take ζ ∈ µ∗
2k+r . The minimal polynomial of ζ over L is x2r − ζ2r

.

Let τ generate Gal(L/F ) and let f be the minimal polynomial of ζ over F . Then

f = (x2r − ζ2r
)(x2r − τ(ζ2r

)).

We may realize Gal(M/F ) as a group extension of Gal(M/L) by 〈τ〉, i.e. there is

a short exact sequence of 〈τ〉-modules 1 → Gal(M/L) → Gal(M/F ) → 〈τ〉 → 1. It

is enough to check whether τ has a lift τ ∈ Gal(M/F ) such that τ has order 2. If a
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lift exists, then the extension is split and Gal(M/F ) ∼= Gal(M/L) × Z2. Otherwise

Gal(M/F ) is cyclic.

Proposition 4.3.8. M is cyclic over F if and only if N
M/F

(ζ) = −1.

Proof. Note that N
M/F

(ζ) = N
L/F

(ζ2r
). For, by Proposition 4.2.7, N

M/L
(ζ) = −ζ2r

;

the equality then follows because N
L/F

(−1) = 1. By the same proposition, N
M/F

(ζ) ∈
{1,−1}.

If N
L/F

(ζ2r
) = 1, then τ(ζ2r

) = ζ−2r
, whence f = (x2r − ζ2r

)(x2r − ζ−2r
)) and

f(ζ−1) = 0. So τ : ζ 7→ ζ−1 is an element of Gal(M/L) extending τ with order 2,

whence Gal(M/F ) is not cyclic.

On the other hand, if N
L/F

(ζ2r
) = −1, then τ(ζ2r

) = −ζ−2r
. If k = 2, then

ζ2r ∈ µ2k = µ∗4, whence ζ2r
= −ζ−2r

. Since we assumed that τ is non-trivial, we must

have k 6= 2, i.e. k ≥ 3. Let τ be any extension of τ to M . Then τ(ζ2r
) = −ζ−2r

implies that, for some ω ∈ µ∗2r+1 , we have τ(ζ) = ωζ−1. Since µ2r+1 = 〈ζ2k−1〉, there

is an odd m ∈ Z with ω = ζ2k−1m. So, τ(ζ) = ζ2k−1m−1, hence, τ 2(ζ) = ζ(2k−1m−1)2 =

ζ22k−2m2−2km+1. We see that τ has order 2 if and only if 22k−2m2−2km ≡ 0 mod 2r+k,

i.e. 2k−2m − 1 ≡ 0 mod 2r, since m is odd. But k ≥ 3 and r ≥ 1 by assumption, so

2k−2 is even. Thus, there is no possible choice of m satisfying the last condition and

τ has no lift of order 2. So M is cyclic over F .

Now, if M is cyclic over F , then cor
L/F

(χ) has already been handled in Proposi-

tion 4.3.7 above. So we may assume that Gal(M/F ) is not cyclic. Identify τ with

an extension to M which has order 2. Then Gal(M/F ) = 〈σχ, τ〉 where σχ generates

Gal(M/L) and has order [M : L]. Let χ′ = cor
L/F

(χ).

Theorem 4.3.9. χ′ ∈ X(F ) has order 2r−1 and ker(χ′) = 〈τ, σ2r−1〉. Also, σχ′ =

σχ|F (χ′).

Proof. Note that {1, τ} is a complete set of coset representatives of Gal(M/L) in
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Gal(M/F ). Using Proposition 1.6.4 ([Mer85, 1.3]), we see

χ′(σχ) = χ(τσχτ−1) + χ(σχ) = 2χ(σχ) = 2,

χ′(τ) = χ(ττ) + χ(ττ−1) = 0.

Thus, χ′ has order 2r/2 = 2r−1, and ker(χ′) = 〈τ, σ2r−1

χ 〉. Also, σχ′ = σ|
F (χ′) .

Remark 4.3.10. Using Proposition 4.3.7 and Theorem 4.3.9, we may fill in the case

µ4 * F in Proposition 4.2.15. For, we can reduce to the case L = F (µ4) (by using

Proposition 4.2.15), then decompose the symbol algebra (ω, b; L, ζ)pk into a cup prod-

uct. We then use Theorem 4.2.1 to reduce to the character calculations handled in

Proposition 4.3.7 and Theorem 4.3.9.
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4.4 Abelian Corestriction of Characters

Let F ⊆ L be a finite degree field extension and let χ ∈ X(L). In this section,

we show that it is possible to compute cor
L/F

(χ) whenever L(χ) ⊇ F is an abelian

Galois extension. Suppose first that we can compute cor
L/F

(χ) if L ⊇ F is cyclic

and L(χ) ⊇ F is abelian. There are intermediate subfields Li such that L = Lk ⊇
Lk−1 ⊇ . . . ⊇ L1 ⊇ L0 = F and Li is cyclic over Li−1 for i = 1, . . . , k. Suppose we

have computed χi = cor
L/Li

(χ) for some i. Now Li(χi) is a subfield of L(χ), so Li(χi)

is abelian over Li−1. Thus, the hypotheses are preserved at each step and we may

proceed iteratively until we have compute χ0 = cor
L/F

(χ).

We need two results in discrete linear algebra.

Lemma 4.4.1. Let G be an abelian group and let h : Z × Z → G be a group homo-

morphism. Let ι1, ι2 be the canonical inclusions of Z into Z× Z. For i = 1, 2, define

hi : Z → G by hi = hιi. Let ker(hi) = 〈ki〉 and suppose li ∈ Z satisfy h1(l1) = h2(l2)

and im(h1) ∩ im(h2) = 〈hi(li)〉. If l2 | k2, then ker(h) = 〈(k1, 0), (l1,−l2)〉. Similarly,

if l1 | k1, then ker(h) = 〈(0, k2), (l1,−l2)〉.

Proof. We will show that 〈(0, k2), (l1,−l2)〉 = ker(h) if l1 | k1; the argument for

the other equality is analogous. Clearly, 〈(0, k2), (l1,−l2)〉 ⊆ ker(h). Now suppose

(a, b) ∈ ker(h). Since h(a, b) = 0, we have h1(a) = h2(−b) ∈ im(h1) ∩ im(h2).

Thus, for some z ∈ Z, we have h1(a) = h1(zl1). So, l1 | k1 | a − zl1, consequently,

l1 | a. Let a = cl1, whence 0 = h1(a − cl1) = h2(−b − cl2) as h1(l1) = h2(l2). So

−b−cl2 ∈ ker(h2) = 〈k2〉 and there exists a d ∈ Z with −b−cl2 = dk2. Hence, (a, b) =

c(l1,−l2)− d(0, k2) ∈ 〈(0, k2), (l1,−l2)〉. This shows 〈(0, k2), (l1,−l2)〉 = ker(h).

Corollary 4.4.2. Fix j, n ∈ N and let d be any divisor of n. Let l = lcm(j, d) and let

M be the Z-submodule of Z×Z generated by (l/d,−l/j) and (n/d, 0). Then (a, b) ∈ M

if and only if ad + bj ∈ nZ.

Proof. Define h : Z × Z → Zn by h(a, b) = ad + bj ∈ Zn. Following the notation

from Lemma 4.4.1, we have h1(a) = ad, h2(b) = bj, k1 = n/d, and k2 = n/gcd(n, j).
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Now im(h1) ∩ im(h2) = 〈d〉 ∩ 〈j〉 in Zn. Since d | n, we have in Z, 〈d, n〉 ∩ 〈j, n〉 =

〈d〉 ∩ (〈j〉 + 〈n〉) = (〈d〉 ∩ 〈j〉) + 〈n〉. So in Zn, 〈d〉 ∩ 〈j〉 = 〈lcm(j, d)〉 = 〈l〉. Thus,

h2(l/j) = l = h1(l/d), whence l2 = l/j in the notation of Lemma 4.4.1. Since

d | n, we have lgcd(n, j)/j | lcm(n, j)gcd(n, j)/j = n, so l/j | n/gcd(n, j). Thus, by

Lemma 4.4.1 ker(h) = 〈(n/d, 0), (l/d,−l/j)〉 = M .

We now give a formula for cor
L/F

(χ) when L ⊇ F is cyclic and L(χ) ⊇ F is

abelian. Set n = [L(χ) : L], m = [L : F ], σ = σχ, and d = gcd(m,n). Let k satisfy

km ≡ d mod n, i.e. k = compZn
(m, d). Since (d) = (m,n) as ideal in Z, we have m

and d generate the same ideal mod n, so we may choose k prime to n.

Theorem 4.4.3. Let τ be any generator of Gal(L/F ) and let τ be any extension

of τ to L(χ). Suppose τm = σj. Let e = gcd(m,n, j) = gcd(d, j) and suppose

ad + bj = e for some a, b ∈ Z. Let χ′ = cor
L/F

(χ). Then σχ′ = σkaτ b and ker(χ′) =

〈σn/d, σjk/eτ−d/e〉.

Proof. Let I = {idL(χ), τ , τ 2, . . . , τm−1}., which is a complete set of coset representa-

tives for Gal(L(χ)/L) in Gal(L(χ)/F ). By [Mer85, 1.3],

χ′(σ) =
∑
α∈I

χ(ασα−1
1 ),

where α1 ∈ I is chosen so that ασα−1
1 is the identity on L. Since L(χ) is abelian over

F , we have χ′(σ) =
∑

α∈I χ(ασα−1
1 ) =

∑
α∈I χ(σ) = |I| = m in Zn. Also,

χ′(τ) =
∑
α∈I

χ(ατα−1
1 )

= χ(idL(χ)ττ−1) + χ(τττ−2) + · · ·+ χ(τm−2ττ−(m−1)) + χ(τm−1τ id−1
L(χ))

= χ(τm) = χ(σj) = j.

Since σ and τ generate Gal(L(χ)/F ), we have im(χ′) is generated by m and j in Zn.

Thus, im(χ′) is generated by e = gcd(m,n, j) = gcd(d, j) in Zn. Now χ′(σk) = km ≡
d mod n. If ad + bj = e, then χ′(σkaτ b) = ad + bj = e.
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We chose k prime to n, so Gal(L(χ)/F ) is also generated by σk and τ . Suppose

for some x, y ∈ Z, we have χ′(σkxτ y) = xd + yj = 0. By Lemma 4.4.2, this happens

if and only if (x, y) ∈ M , where M is generated by (j/e,−d/e) and (n/d, 0). Thus,

ker(χ′) is generated by σkj/eτ−d/e and σkn/d.



