UNIVERSITY OF CALIFORNIA, SAN DIEGO

Braid Representations and Tensor Categories

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy
in
Mathematics
by
Imre Tuba

Committee in charge:
Professor Hans Wenzl, Chair
Professor Benjamin Grinstein
Professor Mark Haiman
Professor Victor Vianu
Professor Nolan Wallach

Copyright
Imre Tuba, 2000
All rights reserved.

The dissertation of Imre Tuba is approved, and it is acceptable in quality and form for publication on microfilm:
\qquad
\qquad
\qquad
\qquad
\longrightarrow Chair

University of California, San Diego

2000

To Kip

Minden, minden hogy elmarad
S hogy elhagyunk mindent, mindent Előbb-utóbb.
(Ady Endre)

TABLE OF CONTENTS

Signature Page iii
Dedication iv
Table of Contents v
List of Figures vi
Acknowledgements vii
Vita and Publications viii
Abstract of the Dissertation ix
1 Simple Representations of Dimension $d \leq 5$ 1
1.1 Introduction 1
1.2 A Particularly Nice Example 2
1.3 Preliminary Results 4
1.4 The Matrices 8
1.5 Characterization of All Simple Representations 16
2 Unitary Representations 20
2.1 Introduction 20
2.2 An Involution of the Image of B_{3} 21
2.3 An Invariant Inner Product 26
2.4 Examples 28
3 Tensor Categories 31
3.1 Definitions 31
3.2 An Application of Braid Representations 33
Bibliography 37

LIST OF FIGURES

2.1 Region of unitarizability for $d=3$. 30

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Hans Wenzl for always being available and never too busy to talk to me. I learned some of the greatest algebra I know from Lance Small. Adrian Wadsworth taught me more of it and always had the answer to my questions. It was Barry Mazur and Keith Conrad whose help with my undergraduate thesis first raised my interest in the field of algebra.

I owe much gratitude to my family for their unwavering confidence in me, for letting me make my own choices and pursue what I liked.

I want to thank E.J. Corey, Kip Sumner, Mrs. Zsigmond Nagy, László Góbor, Vilmos Kormos, Kálmán Szabó, Mrs. Sándor Sárvári, and countless other teachers of mine in the course of 23 years as a student for sharing their knowledge and enthusiasm for knowledge with me.

I am grateful to Christian Gromoll, Olav Richter, Anne Shepler, Arif Dowla, Peter Perkins, Rino Sanchez, Eric Rowell, Ben Raphael, Rosa Orellana, Tai Melcher, Jie Zhou, Xingming Yu, Attila Szűcs, Vlada Limic, and Carl Landau for their friendship during the up and down years of graduate school. There had of course been friends at other times and places whose support-if less direct-was nevertheless important in my reaching this goal. I am afraid this section would grow longer than the body of my thesis if I tried to list them all.

I thank Wilson Cheung, Joe Keefe, Daryl Eisner and other members-past and present-of our computing support staff for keeping our computers tidy and running.

The text of Chapter 1 is similar to the presentation in [11], while Chapter 2 closely follows [10].

VITA

January 5, 1971
1995
1995-2000

2000

Born, Salgótarján, Hungary
B.A. magna cum laude, Harvard University

Teaching assistant, Department of Mathematics, University of California, San Diego

Ph.D., University of California San Diego

PUBLICATIONS

(with Hans Wenzl) Representations of the Braid Group B_{3} and of $S L(2, \mathbb{Z})$. To appear Pacific J. Math. Preprint posted at http://euclid.ucsd.edu/~ituba and http://xxx.lanl.gov.

Low-Dimensional Unitary Representations of B_{3}. To appear Proc. Amer. Math. Soc. Preprint posted at http://euclid.ucsd.edu/~ituba and http://xxx.lanl.gov.