95

4.5 Symbol and Cyclic Algebras Over A Cyclo-

tomic Extension

Let F be a field with char(F ) 6= p. Let L = F (µp), or, if p = 2, let L = F (µ4).

Suppose L 6= F . Let a, b ∈ L∗ be elements with apk
, bpk ∈ F ∗ for some k. Our goal in

this section is to describe how to compute cor
L/F

(A), where A is either of the form

(a, b; L)pn or (M/F, σ, b), where M = L(µpn) for some n ∈ N. These results will be

useful later in Section 4.7.

4.5.1 Case: L = F (µ4)

Let p = 2. Suppose that L is any quadratic extension of F . Let A1 = (a, b; L)2m ,

where a ∈ L∗ and µ2m ⊆ L and let A2 = (M/L, σ, b), where M = L(µ2n) for some

m,n ∈ N. In light of Proposition 1.6.3, we may assume that [L( 2n√
a) : L] = 2n (oth-

erwise, we may pass to the function field L(x), write (A1)L(x) = (ax, b; L(x))2m ⊗L(x)

(x−1, b; L(x))2m , and handle one symbol at a time.) The results in Section 1.5 tell us

that Ai corresponds to ∂χi∪b via the isomorphism Br(L) ∼= H2(GL, L∗sep). Now L(χ1)

is a Kummer extension of L and L(χ2) = M a 2-ary cyclotomic extension of L. The

previous sections (4.3.3 and 4.3.4) describe how to compute cor
L/F

(χi). If b ∈ F ∗,

then Theorem 4.2.1 and Prop. 1.6.2 apply and cor
L/F

(∂χ∪b) = ∂(cor
L/F

(χ))∪b, thus,

we are able to compute cor
L/F

(Ai). So we may assume that b /∈ F ∗. We will factor

Ai into a tensor product of algebras whose corestriction we can compute (specifically,

those of the form described in the previous paragraph). We first need a lemma.

Lemma 4.5.1. If a, b ∈ L∗ but a, b /∈ F , then there exist u, v ∈ F ∗ such that ua =

1− vb or ua = b.

Proof. Since [L : F ] = 2, we have b = xa+ y for some x, y ∈ F . We must have x 6= 0,

as b /∈ F . If y = 0, then set u = x, whence b = ua. If y 6= 0, then −xy−1a = 1− y−1b.

Set u = −xy−1 and v = y−1; then, ua = 1− vb.
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If a ∈ F ∗, then A1 = (b−1, a; L)2m . Suppose instead a /∈ F . Then by the lemma,

there exist u, v ∈ F ∗ such that ua = b or ua = 1−vb. If ua = b, then, by Prop. 1.2.4.8,

A1 = (a, ua; L)2m = (a,−u; L)2m .

If ua = 1− vb, then, by Prop. 1.2.4.6 and the Steinberg relation (Prop. 1.2.4.7)

A1 =
(
u−1(1− vb), b; L

)
2m

∼ (
u−1, b; L

)
2m ⊗L (1− vb, vb; L)2m ⊗L

(
1− vb, v−1; L

)
2m

∼ (b, u; L)2m ⊗L

(
ua, v−1; L

)
2m .

In either case, A1 is a tensor product of algebras whose corestriction is computable,

thus we can compute cor
L/F

(A1). However, there does not appear to be a single

formula covering all cases.

Now assume that µ4 ⊆ L and that b2k ∈ F ∗ for some k ∈ N. Recall that

A2 = (M/L, σ, b), where M = L(µ2n) for some n ∈ N. We can assume M 6= L,

so µ2n * L, since otherwise A2 is split, whence cor
L/F

(A2) is split. Since µ4 ⊆ L by

assumption, there exists a field M ′ such that M ′ ⊇ L is cyclic, M ′ = L(µ2m) for some

m ≥ n, and [M ′ : M ] = 2k. Then, by Prop. 1.2.6,

A2 ∼ (M ′/L, σ, b2k

),

where σ is any extension of σ to M ′. Since M ′ = L(µ2m) and b2k ∈ F ∗, we are able

to compute cor
L/F

(A2) via the projection formula (Theorem 4.2.1 and Prop. 1.6.2).

4.5.2 Case: L = F (µp) For Odd p

Let F be a field and let p be an odd prime with p - char(F ) and µp * F . Let

L = F (µp).The following lemma can be found in [GV81], however, we have included

a short proof.

Lemma 4.5.2. Let F be a field and p be an odd prime with p - char(F ) and µp * F .

Let L = F (µp). For a ∈ L∗, we have apk ∈ F ∗ for some k ≥ 0 if and only if a = bω

for some b ∈ F ∗ and ω ∈ µpk(L).
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Proof. If a = bω for b ∈ F ∗ and ω ∈ µpk , then apk
= bpk ∈ F ∗.

Now suppose apk ∈ F ∗ for some k ≥ 0. Let f be the minimal polynomial of a over

F and let s = [L : F ]. Then f has degree s and splits over L (as L is Galois over

F ). Furthermore, f | xpk − apk
, so the conjugates of a all differ from one another by

elements of µpk(L). Thus, N
L/F

(a) = asζ for some ζ ∈ µpk(L). Since p - s, there exist

x, y ∈ Z such that xs + ypk = 1. Then, a = axs+ypk
= (N

L/F
(a)ζ−1)x(apk

)y = bω,

where ω = ζ−x ∈ µpk(L) and b = N
L/F

(ax)(apk
)y ∈ F ∗.

Let a, b ∈ L∗ be elements satisfying apk
, bpk ∈ F ∗ for some k ∈ N. Let A =

(a, b; L, ζ)pn where ζ ∈ µ∗pn(L). By Lemma 4.5.2, a = ω1f1 and b = ω2f2 for certain

ωi ∈ µpk(L) and fi ∈ F . There exists ω ∈ µpk and c1, c2 ∈ Z with ωci = ωi for i = 1, 2.

With this setup, we prove

Theorem 4.5.3. Let θ be a pn-th root of ω and let E be the field within F ⊆ L(θ)

determined by [L(θ) : E] = [L : F ] (as F ⊆ L(θ) is cyclic). Let σ be a generator of

Gal(L(θ)/F ) satisfying σ[L:F ](θ) = ζθ. Then

cor
L/F

(A) = (E/F, σ|
E
, f−c2

1 f c1
2 ).

Proof. From the setup above,

A = (a, b; L, ζ)pn

= (ωc1f1, ω
c2f2; L, ζ)pn

= (ω, ω; L, ζ)c1c2
pn ⊗L (f1, f2; L, ζ)pn ⊗L

(
ω, f−c2

1 f c1
2 ; L, ζ

)
pn .

Since p is odd, (ω, ω; L, ζ)pn is split (cf. Proposition 1.2.4.8) and cor
L/F

(f1, f2; L, ζ)pn

is split (cf. Corollary 4.2.11 and Prop. 4.2.7). Let θ be any pn-th root of ω and let

M = L(θ). We then use Prop. 4.2.15 and obtain

cor
L/F

(A) = cor
L/F

[
(ω, ω; L, ζ)c1c2

pn ⊗L (f1, f2; L, ζ)pn ⊗L

(
ω, f−c2

1 f c1
2 ; L, ζ

)
pn

]

= cor
L/F

(
ω, f−c2

1 f c1
2 ; L, ζ

)
pn

= (E/F, σ|
E
, f−c2

1 f c1
2 ),
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where E is the intermediate field in F ⊆ M determined by [M : E] = [L : F ] and σ

is a generator of Gal(L(θ)/F ) satisfying σ[L:F ](θ) = ζθ (the existence of such a σ was

shown in Prop. 4.2.15).

We continue to assume p - char(F ), µp * F and L = F (µp) (p an odd prime). Now

let (M/L, σ, b) be a cyclic algebra where M = L(µpn) for some n and a ∈ L∗ satisfies

apk ∈ F ∗ for some k. By Lemma 4.5.2, a = bω for some b ∈ F ∗ and ω ∈ µpk(L).

Then, we have the following Theorem.

Theorem 4.5.4. Let τ be a generator of Gal(M/F ) such that τ [L:F ] = σ and let E

be the field determined by F ⊆ E ⊆ M and [M : E] = [L : F ]. Then

cor
L/F

(M/L, σ, a) = (E/F, τ |
E
, b),

Proof. If µp∞ ⊆ L, then L = L(µpn) = M . Then (M/L, σ, a) is split, σ is the identity

on F and E = F is the unique field in F ⊆ M such that [M : E] = [L : F ]. Let

τ be any generator of Gal(M/F ), then τ [L:F ] = τ [M :F ] is the identity on F . Thus,

(E/F, τ |
E
, b) is split and the result holds (since cor

L/F
(L) = F ).

Now suppose µp∞ * L. Let pl = o(ω). Since p is odd and µp∞ * L, there

exists a field M ′ such that M ′ = F (µpm) for some m, M ′ is cyclic over F , and

[M ′ : M ] = pl. Let σ′ ∈ Gal(M ′/L) be any extension of σ ∈ Gal(M/L) to M ′. Then,

by Prop. 1.2.6 (M/L, σ, ω) = (M ′/L, σ′, ωpl
), which is split since ωpl

= 1. Thus,

(M/L, σ, a) = (M/L, σ, ω)⊗L (M/L, σ, b) = (M/L, σ, b). Now let τ be a generator of

Gal(M/F ) such that τ [L:F ] = σ; such a τ exists as Gal(M/F ) maps onto Gal(M/L)

via the [L : F ] power map. We use Proposition 4.2.14 to get

cor
L/F

(M/L, σ, a) = cor
L/F

(M/L, τ [L:F ], a) = (E/F, τ |
E
, b),

where E is the field determined by F ⊆ E ⊆ M and [M : E] = [L : F ].
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4.6 Simple Radical Extensions

In this section, we will recall some results and prove two propositions which will

be used in the next section for computing corestriction. Many of the basic results

can be found multiple times in the literature (cf. [Alb03], [Kar89], [GV81], [dOV84]).

Throughout this section, p will denote a prime number.

Definition 4.6.1. Let p be a prime, and let F be a field with char(F ) 6= p. For

p 6= 2, we say the field extension F ⊆ K is p-pure if µp ⊆ F whenever µp ⊆ K. If

p = 2, then we say F ⊆ K is 2-pure if µ4 ⊆ F whenever µ4 ⊆ K.

The p-pure extensions were first examined by Gay and Velez in [GV81], however,

the term p-pure is not used. The author is not sure where the term originated,

however, this is the term used in [Alb03]. In addition, the condition is sometimes

written more succinctly as “µ2p ⊆ F whenever µ2p ⊆ K”, however, this may introduce

the unnecessary assumption that char(F ) 6= 2 in the case that p is odd.

Remark 4.6.2. The condition for p-purity can be written as µpr ⊆ F if and only if

µpr ⊆ K where r = 1 if p is odd and r = 2 if p = 2. This shows that if F ⊆ E ⊆ K

are fields, then F ⊆ K is p-pure if and only if both F ⊆ E and E ⊆ K are p-pure.

The following result is another statement of [GV81, Lem 1.5].

Proposition 4.6.3. Let p be prime and suppose F ⊆ K is p-pure. Let t ∈ K∗ be an

element with tp
m ∈ F ∗. Then we have o(tF ∗) = [F (t) : F ] = pe for some e ≤ m, and

xpe − tp
e

is irreducible over F , where o(tF ∗) denotes the order of tF ∗ in K∗/F ∗. So

N
F (t)/F

(t) = (−1)pe−1tp
e
.

We get an immediate corollary.

Corollary 4.6.4. Let F , t, and pe = o(tF ∗) be as in Proposition 4.6.3. Every field

L with F ⊆ L ⊆ F (t) has the form L = F (tp
l
) for some l ≤ e and pl = [F (t) : L] =

o(tL∗).
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Proof. Suppose that F ⊆ L ⊆ F (t). Now o(tL∗) = pl, for some 0 ≤ l ≤ e, whence

tp
l ∈ L∗ and F (tp

l
) ⊆ L. By Proposition 4.6.3, [F (t) : L] = [L(t) : L] = o(tL∗) = pl,

yet [F (t) : F (tp
l
)] ≤ pl, so we get F (tp

l
) = L.

Remark 4.6.5. Proposition 4.6.3 may not hold if F ⊆ K is not p-pure. For example,

take F = Q, t = ζp, and K = Q(t), where ζp is a primitive p-th root of unity (p odd).

We know that o(tF ∗) = p, yet [F (t) : F ] = p − 1 and xp − tp = xp − 1 is reducible

over Q.

Simple radical extensions which are p-pure are determined by the corresponding

subgroups modulo F ∗. The next proposition shows that if t1, t2 ∈ K∗ are separable

over F and have finite order in K∗/F ∗, then F (t1) = F (t2) if and only if 〈t1F ∗〉 =

〈t2F ∗〉.

Proposition 4.6.6. Let p be prime and suppose F ⊆ K is p-pure and char(F ) 6= p.

Let t1, t2 ∈ K∗ be elements where tiF
∗ has p power order in K∗/F ∗ for i = 1, 2.

Suppose t2 ∈ F (t1). Then there is an integer q such that tq1t2 ∈ F ∗, i.e. 〈t2F ∗〉 ⊆
〈t1F ∗〉.

Proof. Let pmi = o(ti) for i = 1, 2. By Proposition 4.6.3, [F (ti) : F ] = pmi , whence

m2 ≤ m1. We proceed by induction on m1. If m1 = 0, then t1, t2 ∈ F ∗, so we are

done. Now assume m1 > 0.

By Corollary 4.6.4, F (t2) = F (tp
m1−m2

1 ). If m1 > m2, then the induction hypoth-

esis applies to t2 ∈ F (tp
m1−m2

1 ), whence there is a q ∈ Z with (tp
m1−m2

1 )qt2 ∈ F ∗.

Otherwise, m1 = m2, so F (t1) = F (t2). Set E = F (tp1), whence E ⊆ E(t1) = F (t1)

is p-pure, so [E(t1) : E] = o(t1E
∗) = p. Also, E ⊆ E(t1) is separable, so let N be the

normal closure of E(t1) over E. There exists an E-monomorphism, ϕ : E(t1) → N ,

such that ϕ(t1) 6= t1. Since tpi ∈ E for i = 1, 2, we have ϕ(ti)
p = ϕ(tpi ) = tpi , whence

ϕ(ti) = ζiti, where ζi ∈ µ∗p(N). Thus, there exists an r such that ϕ(tr1t2) = tr1t2. Yet

[E(t1) : E] = p and E(tr1t2) is intermediate field where ϕ is the identity. Since ϕ

is not the identity map on E(t1), we must have tr1t2 ∈ E∗. But [E : F ] < pm1 , so
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we may apply our induction hypothesis to tp1 and tr1t2 and obtain a q′ ∈ Z such that

(tp1)
q′tr1t2 = tpq′+r

1 t2 ∈ F ∗. Since q = pq′ + r ∈ Z, we are done.

Remark 4.6.7. Note that q is determined up to pm1 = o(t1F
∗). For, if tq1t2, t

r
1t2 ∈ F ∗,

then clearly tq−r
1 ∈ F ∗, whence o(t1F

∗) = pm1
∣∣ q − r.

Definition 4.6.8. For F ⊆ E ⊆ K, and a, b ∈ K, define λE
a,b = [E(a, b) : E(b)]. If

aF ∗ and bF ∗ have finite order and F ⊆ K is p-pure, then λF
a,b describes the order of

aF ∗ over the intersection 〈aF ∗〉 ∩ 〈bF ∗〉, as we shall see in Proposition 4.6.9 below.

Proposition 4.6.9. Let p be prime and suppose F ⊆ K is p-pure and char(F ) 6= p.

Let t1, t2 ∈ K∗ be elements where tiF
∗ has p power order in K∗/F ∗ for i = 1, 2. Let

pl1 = λF
t1,t2

= [F (t1, t2) : F (t2)] and pl2 = λF
t2,t1

= [F (t1, t2) : F (t1)] . Then,

1. F (t1) ∩ F (t2) = F (t
λF

t1,t2
1 ) = F (t

λF
t2,t1

2 ).

2. 〈t1F ∗〉 ∩ 〈t2F ∗〉 = 〈tλ
F
t1,t2

1 F ∗〉 = 〈tλ
F
t2,t1

2 F ∗〉.

3. t
cλF

t1,t2
1 t

−λF
t2,t1

2 ∈ F ∗ if and only if c ∈ comp(t1F
∗, t2F ∗)

4. If tm1
1 t−m2

2 ∈ F ∗, then there exists d ∈ Z such that for any

c ∈ comp(t1F
∗, t2F ∗),

m1 ≡ cλF
t1,t2

d mod o(t1F
∗) and m2 ≡ λF

t2,t1
d mod o(t2F

∗).

If mi = aip
ei with ai prime to p, then ei ≥ li. Furthermore, if pei < o(tiF

∗),

then e1 − l1 = e2 − l2.

Proof. For (1) and (2), we will only prove the first equality; the second equality follows

by a symmetric argument replacing 1 with 2. From Proposition 4.6.3, o(t1F (t2)
∗) =

[F (t2)(t1) : F (t2)] = λF
t1,t2

. Thus, for any n, we have tn1 ∈ F (t2) if and only if

λF
t1,t2

∣∣ n. Since intermediate fields of F ⊆ F (t1) have the form F (tn1 ), we must have

F (t1)∩F (t2) = F (t
λF

t1,t2
1 ). Also, for any n, we have tn1 ∈ F (t2) if and only if 〈tn1F ∗〉 ⊆

〈t2F ∗〉 (cf. Prop 4.6.6 for the non-trivial implication), whence 〈tn1F ∗〉 ⊆ 〈t2F ∗〉 if and

only if λF
t1,t2

∣∣ n. Thus, 〈t1F ∗〉 ∩ 〈t2F ∗〉 = 〈tλ
F
t1,t2

1 F ∗〉. This proves (1) and (2).
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For i = 1, 2, set Gi = 〈tiF ∗〉, whence |Gi : G1 ∩G2| = pli by applying (2). By the

definition of compatibility factor, c ∈ comp(t1F
∗, t2F ∗) if and only if t

c|G1:G1∩G2|
1 F ∗ =

t
|G2:G1∩G2|
2 F ∗, i.e. t

cλF
t1,t2

1 t
−λF

t2,t1
2 ∈ F ∗. This gives (3).

Suppose that tm1
1 t−m2

2 ∈ F ∗. Then, tm2
2 F ∗ ∈ 〈t1F ∗〉 ∩ 〈t2F ∗〉 = 〈tλ

F
t2,t1

2 F ∗〉, so

there is a d ∈ Z such that m2 ≡ dλF
t2,t1

mod o(t2F
∗). Thus, t

dλF
t2,t1

−m2

2 ∈ F ∗. We

proved above that t
−dcλF

t1,t2
1 t

dλF
t2,t1

2 ∈ F ∗ for any c ∈ comp(t1F
∗, t2F ∗), so F ∗ =

t
−dcλF

t1,t2
1 t

dλF
t2,t1

2 tm1
1 t−m2

2 F ∗ = t
m1−dcλF

t1,t2
1 F ∗. Thus, m1 ≡ cλF

t1,t2
d mod o(t1F

∗).

Now if, for i = 1, 2, we have mi = aip
ei , where ai is prime to p, then tmi

i F ∗ ∈
〈t1F ∗〉 ∩ 〈t2F ∗〉 = 〈tpli

i F ∗〉, so ei ≥ li. Set pni = o(tiF
∗) and now assume ei < ni for

i = 1, 2. Because m2 ≡ dpl2 mod o(t2F
∗), there exists a k ∈ Z such that a2p

e2 +kpn2 =

dpl2 . Thus, pe2−l2(a2 +kpn2−e2) = d. But e2 < n2 and a2 is prime to p, so a2 +kpn2−e2

is prime to p. A similar argument shows that d = pe1−l1q, where q is prime to p.

Therefore, e1 − l1 = e2 − l2.
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4.7 Corestriction Of Symbol Algebras

Let p be prime and F ⊆ N be a finite degree field extension with char(F ) 6= p

and µpn ⊆ N . Let t1, t2 ∈ N be elements whose images in N∗/F ∗ have p power order.