ABSTRACT OF THE DISSERTATION

Braid Representations and Tensor Categories

by
Imre Tuba
Doctor of Philosophy in Mathematics
University of California San Diego, 2000
Professor Hans Wenzl, Chair

We classify all simple representations of the braid group B_{3} with dimension $d \leq 5$ over any algebraically closed field. In particular, we prove that a simple d-dimensional representation $\rho: B_{3} \rightarrow G L(V)$ is determined up to isomorphism by the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ of the image of the generators σ_{1} and σ_{2} for $d=2,3$ and a choice of a $\delta=\sqrt{\operatorname{det} \rho\left(\sigma_{1}\right)}$ for $d=4$ or a choice of $\delta=\sqrt[5]{\operatorname{det} \rho\left(\sigma_{1}\right)}$ for $d=5$. We also showed that such representations exist whenever the eigenvalues and δ are not zeros of certain explicitly given rational functions $Q_{i j}^{(d)}$. In this case, we construct the matrices via which the generators act on V.

We go on to give a necessary and sufficient condition for the unitarizability of simple representations of B_{3} on complex vector spaces of dimension $d \leq 5$. We show that a simple representation $\rho: B_{3} \rightarrow \mathrm{GL}(V)$ (for $\operatorname{dim} V \leq 5$) is unitarizable if and only if the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ of $\rho\left(\sigma_{1}\right)$ are distinct, satisfy $\left|\lambda_{i}\right|=1$ and $\mu_{i 1}^{(d)}>0$ for $2 \leq i \leq d$, where the $\mu_{i 1}^{(d)}$ are functions of the eigenvalues, related to $Q_{i j}^{(d)}$.

Finally, we describe how these results can be used to compute categorical dimensions of objects in braided tensor categories and give an example of such a computation.

Chapter 1

Simple Representations of Dimension $d \leq 5$

1.1 Introduction

In this chapter, we will characterize all simple representations of B_{3} of dimension $d \leq 5$. We will mostly follow the argument presented in [11] with some variations.

Suppose $\rho: B_{3} \rightarrow \mathrm{GL}(V)$ is such a simple representation of B_{3} on the d dimensional vector space V over an algebraically closed field F of any characteristic. Denote the images of σ_{1} and σ_{2} by A and B. In general, we will talk about V as a B_{3}-module, where B_{3} acts on V via ρ.

Then A and B are invertible $d \times d$ matrices with entries in F. They satisfy $A B A=B A B$ and

Proposition 1.1.

a) $B=(A B) A(A B)^{-1}=(A B A) A(A B A)^{-1}$ and $A=(B A) A(B A)^{-1}=$ $(A B A) A(A B A)^{-1}$.
b) The eigenvalues of A and B are the same.
c) If $\left\{a_{1}, a_{2}, \ldots, a_{d}\right\}$ is a basis of eigenvectors of A, then $\left\{b_{1}, b_{2}, \ldots, b_{d}\right\}$ with $b_{i}=$ $(A B A) a_{i}$ is a basis of eigenvectors of B.
d) $(A B A)^{2}=(A B)^{3}=\delta I$ where $\delta=\operatorname{det}(A)^{6 / d}$. Hence $(A B A)^{-1}=\delta^{-1}(A B A)$.
e) The map $\rho^{\prime}: B_{3} \rightarrow \mathrm{GL}(V)$ defined by $\rho^{\prime}\left(\sigma_{1}\right)=\delta^{-1 / 6} A$ and $\rho^{\prime}\left(\sigma_{2}\right)=\delta^{-1 / 6} B$ is still a representation of B_{3} for any choice of the sixth root. It has the property $\operatorname{det}\left(\rho^{\prime}\left(\sigma_{i}\right)\right)=1$ for $i=1,2$.

Proof: (a) follows from the corresponding relations in B_{3}. (b) and (c) follow from (a). Note that A and B generate all of $M_{d}(F)$ as ρ is assumed to be a simple representation. We know $\left(\sigma_{1} \sigma_{2}\right)^{3}$ is in the center of B_{3}, so $(A B)^{3}$ is in the center of $M_{d}(F)$, hence it is a scalar matrix δI. Observe that $\delta^{d}=\operatorname{det}(\delta I)=\operatorname{det}(A B)^{3}=\operatorname{det}(A)^{6}$ by (a). This proves (d). (e) is obvious.