Our goal in the next two sections is to compute cor
N/F

(t1, t2; N)pn . We will assume

that µp ∈ F , or if p = 2, µ4 ⊆ F . Thus, for any field L such that F ⊆ L ⊆ N , the

extension F ⊆ L is p-pure.

Our first step will be to compute cor
N/K

(t1, t2; N)pn where K = F (t1, t2).

Theorem 4.7.1. Let p be prime and suppose F ⊆ N with char(F ) 6= p and µpn ⊆ N .

Let t1, t2 ∈ N∗ be elements where tiF
∗ have p-power order in N∗/F ∗ for i = 1, 2. Let

K = F (t1, t2). Suppose that µpn ∩K = µpk . Let u = [N : K(µpn)]. Then

cor
N/K

(t1, t2; N)pn = (t1, t
eu
2 ; K)pk ,

where e = 1 unless p = 2 and n > k, in which case e = 1 + 2k−1.

Proof. Set M = K(µpn). We apply the Projection Formula 4.2.3 to get

cor
N/M

(t1, t2; N)pn = (t1, t
u
2 ; M)pn ,

as t2 ∈ M , so N
N/M

(t2) = t
[N :M ]
2 = tu2 . Note that µ4 ⊆ F ⊆ K, so k ≥ 2. We apply

Corollary 4.2.11 to get

cor
M/K

(t1, t
u
2 ; M)pn = (t1, t

eu
2 ; K)pk ,

where e = 1 unless p = 2 and n > k in which case e = 1− 2k−1.

We continue with the notation established above. Let ω ∈ µ∗
pk(K). For a, b ∈ K∗

and F ⊆ E ⊆ K, recall from Definition 4.6.8 that λE
a,b = [E(a, b) : E(b)], so, by

Proposition 4.6.9, 〈aE∗〉 ∩ 〈bE∗〉 = 〈aλE
a,bE∗〉 = 〈bλE

b,aE∗〉. We define the following



104

constants
pl1 = [F (t1, t2) : F (t2, ω)] = o(t1F (t2, ω)∗) = λ

F (t2)
t1,ω

pl2 = [F (t1, t2) : F (t1, ω)] = o(t2F (t1, ω)∗) = λ
F (t1)
t2,ω

pm1 = [F (t1, ω) : F (ω)] = o(t1F (ω)∗) = λF
t1,ω

pm2 = [F (t2, ω) : F (ω)] = o(t2F (ω)∗) = λF
t2,ω

pn1 = [F (t1, ω) : F (t1)] = o(ωF (t1)
∗) = λF

ω,t1

pn2 = [F (t2, ω) : F (t2)] = o(ωF (t2)
∗) = λF

ω,t2

ps = [F (ω) : F ] = o(ωF ∗).

Note that [F (ω) : F ] is indeed a power of p since we assumed µp ⊆ F , or if p = 2,

µ4 ⊆ F . Also, let us choose c1 ∈ comp(ωF (t2)
∗, t1F (t2)

∗), c2 ∈ comp(ωF ∗, t2F ∗),

and c3 ∈ comp(t2F
∗, tp

l1

1 ω−c1F ∗). By Remark 1.7.2, we may choose the ci prime

to p for i = 1, 2, 3. If n1 = 0 (i.e., ω ∈ F (t1)) and m1 = l1, then we require

c1 ∈ comp(ωF (t∗2), t1F (t2)
∗) as well. We will show in Property 6 that such a choice

of c1 is possible.

Now we list or prove several properties.

1. For i = 1, 2, we have mi ≥ li and s ≥ ni ≥ 0.

2. F (t2, ω) = F (t2, t
pl1

1 ).

Proof. By Corollary 4.6.4, intermediate fields of F (t2) ⊆ F (t2, t1) are determined by

their index. F (t2, t
pl1

1 ) is the unique subfield of index pl1 = [F (t1, t2) : F (t2, ω)], so

F (t2, ω) = F (t2, t
pl1

1 ).

3. λ
F (t2)
ω,t1 = λ

F (t1)
ω,t2 = 1 (as ω ∈ F (t1, t2)).

4. tp
l1

1 ω−a ∈ F (t2)
∗ if and only if a ∈ comp(ωF (t2)

∗, t1F (t2)
∗).

tp
m2

2 ω−apn2 ∈ F ∗ if and only if a ∈ comp(ωF ∗, t2F ∗).

tp
m1

1 ω−apn1 ∈ F ∗ if and only if a ∈ comp(ωF ∗, t1F ∗).

In particular, tp
l1

1 ω−c1 ∈ F (t2)
∗ and tp

m2

2 ω−c2pn2 ∈ F ∗.



105

Proof. Use Proposition 4.6.9(3).

5. For i = 1, 2, we have o(tiF
∗) = ps−ni+mi .

Proof. By Proposition 4.6.9(2), 〈tpmi

i F ∗〉 = 〈ωpni F ∗〉, so o(tp
mi

i F ∗) = o(ωpni F ∗) =

ps−ni . Thus, o(tiF
∗) = ps−ni+mi .

6. If n1 = 0 and m1 = l1, then comp(ωF ∗, t1F ∗) ⊆ comp(ωF (t2)
∗, t1F (t2)

∗).

Proof. If d ∈ comp(ωF ∗, t1F ∗), then tp
l1

1 ω−d = tp
m1

1 ω−dpn1 ∈ F ∗ ⊆ F (t2)
∗, so d ∈

comp(ωF (t2)
∗, t1F (t2)

∗) by Property 4.

Thus, if n1 = 0 and m1 = l1, we may choose c1 ∈ comp(ωF (t2)
∗, t1F (t2)

∗) so that

c1 ∈ comp(ωF ∗, t1F ∗) as well.

7. tp
l1

1 ω−c1 ∈ F ∗ if and only if n1 = 0, m1 = l1.

Proof. If n1 = 0, m1 = l1, then c1 ∈ comp(ωF ∗, t1F ∗), so tp
l1

1 ω−c1 = tp
m1

1 ω−c1pn1 ∈ F ∗

by Property 4 above.

Now suppose tp
l1

1 ω−c1 ∈ F ∗. Recall that p - c1, so Proposition 4.6.9(4) gives us

l1 ≥ m1 and 0 ≥ n1, whence, by Property 1, we have l1 = m1 and 0 = n1.

8. tp
l1

1 ω−c1td2 ∈ F ∗, where d =

{
0, if n1 = 0, m1 = l1

−c3p
l2 , if n1 > 0 or m1 > l1

Proof. If n1 = 0 and m1 = l1, then Property 7 tells us that tp
l1

1 ω−c1 ∈ F ∗. So

assume n1 > 0 or m1 > l1, whence tp
l1

1 ω−c1 /∈ F ∗, by Property 7. From Property 4,

tp
l1

1 ω−c1 ∈ F (t2)
∗, so Proposition 4.6.6 tells us there is a d ∈ Z such that

tp
l1

1 ω−c1td2 ∈ F ∗.

Since tp
l1

1 ω−c1 /∈ F ∗, we have d 6= 0, so we may write d = kpe, where k is prime to p.

So we get

tp
l1

1 ω−c1tkpe

2 ∈ F ∗.
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Assume first n1 > 0. We have ω−c1tkpe

2 ∈ F (tp
l1

1 )∗ ⊆ F (t1)
∗. Since 1 < pn1 =

o(ωF (t1)
∗) and c1 is prime to p, we have ω−c1 /∈ F (t1)

∗. Thus, tkpe

2 /∈ F (t1)
∗, so pe <

o(t2F (t1)
∗). So we have ω−c1p0

tkpe

2 ∈ F ∗ with p0 < o(ωF (t1)
∗) and pe < o(t2F (t1)

∗).

We may apply Proposition 4.6.9(4) to e1 = 0, e2 = e and obtain 0 − logp(λ
F (t1)
ω,t2 ) =

0 = e− logp(λ
F (t2)
t1,ω ) = e− l2. Thus, e = l2.

Now assume instead that m1 > l1. We have tp
l1

1 tkpe

2 ∈ F (ωc1)∗ = F (ω)∗. Since

pl1 < pm1 = o(t1F (ω)∗), we have tp
l1

1 /∈ F (ω)∗. Thus, tkpe

2 /∈ F (ω)∗, so pe < o(t2F (ω)∗).

So we have tp
l1

1 tkpe

2 ∈ F (ω)∗ with pl1 < o(t1F (ω)∗) and pe < o(t2F (ω)∗). We may

apply Proposition 4.6.9(4) to e1 = l1, e2 = e and obtain l1 − logp(λ
F (ω)
t1,t2 ) = 0 =

e− logp(λ
F (ω)
t2,t1 ) = e− l2. Thus, e = l2.

So tp
l1

1 ω−c1tkpe

2 ∈ F ∗ if and only if e = l2, thus 〈tpl1

1 ω−c1F ∗〉 ∩ 〈t2F ∗〉 = 〈tpl2

2 F ∗〉,
whence tp

l1

1 ω−c1t−c3pl2

2 ∈ F ∗, by definition of c3.

Continuing with the same notation, we have

Theorem 4.7.2. Let L = F (ω) = F (µk) and suppose µpk ∩ F = µpr for some r ≥ 1

(if p = 2, then r ≥ 2). Let K = F (t1, t2) and let ζ ∈ µ∗
pk(K). Set

d =





0 if n1 = 0, m1 = l1;

−c3p
l2 if n1 > 0 or m1 > l1,

ε1 = pl1 − 1 + d(p− 1), ε2 = pm2 − 1, and ε3 = pn2(p− 1 + ε1) + ε2. Then

cor
K/L

(t1, t2; ζ)pk =
(
(−1)ε1tp

l1

1 td2, (−1)ε2tp
m2

2 ; L, ζ
)

pk
. (4.7)

Let θ be any pk-th root of ω and let E be the field determined by F ⊆ E ⊆ L(θ) and

[E : F ] = [L(θ) : L]. Set pl = [L(θ) : L]. Then,

cor
K/F

(t1, t2; ζ)pk =(
(−1)ε1tp

l1

1 td2ω
−c1 , (−1)ε2tep

m2

2 ω−ec2pn2 ; F, ζ
)

pr

⊗F

(
E/F, σ|

E
, (−1)ε3t−c2pl1+n2

1 tc1pm2−dc2pn2

2

)
pk

, (4.8)

where σ ∈ Gal(L(θ)/F ) satisfies σpk−r
(θ) = ζpk−l

θ.
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Proof. Set L = F (ω), and M = L(t2). Recall o(t1F (t2, ω)∗) = pl1 , whence by Propo-

sition 4.6.3 N
K/M

(t1) = (−1)pl1−1tp
l1

1 . Since t2 ∈ M , we may apply the Projection

Formula 4.2.3 to obtain

cor
K/M

(t1, t2; ζ)pk =
(
(N

K/M
(t1), t2; ζ

)
pk

=
(
(−1)pl1−1tp

l1

1 , t2; ζ
)

pk
.

By Property 8 and our definition of d, we have tp
l1

1 ω−c1td2 ∈ F ∗. So tp
l1

1 td2 = f1ω
c1 for

some f1 ∈ F ∗. Set

f ′1 = (−1)ε1f1 = (−1)pl1−1+d(p−1)tp
l1

1 td2ω
−c1 .

Note that ((−1)p−1t2, t2; ζ)pk is split (cf. Proposition 1.2.4.8), so, in Br(M), we have

cor
K/M

(t1, t2; ζ)pk =
(
(−1)pl1−1tp

l1

1 , t2; ζ
)

pk

=
(
(−1)pl1−1tp

l1

1 (−1)(p−1)dtd2, t2; ζ
)

pk

=
(
(−1)pl1−1+d(p−1)tp

l1

1 td2, t2; ζ
)

pk

= (f ′1ω
c1 , t2; M, ζ)pk .

Recall that o(t2F (ω)∗) = pm2 , so by Proposition 4.6.3 N
M/L

(t2) = (−1)pm2−1tp
m2

2 .

Again, f ′1ω
c1 ∈ F (ω)∗, so we apply the Projection Formula 4.2.3 to obtain

cor
M/L

(f ′1ω
c1 , t2; ζ,M)pk =

(
f ′1ω

c1 , N
M/L

(t2); ζ, M
)

pk
=

(
f ′1ω

c1 , (−1)pm2−1tp
m2

2 ; L, ζ
)

pk

Now we use Property 4 to get f2 ∈ F ∗ such that tp
m2

2 = f2ω
c2pn2 . Set

f ′2 = (−1)ε2f2 = (−1)pm2−1tp
m2

2 ω−c2pn2 ,

so that, in Br(L),

cor
K/L

(t1, t2; ζ)pk =
(
f ′1ω

c1 , (−1)pm2−1tp
m2

2 ; L, ζ
)

pk

=
(
f ′1ω

c1 , f ′2ω
c2pn2 ; L, ζ

)
pk

=
(
(−1)ε1tp

l1

1 td2, (−1)ε2tp
m2

2 ; L, ζ
)

pk
.
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This proves (4.7).

Now write

(
f ′1ω

c1 , f ′2ω
c2pn2 ; L, ζ

)
pk = (f ′1, f

′
2; L, ζ)pk ⊗L

(
ω, ωc1c2pn2f ′2

c1f ′1
−c2pn2

; L, ζ
)

pk

= (f ′1, f
′
2; L, ζ)pk ⊗L

(
ω, (−1)c1c2pn2 (p−1)f ′2

c1f ′1
−c2pn2

; L, ζ
)

pk

where the last equality follows since (ω, (−1)p−1ω)pk is split (cf. Proposition 1.2.4.6),

so that (ω, ωc1c2pn2 )pk = (ω, (−1)(p−1)c1c2pn2 )pk . Recall ps = [L : F ] = pk−r. Since

µp ⊆ F , and if p = 2, µ4 ⊆ F , we may apply Corollary 4.2.11 and Proposition 4.2.15

to obtain

cor
K/F

(t1, t2; K, ζ)pk

= cor
L/F

[
(f ′1, f

′
2; L, ζ)pk ⊗L

(
ω, (−1)c1c2pn2(p−1)f ′2

c1f ′1
−c2pn2

; L, ζ
)

pk

]

=
(
f ′1, f

′
2
e
; F, ζps)

pr ⊗F

(
E/F, σ|

E
, (−1)c1c2pn2(p−1)f ′2

c1f ′1
−c2pn2

)
pk

,

where e = 1 unless p = 2 and k > r in which case e = 1 + 2r−1, and E and σ are

described in the statement of the theorem. Note that (−1)e = −1, as e is always odd.

So (
f ′1, f

′
2
e
; F, ζps)

pr =
(
(−1)ε1tp

l1

1 td2ω
−c1 , (−1)ε2tep

m2

2 ω−ec2pn2 ; F, ζps
)

pr
.

Finally, for c prime to p and any integer n ≥ 0, we have (−1)c(pn−1) = (−1)pn−1.

Thus, as c1, c2 is prime to p, we have f ′2
c1 = (−1)ε2tc1pm2

2 ω−c1c2pn2 and f ′1
−c2pn2

=

(−1)pn2ε1t−c2pl1+n2

1 ωc1c2pn2 t−dc2pn2

2 , whence

(−1)c1c2pn2 (p−1)f ′2
c1f ′1

−c2pn2
= (−1)pn2 (p−1)f ′2

c1f ′1
−c2pn2

= (−1)ε3t−c2pl1+n2

1 tc1pm2−dc2pn2

2 .

This completes the proof.

Remark 4.7.3. The formula in Theorem 4.7.2 simplifies greatly if p is odd, as pα − 1

is even for any α ≥ 0 and the factors of −1 disappear.
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Recall that we had assumed µp ⊆ F , or, if p = 2, µ4 ⊆ F . Now suppose that

µp * F or, if p = 2, µ4 * F and let F ′ be the field F (µp) or F (µ4) according to

whether p is odd or 2. By assumption, t1, t2, ω all have p-power order in K∗/F ∗, thus,

by Theorem 4.7.2

cor
K/F ′ (t1, t2)pk = (f ′1, f

′
2; ζ)pr ⊗F ′ (E/F ′, σ, b),

where f ′1, f
′
2, b ∈ F ′ have p-power order over F and E = F (µpl) for some l. The

results from sections 4.5.1 and 4.5.2 describe how to compute cor
F ′/F

(f ′1, f
′
2; ζ)pr and

cor
F ′/F

(E/F ′, σ, b). Thus, we are able to compute cor
N/F

(t1, t2; ζ)pn without any as-

sumptions on the roots of unity present in F .

This generalization allows us to prove the following general result.

Theorem 4.7.4. Suppose F ⊆ N is a finite degree field extension. Suppose µn ⊆ N

for some n. Let s1, s2 ∈ N be elements such that s1, s2 each have finite order

in N∗/F ∗. Then we can compute cor
N/F

(s1, s2; N)n via Theorem 4.7.1 and Theo-

rem 4.7.2.

Proof. Suppose sm1
1 , sm2

2 ∈ F for some m1,m2 ∈ N. Let m1 = pa1
1 . . . pak

k , m2 =

pb1
1 . . . pbk

k , n = pr1
1 . . . prk

k , where we have ai, bi, ci ≥ 0 and pi are all the primes which

divide m1m2n. By primary decomposition, there exist di ∈ Z such that

(s1, s2; N)n
∼= (s1, s2; N)d1

p
r1
1
⊗N · · · ⊗N (s1, s2; N)dk

p
rk
k

.

For i = 1, . . . , k, let xi = pa1
1 . . . p̂ai

i . . . pak
k and yi = pb1

1 . . . p̂bi
i . . . pbk

k . Then, there exist

ci such that c1xiyi ≡ 1 mod pi
ri . Let Ti = (sxi

1 , syi
2 ; N)p

ri
i
, so (sxi

1 )p
ai
i , (syi

2 )p
bi
i ∈ F , and

(s1, s2; N)n
∼= T c1d1

1 ⊗N · · · ⊗N T ckdk
k .

We may use Theorem 4.7.1 and Theorem 4.7.2 to compute cor
L/F

(Ti), hence we can

compute cor
N/F

(s1, s2; N)n.
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4.8 Application to Valuation Theory

We now apply Theorem 4.7.2 to a very specific situation. Let K,F, t1, t2 and

all other constants be as defined in the development of Theorem 4.7.2. Let v be a

valuation on F . We need two basic results first.

Lemma 4.8.1. Fix p ∈ N. Suppose A,B are subgroups of a p-torsion-free abelian

group G. Let ι1 : A/pA → (A + B)/p(A + B) and ι2 : (A ∩ B)/p(A ∩ B) → B/pB

be the obvious maps induced by inclusion. Then ker(ι1) ∼= ker(ι2). In particular, ι1 is

injective if and only if ι2 is injective.

Proof. We first have

ker(ι1) = (A ∩ p(A + B)) /pA = (A ∩ (pA + pB)) /pA = ((A ∩ pB) + pA) /pA.

By the second isomorphism theorem,

((A ∩ pB) + pA) /pA ∼= (A ∩ pB)/(A ∩ pB) ∩ pA = (A ∩ pB)/(pA ∩ pB).

Suppose pa = pb ∈ pA ∩ pB for some a ∈ A and b ∈ B. Then p(b − a) = 0 in G,

whence b = a as G is p torsion-free. So pa = pb ∈ p(A∩B), hence, pA∩pB = p(A∩B)

(the reverse inclusion being obvious). Thus,

(A ∩ pB)/(pA ∩ pB) = (A ∩ pB)/p(A ∩B) = (A ∩B ∩ pB)/p(A ∩B) = ker(ι2).

So ker(ι1) ∼= ker(ι2).

Proposition 4.8.2. Let F be a field with valuation v and let p be a prime with

p 6= char(F ). Let L be a totally ramified extension of F . Suppose t1, . . . , tn ∈ L∗

are elements such that there exists an N ∈ N with tp
N

i ∈ F ∗ for all i. Let K =

F (t1, . . . , tn). Then

1. ΓK = ΓF + 〈v(t1), . . . , v(tn)〉. In particular, o(tiF
∗) = o(v(ti) + ΓF ).

2. ΓK/ΓF
∼= 〈t1F ∗, . . . , tnF ∗〉.
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Remark 4.8.3. The proof of Prop. 4.8.2 is similar in nature to the methods used in

[MW04, §2].

Proof. We first prove part 1. Suppose that part 1 of the proposition holds for n = 1.