1.2 A Particularly Nice Example

The key observation, motivated by the following example that will enable us to compute A and B is that we can assume them to be in a special form.

Example 1.2. Only in this example, we will index the basis starting with 0 and we will redefine $\bar{i}=d-i$. So let V be a $d+1$-dimensional vector space with $\left\{v_{0}, v_{1}, \ldots, v_{d}\right\}$ as a basis and $\lambda_{i} \lambda_{\bar{i}}=\gamma \neq 0$ for some fixed $\gamma \in F$ and $0 \leq i \leq d$.

$$
A=\left((\bar{i} \bar{j}) \lambda_{j}\right)_{i j}=\left(\begin{array}{ccccc}
\lambda_{0} & \binom{d}{d-1} \lambda_{1} & \binom{d}{d-2} \lambda_{2} & \cdots & \lambda_{d} \\
& \lambda_{1} & \binom{d-1}{d-2} \lambda_{2} & \cdots & \lambda_{d} \\
& & \lambda_{2} & & \vdots \\
& & & \ddots & \vdots \\
& & & & \lambda_{d}
\end{array}\right)
$$

and

$$
B=\left((-1)^{i+j}\binom{i}{j} \lambda_{\bar{i}}\right)_{i j}=\left(\begin{array}{ccccc}
\lambda_{d} & & & & \\
-\lambda_{d-1} & \lambda_{d-1} & & & \\
\vdots & & \ddots & & \\
(-1)^{d-1} \lambda_{1} & (-1)^{d}\binom{d-1}{1} \lambda_{1} & \cdots & \lambda_{1} & \\
(-1)^{d} \lambda_{0} & (-1)^{d+1}\binom{d}{1} \lambda_{0} & (-1)^{d+2}\binom{d}{2} \lambda_{0} & \cdots & \lambda_{0}
\end{array}\right)
$$

satisfy $A B A=B A B$, and hence yield a representation of B_{3}.

Proof: By direct computation and Lemma 1.3,

$$
(A B)_{i j}=\sum_{k=0}^{d}(-1)^{k+j}\binom{\bar{i}}{\bar{k}} \lambda_{k}\binom{k}{j} \lambda_{\bar{k}}=(-1)^{d+j}\binom{i}{\bar{j}} \gamma .
$$

This shows that $A B$ is lower skew-diagonal, that is $(A B)_{i j}=0$ for $i<\bar{j}$.
Let

$$
S^{\prime}=\left(\begin{array}{llll}
& & & \lambda_{d} \\
& & -\lambda_{d-1} & \\
& \lambda_{d-2} & & \\
& & \\
(-1)^{d} \lambda_{0} & & &
\end{array}\right) .
$$

Note $S^{\prime 2}=(-1)^{d} \gamma I$, hence

$$
S^{\prime-1}=(-1)^{d} \gamma^{-1} S=\left(\begin{array}{llll}
& & & (-1)^{d} \lambda_{0}^{-1} \\
& & & \\
& & \lambda_{d-2}^{-1} & \\
\lambda_{d}^{-1} & & & \\
& & &
\end{array}\right)
$$

By the above, $\lambda_{\bar{i}}(A B)_{i \bar{i}}=(-1)^{i} \gamma \lambda_{\bar{i}}=\gamma S_{i \bar{i}}^{\prime}$. Let $S=\gamma S^{\prime}$.
Also,

$$
\begin{gathered}
\left(S A S^{-1}\right)_{i j}=S^{\prime} A S^{\prime-1}=(-1)^{\bar{i}} \lambda_{\bar{i}} A_{\overline{i j}}(-1)^{\bar{j}} \lambda_{\bar{j}}^{-1}= \\
(-1)^{i+j} \frac{\lambda_{\bar{i}}}{\lambda_{\bar{j}}}\binom{i}{j} \lambda_{\bar{j}}=B_{i j}
\end{gathered}
$$

Thus A, B and S satisfy the conditions of Lemma 1.11.
Lemma 1.3. For $0 \leq i, j \leq d$,

$$
\sum_{k=0}^{d}(-1)^{k}\binom{d-i}{k}\binom{d-k}{j}=\binom{i}{d-j} .
$$

Proof: Expand

$$
(1+x)^{i}((1+x)+y)^{n-i}=(1+x)^{i} \sum_{k=0}^{n-i}\binom{n-i}{k} y^{k}(1+x)^{n-i-k}=
$$

$$
\sum_{k=0}^{n-i}\binom{n-i}{k} y^{k}(1+x)^{n-k}=\sum_{k=0}^{n-i} \sum_{l=0}^{n-k}\binom{n-i}{k}\binom{n-k}{l} y^{k} x^{l} .
$$

Now substitute $y=-1$:

$$
(1+x)^{i} x^{n-i}=\sum_{k=0}^{n-i} \sum_{l=0}^{n-k}\binom{n-i}{k}\binom{n-k}{l}(-1)^{k} x^{l}
$$

Also

$$
(1+x)^{i} x^{n-i}=\sum_{k=0}^{i}\binom{i}{k} x^{i-k} x^{n-i}=\sum_{k=0}^{i}\binom{i}{k} x^{n-k} .
$$

Now equating coefficients of x^{j} results in the desired identity.

1.3 Preliminary Results

Definition 1.4. We will say that A and B are in ordered triangular form if A is upper triangular with the $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ down its diagonal, while B is lower triangular with $\lambda_{d}, \lambda_{d-1}, \ldots, \lambda_{1}$ down its diagonal.

We will eventually prove that A and B can be assumed to be in ordered triangular form without any loss of generality. But first, we need a few auxiliary results.

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ be the (not necessarily distinct) eigenvalues of A with corresponding (generalized) eigenvectors $a_{1}, a_{2}, \ldots, a_{d}$. By Proposition 1.1, they are also the eigenvalues of B corresponding to the (generalized) eigenvectors $b_{i}=A B A a_{i}$.

Lemma 1.5.

a) $\rho\left(B_{3}\right)=\langle A, B\rangle=\langle A, A B\rangle=\langle B, A B\rangle=\langle A, A B A\rangle=\langle B, A B A\rangle=\langle A B, A B A\rangle$
b) If I is any subset of $\{1,2, \ldots, d\}$, then $W=\operatorname{span}\left\{a_{i} \mid i \in I\right\} \cap \operatorname{span}\left\{b_{i} \mid i \in I\right\}$ is invariant under $\rho\left(B_{3}\right)$.

Proof: (a) is an obvious consequence of the analogous statements for B_{3}. For (b), note that W is invariant under $\langle A, B\rangle$.

Lemma 1.6. Let V be a simple B_{3}-module of dimension $d \geq 3$ and $V_{1}=\operatorname{span}\left\{a_{1}, \ldots, a_{d-1}\right\}$, $V_{2}=V_{1} \cap(A B A) V_{1}$ and $V_{3}=V_{1} \cap(A B) V_{1} \cap(A B)^{2} V_{1}$. Then V_{2} is $A B A$-invariant and V_{3} is $A B$-invariant. Moreover $V_{3} \subsetneq V_{2} \subsetneq V_{1} \subsetneq V$ and $\operatorname{codim} V_{1}=1, \operatorname{codim} V_{2}=2$, and codim $V_{3}=3$.

Proof: The invariance statements are obvious. Note that $(A B A) a_{i}=\lambda_{i}(A B) a_{i}$, so $(A B A) V_{1}=(A B) V_{1}$. Hence $V_{3} \subseteq V_{1} \cap(A B) V_{1}=V_{2}$.