Set Kj = F (t1, . . . , tj) and suppose k > 1. Then, L is totally ramified over Kk−1

and, by hypothesis, there exists an N such that tp
N

i ∈ F ∗ ⊆ K∗
k−1. Thus, ΓKk

=

ΓKk−1
+ 〈v(tk)〉, so, by induction, we can show that ΓKk

= ΓF + 〈v(t1), . . . , v(tk)〉.
Therefore, it is enough for part 1 just to consider the case n = 1.

Suppose o(tF ∗) = pm in L∗/F ∗. Set K = F (t). Since L is totally ramified over F ,

the extension F ⊆ K is totally ramified, whence p-pure. Then, by Proposition 4.6.3,

[K : F ] = o(tF ∗) = pm, so |ΓK : ΓF | = [K : F ] = pm. Suppose that o(v(t)+ΓF ) = pl.

Then there exists f ∈ F ∗ such that v(tp
l
f) = 0 and tp

l
f ∈ UK . Now K = F ,

so tplf = y for some y ∈ UF . Let u = tp
l
fy−1 ∈ K; by construction u = 1 and

o(uF ∗) = o(tp
l
F ∗) = pm−l.

Since F (u) is an intermediate extension of F ⊆ K, we have F ⊆ F (u) is p-pure.

Then, by Proposition 4.6.3, [F (u) : F ] = o(uF ∗) = pm−l. Let VF be the valuation

ring of F and let VF [x] denote the polynomial ring in one variable over VF . Then,

VF [u] ∼= VF [x]/(xpm−l − u), since the minimal polynomial of u over F is monic in

VF [x]. Let MF be the (unique) maximal ideal of VF and we have

VF [u]/MF VF [u] ∼= F [x]/(xpm−l − u) = F [x]/(xpm−l − 1).

By assumption p 6= char(F ), so xpm−l − 1 is a separable polynomial. By the Chinese

Remainder Theorem, F [x]/(xpm−l − 1) is a direct sum of fields F1 × · · · × Fk with
∑k

i=1[Fi : F ] = pm−l; note that k is the number of irreducible factors of xpm−l − 1

in F [x]. Each field Fi corresponds to a maximal ideal Mi of VF [u] contracting to

MF VF [u] (note that these also correspond to the irreducible factors of xpm−l − 1 in

F [x]). Let D be the integral closure of VF in F [u]. Since D is integral over F [u],

for each Mi, there is a maximal ideal Ni of D lying over Mi (i.e. Ni ∩ VF [u] = Mi).

Each Ni corresponds to an extension vi of v to F (u) (cf. [End72, Theorem 13.4]).

There are at least k extensions of v to F (u), yet F ⊆ F (u) ⊆ L and F ⊆ L is totally
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ramified. By the fundamental inequality (cf. [End72, Theorem 17.5]), there is only

one extension of v to L, so there is only one extension of v to F (u), i.e. k = 1. Since k

is the number of irreducible factors of xpm−l − 1, this forces m = l (as x− 1 is always

a factor).

Thus, o(v(t)+ΓF ) = o(tF ∗) = pm. So |ΓK : ΓF | = [K : F ] = pm = |(ΓF + 〈v(t)〉) :

ΓF |, whence, ΓK = ΓF + 〈v(t)〉 (as ΓK ⊇ ΓF + 〈v(t)〉). This gives the first part of the

proposition.

Let C = 〈t1F ∗, . . . , tnF ∗〉. Define w : C → ΓK/ΓF by w(aF ∗) = v(a) + ΓF .

Since ΓK = ΓF + 〈v(t1), . . . , v(tn)〉 by part 1., we have w is surjective. Now suppose

w(cF ∗) = ΓF for some cF ∗ ∈ C. Note that F (c) ⊆ F (C) = K is a totally ramified

extension and cpN ∈ F ∗ for some N ∈ N. Thus, by part 1., ΓF (c) = ΓF + 〈v(c)〉 = ΓF .

Thus, F (c) = F , so c ∈ F ∗. Thus, w is an isomorphism, proving 2.

Theorem 4.8.4. Suppose now that K = F (t1, t2) is a totally ramified extension of

F with respect to a valuation v, and suppose that o(tiF
∗) = pmi for mi ∈ N. Suppose

T = (t1, t2; K)pk is TTR over K and let T ′ = cor
K/F

T . Then

T ′ =
(
(−1)ε1tp

l1

1 td2, (−1)ε2tp
m2

2 ; F
)

pk
,

with ε1, ε2, and d as defined in Theorem 4.7.2. Also, T ′ is TTR over F and

ΓT ′ =
1

pk
(〈v(t1), v(t2)〉 ∩ ΓF ) + ΓF ⊆ ΓT .

Proof. Set T ′ = cor
K/F

T . By Theorem 4.7.2,

T ′ =
(
(−1)ε1tp

l1

1 td2, (−1)ε2tp
m2

2 ; F
)

pk
,

where ε1 = pl1 − 1 + d(p− 1), ε2 = pm2 − 1, and

d =





0 if m1 = l1;

−c3p
l2 if m1 > l1.

Note that K is totally ramified over F and µpk ⊆ K, so ω ∈ µpk ⊆ F and n1 = 0 = n2

in the notation of Theorem 4.7.2.
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Let C = 〈t1F ∗, t2F ∗〉 ⊆ K∗/F ∗. Because K is totally ramified over F and

tp
m1

1 , tp
m2

2 ∈ F , we may apply Proposition 4.8.2 and get ΓK = 〈v(t1), v(t2)〉 + ΓF

and C ∼= ΓK/ΓF . In particular, o (v(t2) + ΓF ) = o(t2F
∗) = [F (t2) : F ] = pm2

and 〈v(t1) + ΓF 〉 ∩ 〈v(t2) + ΓF 〉 = 〈pliv(ti) + ΓF 〉, where pl1 = [K : F (t2)] and

pl2 = [K : F (t1)]. By construction, we have v(tp
l1

1 td2) = 0. Let h : Z× Z→ ΓK/ΓF be

the map defined by h(a, b) = av(t1) + bv(t2) + ΓF . Let h1 and h2 be the restriction

of h to the first and second components of Z × Z. Then ker(h2) = 〈pm2〉. Also,

h1(p
l1) = v(tp

l1

1 ) = −v(td2) = h2(−d) generates the intersection of im(h1) and im(h2).

Since pl1 | pm1 (as l1 ≤ m1), Lemma 4.4.1 tells us that ker(h) is generated by (pl1 , d)

and (0, pm2).

Let A = 〈v(t1), v(t2)〉 ⊆ ΓK and let B = ΓF . We saw above that A + B = ΓK ,

which is a torsion-free group. Now T = (t1, t2; K)pk is TTR over K, so v(t1), v(t2) have

independent images in ΓK/pΓK . In other words, the map, ι1 : A/pA → (A+B)/p(A+

B), induced by inclusion, is injective. Then, by Lemma 4.8.1, ι2 : (A∩B)/p(A∩B) →
B/pB is injective. In other words, free generators of A∩ΓF have independent images

in ΓF /pΓF .

Now A = 〈v(t1), v(t2)〉 is torsion-free of rank 2, so there is an isomorphism g :

A → Z×Z (given by av(t1) + bv(t2) 7→ (a, b)). Then ker(hg) = A∩ΓF is torsion-free

with the same rank as A (as A/(A∩ΓF ) is torsion). Since ker(hg) is freely generated

by v(tp
l1

1 td2) and v(tp
m2

2 ), we showed in the preceding paragraph that these elements

have independent images in ΓF /pΓF and T ′ is TTR over F . Finally,

ΓT ′ = ΓF +
1

pk
〈v(tp

l1

1 td2), v(tp
m2

2 )〉 =
1

pk
(A ∩ ΓF ) + ΓF .

Remark 4.8.5. Using Theorem 4.8.4 and Theorem 4.7.1, we can compute

cor
N/F

(t1, t2; N)pn , where N is any field over F containing t1, t2 (where t1, t2 are

as in Theorem 4.8.4). The resulting algebra is TTR over F , and has value group

u
pk (〈v(t1), v(t2)〉 ∩ ΓF ), where k are u are defined by µpn ∩ K = µpk and u = [N :

K(µpn)] (K = F (t1, t2)).
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Theorem 4.8.6. Let L be any totally ramified field extension of a valued field F

and let p be a prime with char(F ) 6= p. Suppose t1, . . . , t2n ∈ L∗ and there exists

an N ∈ N such that tp
N

i ∈ F ∗ for all i. Suppose further that T = (t1, t2; L)pk1 ⊗L

· · · ⊗L (t2n−1, t2n; L)pkn is a TTR division algebra over L and let T ′ = cor
L/F

T . Then

the underlying division algebra T ′ is TTR over F , and furthermore, we may use

Theorem 4.8.4 and Theorem 2.2.1 to compute T ′, ΓT ′, and the canonical pairing CT ′

on T ′.

Proof. Since L is totally ramified over F , we have µp∞∩L = µp∞∩F , so the extension

F ⊆ L is p-pure. By using the projection formula (cf. Theorem 4.2.3), we may assume

that L = F (t1, . . . , t2n). Thus, [L : F ] is a power of p (via Proposition 4.6.3 applied

repeatedly).

Now, T is TTR over L. Let

G = 〈(1/pk1)v(t1), (1/p
k1)v(t2), . . . , (1/p

kn)v(t2n−1), (1/p
kn)v(t2n)〉.

Let T be any armature of T . By [TW87, Prop. 3.5], T ∼= ΓT /ΓL = (G + ΓL)/ΓL via

v, the map induced by v. Thus, (G + ΓL)/ΓL
∼= Zpk1 × Zpk1 × · · · × Zpkn × Zpkn . In

particular,

(〈(1/p)v(t1), (1/p)v(t2), . . . , (1/p)v(t2n−1), (1/p)v(t2n)〉+ ΓL)/ΓL
∼= (Zp)

2n,

whence v(t1), . . . , v(t2n) have Z/pZ-independent images in ΓL/pΓL.

Let C = 〈t1, . . . , t2n〉 ⊆ L∗ and let w : C → ΓL/ΓF be defined by w(c) = v(c)+ΓF .

By Proposition 4.8.2, we have C/(C ∩ F ∗) ∼= ΓL/ΓF via the map induced by v, thus

v(c) ∈ ΓF if and only if c ∈ F ∗. So ker(w) = C ∩ F ∗ and v(C ∩ F ∗) = v(ker(w)) =

v(C) ∩ ΓF .