Note that codim $V_{2} \leq 2$ as V_{2} is the intersection of two subspaces of codimension 1. If $W=V_{2}$, then $W=\operatorname{span}\left\{b_{1}, \ldots, b_{d-1}\right\}$. But $\operatorname{dim} V_{1}=d-1$, so V_{1} would be a proper invariant subspace contradicting simplicity by Lemma 1.5. So $V_{2} \subsetneq V_{1}$ and $\operatorname{codim} V_{2}=2$.

By the same logic, $\operatorname{codim} V_{3} \leq 3$. If $V_{2}=V_{3}$, then V_{2} is a proper subspace invariant under $\langle A B A, A B\rangle=\rho\left(B_{3}\right)$, which contradicts simplicity. Hence $V_{3} \subsetneq V_{2}$ and $\operatorname{codim} V_{3}=3$.

Proposition 1.7. If V is a simple B_{3} module of dimension $d \leq 5$ and W is a proper subspace of V invariant under A or B then W cannot contain both a_{i} and $b_{i}=(A B A) a_{i}$.

Proof: If W is a proper A-invariant subspace that contains a_{i} and b_{i}, then $(A B A) W$ is a proper B-invariant subspace that contains $a_{i}=\delta^{-1} A B A b_{i}$ and $b_{i}=A B A a_{i}$. So we may assume without loss of generality that W is B-invariant by replacing it by $(A B A) W$ if necessary.

Suppose W is B-invariant and does contain both a_{i} and b_{i}. We are free to reindex the eigenvalues if necessary, so we may assume without loss of generality that $i=1$. Let $d^{\prime}=\operatorname{dim} W$. Extend b_{1} to a basis of generalized eigenvectors $\left\langle b_{1}, \ldots, b_{d^{\prime}}\right\rangle$ of B on W, then extend to an eigenbasis of V. Let $a_{i}=(A B A)^{-1} b_{i}=\delta^{-1}(A B A) b_{i}$. Let $V_{1}=\operatorname{span}\left\{b_{1}, \ldots, b_{d-1}\right\}$ and V_{2}, V_{3} as in Lemma 1.6.
$a_{1} \in W \subseteq V_{1}$. Hence $a_{1} \in V_{2}=V_{1} \cap \operatorname{span}\left\{a_{1}, \ldots, a_{d-1}\right\}$. As V_{2} is $A B A$ invariant, $b_{1}=(A B A) a_{1} \in V_{2}$. In particular $V_{2} \neq 0$.

By Lemma 1.6, $\operatorname{dim} V_{2}=d-2$, which immediately leads to contradiction if $d=2$.

If $d=3$, then $\operatorname{dim} V_{2}=1$, so $V_{2}=\operatorname{span}\left\{a_{1}\right\}=\operatorname{span}\left\{b_{1}\right\}$, which contradicts Lemma 1.5.

If $d=4, \operatorname{dim} V_{2}=2$ and $\operatorname{dim} V_{3}=1$. If $a_{1} \in V_{3}$, then $V_{3}=\operatorname{span}\left\{a_{1}\right\}$, so V_{3} is invariant under $\langle A, A B\rangle=\rho\left(B_{3}\right)$, which contradicts simplicity. So $b_{1} \in V_{2}=$ span $\left\{a_{1}\right\}+V_{3}$, that is $b_{1}=\alpha a_{1}+w$ for some $\alpha \in F$ and $w \in V_{3}$. Then

$$
(A B) b_{1}=A B\left(\alpha a_{1}+w\right)=\alpha(A B A) A^{-1} a_{1}+(A B) w=\lambda_{1}^{-1} \alpha b_{1}+(A B) w \in V_{2}
$$

Hence V_{2} is invariant under $\langle A B A, A B\rangle=\rho\left(B_{3}\right)$, which is again a contradiction.