Since v(t1), . . . , v(t2n) have independent images in ΓL/pΓL, we have v : C → ΓL

is injective and v(C)/pv(C) maps injectively into ΓL/pΓL. By Proposition 4.8.2,

ΓL = v(C)+ΓF . Set A = v(C) and B = ΓF . Now A,B ⊆ ΓL and ΓL is a torsion-free

abelian group, and by the above A/pA maps injectively into (A + B)/p(A + B), so

by Lemma 4.8.1 A ∩ B/p(A ∩ B) maps injectively into B/pB. Note that A ∩ B =
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v(C)∩ ΓF = v(C ∩ F ∗), and v(C ∩ F ∗) ⊆ v(C), the latter group being isomorphic to

C, which is a torsion-free, finitely generated Z-module. Thus, v(C ∩F ∗) is a torsion-

free, finitely generated (hence free) Z-module and any base as a free Z-module has

images which are Z/pZ-independent in ΓF /pΓF . Now v : C ∩ F ∗ → v(C ∩ F ∗) is

an isomorphism since v on C is injective, so any Z-base of C ∩ F ∗ has images which

are Z/pZ-independent in ΓF /pΓF . For i = 1, . . . n, let Ti = (t2i−1, t2i; L)pki . Let

T ′
i = cor

L/F
Ti.

Assume first that p is odd. By Theorem 4.2.3 and Theorem 4.8.4, we have T ′
i =

(s2i−1, s2i; F )pki−ri , where pri = [L : F (t2i−1, t2i)] and s2i−1, s2i ∈ C ∩ F ∗ are as in the

formula given in Theorem 4.8.4. Thus, T ′ ∼ ⊗n
i=1 (s2i−1, s2i; F )pki−ri . Theorem 2.3.2

applies because all the si are in C ∩ F ∗, which we just proved has a generating set

with Zp-independent images in ΓF /pΓF . (Such a generating set would be the ti of

Theorem 2.3.2.) Therefore, we may apply Theorem 2.2.1 to obtain T ′, ΓT ′ and CT ′ .

Suppose instead that p = 2. Then T ′
i = ((−1)ε2i−1s2i−1, (−1)ε2is2i; F )2ki−ri , where

2ri = [L : F (t2i−1, t2i)] and ε2i−1, ε2i, and si ∈ C ∩F ∗ are as defined in Theorem 4.7.2.

Without loss of generality, we may suppose that k1 ≥ k2 ≥ · · · ≥ kn, i.e. the symbols

Ti are ordered in order of decreasing degree. Also, let m ≤ n be the largest index

for which km = k1. Suppose rj > 0 for j = 1, . . . , m, then deg(T ′
i ) = 2ki−ri < 2k1

for all i = 1, . . . , n. Let s = max{2k1−r1 , . . . , 2kn−r1} < 2k1 . Since L is totally

ramified over F and µ2k1 ⊆ L, we have µ2s ⊆ µ2k1 ⊆ F . In addition, −1 is an s-

th power (as s ≤ 2k1−1), so we may remove the factors of −1 in Ti. In other words,

T ′ ∼ ⊗n
i=1 (s2i−1, s2i; F )pki−ri and µ2s ⊆ F . By Remark 2.3.3 following Theorem 2.3.2,

we may apply Theorem 2.2.1 and obtain T ′, ΓT ′ and CT ′ .

It remains to see what happens when rj = 0 for some j = 1, . . . , m. Without

loss of generality, we may suppose that r1 = 0. In other words, [L : F (t1, t2)] = 1,

so L = F (t1, t2). Suppose first that either F (t2) = L or F (t1) = L. By sym-

metry, we need only consider the case F (t1) = L so ΓL = 〈v(t1)〉 + ΓF . Then,

for i = 2, 3, . . . , 2n, we have v(ti) = aiv(t1) + v(fi), where fi ∈ F . If we let

xi = tit
−ai
1 ∈ L, we have v(xi) ∈ ΓF and x2N

i ∈ F ∗ for some N ∈ N (since



116

this is true of ti and t1). Set Ki = F (xi) and apply Proposition 4.8.2 to get

ΓKi
/ΓF

∼= 〈xiF
∗〉, whence xi ∈ F ∗. By assumption, {v(t1), v(t2), . . . , v(t2n)} maps

to an independent set in ΓL/2ΓL. Since we are making a linear change of variables,

we see that v(t1), v(x2), v(x3), . . . , v(x2n) must have independent images in ΓL/2ΓL.

Since 2ΓF ⊆ 2ΓL and v(x2), v(x3), . . . , v(x2n) ∈ ΓF , the set {v(x2), v(x3), . . . , v(x2n)}
is independent in ΓF /2ΓF . For i = 2, 3, . . . , n, we compute in Br(L) (using the symbol

identities given in Prop. 1.2.4.8 and Prop. 1.2.4.1)

Ti = (t2i−1, t2i; L)2ki

= (t
a2i−1

1 x2i−1, t
a2i
1 x2i; L)2ki

= (t1, t
a2i−1a2i

1 x
a2i−1

2i ; L)2ki ⊗L (x2i−1, t
a2i
1 ; L)2ki ⊗L (x2i−1, x2i; L)2ki

=
(
t1, (−1)a2i−1a2ix

a2i−1

2i x−a2i
2i−1; L

)
2ki
⊗L (x2i−1, x2i; L)2ki .

Also, we have T1 = (t1, t2; L)2k1 = (t1, t
a2
1 x2; L)2k1 = (t1, (−1)a2x2; L)2k1 . Let ε =

a2 +
∑n

i=2(a2i−1a2i2
k1−ki) and let x′2 = (−1)εx2

∏n
i=2 x

2k1−kia2i−1

2i x−2k1−kia2i
2i−1 . Then,

using k1 = max{k1, . . . , kn}, we have

T = T1 ⊗L · · · ⊗L Tn

= (t1, (−1)a2x2; L)2k1 ⊗L

n⊗
i=2

( (
t1, (−1)a2i−1a2ix

a2i−1

2i x−a2i
2i−1; L

)
2ki
⊗L (x2i−1, x2i; L)2ki

)

=

(
t1, (−1)εx2

n∏
i=2

x
2k1−kia2i−1

2i x−2k1−kia2i
2i−1 ; L

)

2k1

⊗L

n⊗
i=2

(x2i−1, x2i; L)2ki

= (t1, x
′
2; L)2k1 ⊗L

n⊗
i=2

(x2i−1, x2i; L)2ki

Recall that C = 〈t1, . . . t2n〉 = 〈t1, x2, x3, . . . , x2n〉. Since t1, x
′
2, x3, . . . , x2n is obtained

from t1, x2, x3, . . . , x2n by a linear change of variables, C = 〈t1, x′2, x3, . . . , x2n〉. Now

C/(C∩F ∗) is torsion, since the ti all have p-power order over F and xi ∈ C = 〈{ti}2n
i=1〉.

Thus, C ∩ F ∗ is free a Z-module with rank equal to the rank of C, namely, 2n. Let

o(t1F
∗) = 2m1 and set x1 = t2

m1

1 . Then x1, x
′
2, x3, . . . , x2n generate C∩F ∗; since C∩F ∗

has rank 2n, these generators form a free Z-module base for C ∩ F ∗. Consequently,
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x1, x
′
2, x3, . . . , x2n have Z/2Z-independent images in ΓF /2ΓF by Lemma 4.8.1 with

A = C and B = F ∗ and the fact that v : C ∩ F ∗ → v(C ∩ F ∗) is an isomorphism.

Using either Proposition 4.8.4 or Theorem 4.2.3, we have

cor
L/F

(T ) =
(
(−1)2m−1−1x1, x

′
2; F

)
2k1
⊗F

n⊗
i=2

(x2i−1, x2i; F )2ki−m1 ,

which is TTR over F because the slots have independent images in ΓF /2ΓF .

Now suppose L 6= F (t1) and L 6= F (t2). Replace F by F ′ = F (t2), so L =

F ′(t1). The preceding calculation shows that cor
L/F ′ (T ) is TTR over F ′. Note that

±x1, x2, . . . , x2n all have some 2N -power in F for some N ∈ N, so the same argument

applies for computing T ′ = cor
F ′/F

(cor
L/F ′ (T )). Thus, T ′ is TTR over F .

Remark 4.8.7. Hwang proved the following result in [Hwa95b, Th. 13] which we will

obtain as a corollary of Theorem 4.8.6.

Corollary 4.8.8. Suppose that F is Henselian and let L be any finite-degree TRRT

extension of F . Let T be a TTR division algebra over L and let T ′ = cor
L/F

T . Then

T ′ is TTR over F .

Proof. We will first describe how to rewrite T as a tensor product of symbol algebras

whose slots have finite order modulo F ∗. Since L is TRRT over F , there exist t1, . . . , tn

radical over F such that ΓL = ΓF + 〈v(t1), . . . , v(tn)〉. Let C = 〈t1, . . . , tn〉 ⊆ L∗.

If a ∈ L, then v(a) = v(fc) for some f ∈ F ∗ and c ∈ C. Then af−1c−1 ∈ UL.

Because L is totally ramified over F , we have F = L. Thus, for some u ∈ UF , we

have af−1c−1 = u. Let x = u−1af−1c−1 ∈ L∗. Since F is Henselian and x is a 1-unit,

x ∈ L∗i for all i ∈ N with i prime to char(F ). Note that ax−1 = ufc and ufc ∈ L∗

has finite order modulo F ∗.

Now suppose that T is TTR over L. By Theorem 1.4.5 T ∼= ⊗k
i=1 (αi, βi; L)ni

,

for some αi, βi ∈ L and ni prime to char(F ). The previous paragraph showed that

for each i, there exists 1-units yi, zi ∈ L∗ such that αiyi and βizi have finite order

modulo F ∗. Since yi, zi ∈ L∗ni , by Prop. 1.2.4.4, we have T ∼= ⊗n
i=1 (αiyi, βizi; L)ni

.

Let p1, . . . , pm be all the primes dividing deg(T ) (so pi 6= char(F )). By applying the
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primary decomposition in the same manner as in the proof of Theorem 4.7.4, we can

write T = T1 ⊗L · · · ⊗L Tm, where each Ti is TTR over L and has degree a power

of pi. Furthermore, each Ti is similar to a tensor product of symbols whose slots

have pN
i -th powers in F . Thus, we may apply Theorem 4.8.6 to each Ti to see that

T ′
i = cor

L/F
Ti is TTR over F . Since T ′

i are TTR algebras of relative prime degrees,

we have T ′ = cor
L/F

T = T ′
1 ⊗F · · · ⊗F T ′

m is TTR over F .
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4.9 Corestriction Over Generalized Local Fields

For the remainder of this section, let F be a GLF. Suppose L ⊇ F is a tame

finite degree field extension. We know that there is a field E such that E ⊇ F is

unramified and L ⊇ E is tame totally ramified. Then, by [Sch50, p.64, Th. 3],

L ⊇ E is totally ramified of radical type (TRRT), i.e. there exist n1, . . . , nm with

n1 . . . nm = n = [L : E] and t1, . . . tm ∈ E such that L = E( n1
√

t1, . . . ,
nm
√

tm) and

nv(ti)/ni + nΓE are independent of order ni in ΓE/nΓE.

If D ∈ D(K), then, by Cor. 2.1.2 D ∼ N ⊗L T with N NSR over F and T is TTR

over F . It suffices to show how to compute cor
L/F

N and cor
L/F

T where L is either

unramified or TRRT over F . We will let cD stand for the underlying division algebra

of cor
L/F

D.

4.9.1 L ⊇ F Is Unramified

Proposition 4.9.1. Suppose L is unramified over F and N is NSR over L. Then

cN is NSR over F with [N : L] = [cN : F ] and ΓcN = ΓN .

Remark 4.9.2. Proposition 4.9.1 verifies some of the information provided in [Hwa95a,

Thm. 2.4]. Hwang proved that cN is NSR and has value group contained in ΓN

assuming only F Henselian and L/F unramified. In the GLF case, more is true; in

fact the value group stays the same.

Proof. By Prop. 2.1.3, N ∼= (M/L, τ, b), where M/L is unramified, τ generates

Gal(M/L) and b ∈ L∗. Since L is unramified over F , we have ΓF = ΓL, so b = ua,

where u ∈ UL and a ∈ F ∗. By Prop. 2.1.1, (M/L, τ, u) is split, so N ∼= (M/L, τ, a).

By Prop. 2.1.3, M is cyclic over F , whence we use Lemma 4.2.14 to obtain

cN = cor
L/F

(M/L, τ, a) = (E/F, σ|
E
, a),

where σ is a generator of Gal(M/F ) satisfying σ[L:F ] = τ and E is determined by

F ⊆ E ⊆ M and [E : F ] = [M : L]. Thus, cN is NSR, ΓcN = ΓN (both are generated
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by v(b)/[M : L] = v(a)/[E : F ] over ΓF = ΓL), and [N : L] = [M : L]2 = [E : F ]2 =

[cN : F ].

Proposition 4.9.3. Suppose L is unramified over F . Let T be a TTR division

algebra over L with T ∼= T1 ⊗L · · · ⊗L Tk where each Ti is a symbol of degree ni.

Then cT ∼ N ⊗F T ′ where N is NSR over F and T ′ is TTR over F . Suppose

N
L/F

(µni
) = µdi

for some di | ni. Then, ΓcT = ΓN + ΓT ′ ⊆ ΓT and

ΓT ′ =
k∑

i=1

ni

di
[L : F (µni

)]ΓTi
.

Furthermore, [cT : F ] = (ind N)/[(ΓN ∩ ΓT ) : ΓF ].

Proof. For each i, there exist αi, βi ∈ L such that Ti = (αi, βi; L)ni
. Now ΓL = ΓF

as L ⊇ F is unramified. Thus, there exist xi, yi ∈ UL and ai, bi ∈ F such that

Ti = (xiai, yibi; L)ni
. So, we may write T ∼ A⊗L B, where

A = (a1, b1; L)n1
⊗L · · · ⊗L (ak, bk; L)nk

,

and

B =
k⊗

i=1

(
(xi, yibi; L)ni

⊗L (ai, yi; L)ni

)
.

The underlying division algebra of B is NSR, and can be computed via Lemma 3.1.1,

whence Prop. 4.9.1 gives us that N = cor
L/F

(B) is NSR and ΓN = ΓB ⊆ ΓT . Also,

A is TTR over L. Let T ′
i = cor

L/F
(ai, bi; L)ni

. Since ai, bi ∈ F ∗, we may apply

Theorem 4.2.3 followed by Theorem 4.2.4 and Remark 4.2.5 to get

T ′
i = cor

L/F
(ai, bi; L)ni

= cor
F (µni )/F

(ai, bi; L)
[L:F (µni )]

di

= (ai, b
ci
i ; L)

[L:F (µni )]

di
,

where N
L/F

(µni
) = µdi

and ci ∈ Z is prime to di (ci is described in Remark 4.2.5). So

ΓT ′i =
[L : F (µni

)]

di

〈v(ai), civ(bi)〉+ ΓF

=
ni

di

[L : F (µni
)]

(
1

ni

〈v(ai), v(bi)〉
)

+ ΓF

=
ni

di

[L : F (µni
)]ΓTi

+ ΓF .
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Let T ′ = T ′
1 ⊗F · · · ⊗F T ′

k = cor
L/F

A. Let n = n1 . . . nk. Note that a
n/n1

1 , b
n/n1

1 , . . . ,

a
n/nk

k , b
n/nk

k have independent images in ΓL/nΓL of orders n1, n1, . . . , nk, nk. Thus, the

same condition holds for a
d/d1

1 , b
c1d/d1

1 , . . . , a
d/dk

k , b
ckd/dk

k in ΓF /dΓF , whence T ′ is TTR

over F with value group

ΓT ′ =
k∑

i=1

ni

di
[L : F (µni

)]ΓTi
+ ΓF .

Finally, the fact about cT comes from Corollary 2.1.5 since N ⊗F T ′ gives a decom-

position of cT into NSR and TTR parts.

Remark 4.9.4. Given D ∈ D(L), we can find N, T such that D ∼ N ⊗L T . Then,

using Prop. 4.9.1 and Prop. 4.9.3, we can compute cD ∼ cN ⊗F
cT ∼ N ′ ⊗F T ′,

where N ′ is NSR over F and T ′ is TTR over F . Thus, by the remarks following

Prop. 2.1.4, we can compute [cD : F ], [cD : F ], and ΓcD. Also, Theorem 2.4.1 gives

cD explicitly.

Remark 4.9.5. Now suppose F is any Henselian valued field. For L unramified over F

and T TTR over F , Hwang gave bounds for ΓcT in [Hwa95a, Thm. 4.4]. The formula

ΓcT = ΓN +ΓT ′ in Prop. 4.9.3 is still valid (with ΓT ′ defined in Prop. 4.9.3), although

we will not give a proof of this. In fact, we may still decompose T ∼ A⊗L B as in the

proof and cT ∼ N ⊗F T ′ where N = cB is NSR and T = cA is TTR. However, there

is no exact formula for ΓN , so knowing ΓcT = ΓN + ΓT ′ is, at best, a bound for ΓcT .

The residue information given in Prop. 4.9.3 is only valid when cT is a field, which is

always the case when F is a GLF.

4.9.2 L ⊇ F is TRRT

Suppose L is TRRT over F . Then, there are n1, . . . , nm ∈ N with n1 . . . nm =

n = [L : F ] and t1, . . . , tm ∈ F such that L = F ( n1
√

t1, . . . ,
nm
√

tm) and nv(ti)/ni are

independent of order ni in ΓF /nΓF .

Proposition 4.9.6. Suppose N is NSR over L. Let N = (M/L, σ, b)k where M is

an unramified extension of L and b ∈ L∗ has value which has order k in ΓL/kΓL. Let
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l = o(v(b) + ΓF ). Then, cN is NSR over F with ind(cN) = [cN : F ] = k/gcd(k, n/l)

and ΓcN = nΓN + ΓF .

Proof. Suppose v(bl) = v(a) for some a ∈ F ∗. Then bl = au for some u ∈ UL. By

Prop. 2.1.3, there are fields E and M ′ with E cyclic unramified over F and M ′ cyclic

unramified over L such that [E : F ] = kl and [M ′ : M ] = l. Thus, by Prop. 1.2.6,

N = (M/L, σ, b)k ∼ (M ′/L, σ, bl)kl = (M ′/L, σ, au)kl,

where σ is any extension of σ to M ′ such that σ generates Gal(M ′/L). Then, as L

is a GLF, by Prop. 2.1.1, N ∼ (M ′/L, σ, a)kl. Now, E is unramified over F and L is

totally ramified over F , so E and L are linearly disjoint over F . Thus, E⊗F L = EL

is unramified over L and [EL : L] = [E : F ] = kl, whence, by Prop. 2.1.3, EL = M ′.

Then, by Prop. 1.2.5,

res
L/F

(E/F, σ|
E
, a)kl = (EL/L, σ, a)kl = (M ′/L, σ, a)kl.

So,
cN = cor

L/F
res

L/F
(E/F, σ|

E
, a)kl = (E/F, σ|

E
, a)n

kl.

Then, by a character calculation (cf. Lemma 3.1.1),

ΓcN = 〈(n/(kl)v(a)〉+ ΓF = 〈(n/k)v(b)〉+ ΓF = nΓN + ΓF ,

since nΓL ⊆ ΓF and ΓN = 〈v(b)/k〉+ ΓL.

Now set A = 〈v(b)〉 and B = ΓF . Then A/kA → (A + B)/k(A + B) is injective

since v(b) has order k in ΓL/kΓL. By Lemma 4.8.1, the map (A ∩ B)/k(A ∩ B) →
B/kB is injective. Now, A ∩ B = 〈v(a)〉, so, v(a) has order k in ΓF /kΓF . Let

d = gcd(k, n/l) and let E ′ be the unique cyclic unramified extension of F of degree

k/d. Then, cN ∼ (E/F, σ|
E
, a)n

kl ∼ (E ′/F, σ|
E′ , a)

n/ld
k/d . The last algebra is an NSR

division algebra, whence ind(cN) = [cN : F ] = k/gcd(k, n/l).

Proposition 4.9.7. Suppose T is TTR over L. Then we can compute cT , ΓcT , and

CcT using Theorem 4.8.6.

Proof. The result follows immediately from Theorem 4.8.6 and Remark 4.8.8.
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