If $d=5$, the argument is similar. Now $\operatorname{dim} V_{2}=3$ and $\operatorname{dim} V_{3}=2$. If $a_{1} \in V_{3}$, then $b_{1}=(A B A) a_{1}=\lambda_{1}(A B) a_{1} \in V_{3}$ too. Hence $V_{3}=\operatorname{span}\left\{a_{1}, b_{1}\right\}$, so V_{3} is invariant under $\langle A B, A B A\rangle=\rho\left(B_{3}\right)$ contradicting simplicity. Therefore $V_{2}=\operatorname{span}\left\{a_{1}\right\}+V_{3}=$ span $\left\{b_{1}\right\}+V_{3}$. Hence $b_{1}=\alpha a_{1}+w$ for some $\alpha \in F$ and $w \in V_{3}$, and

$$
(A B) b_{1}=A B\left(\alpha a_{1}+w\right)=\alpha(A B A) A^{-1} a_{1}+(A B) w=\lambda_{1}^{-1} \alpha b_{1}+(A B) w \in V_{2} .
$$

Thus $V_{2}=\operatorname{span}\left\{b_{1}\right\}+V_{3}$ is a proper subspace invariant under $\langle A B A, A B\rangle=\rho\left(B_{3}\right)$.
The statement about an A-invariant subspace follows either by a symmetric argument, or simply by noting that $(A B A) W$ would then be B-invariant and would still contain a_{i} and b_{i}.

Lemma 1.8. If A is diagonalizable, then its eigenvalues are distinct.
Proof: Let A be diagonalizable. If all of the eigenvalues are the same, then $A=\lambda I$ and hence $B=\lambda I$. But then any subspace is invariant, so V must be 1 -dimensional and the statement holds.

Suppose not all eigenvalues are distinct. So we may assume without loss of generality, that $\lambda_{1}=\lambda_{2}$ and $\lambda_{d} \neq \lambda_{1}$. Let b be an eigenvector of B that corresponds to λ_{d}. Let $W=\operatorname{span}\left\{A^{i} b \mid i=0, \ldots, d-2\right\}$. Since the minimal polynomial has at most degree $d-1, W$ is A-invariant. Note that $W=\operatorname{span}\left\{\left(A-\lambda_{1}\right)^{i} b \mid i=0, \ldots, d-2\right\}$. Let $w_{i}=\left(A-\lambda_{1}\right)^{i} b$ and n such that $w_{n} \neq 0$ but $w_{n+1}=0$.

Then it is easy to see that $\left\{w_{0}, w_{1}, \ldots, w_{n}\right\}$ is a basis for W. Let $\alpha_{0} w_{0}+\ldots+$ $\alpha_{n} w_{n}=0$. Multiply both sides by $\left(A-\lambda_{1}\right)^{n}$ to get $\alpha_{0} w_{0}=0$, hence $\alpha_{0}=0$. Now proceed by induction to conclude that $\alpha_{i}=0$ for all i.

It is obvious that A acts as a full Jordan block with respect to this basis, hence its eigenspace in W for λ_{1} is at most 1-dimensional. Let $W^{\prime}=W+\operatorname{span}\{A B A b\}$. Since $A B A b$ is an eigenvector of A corresponding to λ_{d}, A still cannot have two linearly independent eigenvectors in W^{\prime}. Hence W^{\prime} is a proper A-invariant subspace of V, which contains b and $A B A b$, contradicting Proposition 1.7.

Proposition 1.9. The minimal polynomial of A (and B) is the characteristic polynomial. In other words, the Jordan form of A consists of full Jordan blocks.

Proof: If A is diagonalizable, the statement follows from Lemma 1.8. If not, assume the minimal polynomial properly divides the characteristic polynomial, hence its degree is at most $d-1$.

Then A has an eigenvalue λ and a corresponding generalized eigenvector a such that $(A-\lambda)^{2} a=0$, and $a^{\prime}=(A-\lambda) a \neq 0$ is an eigenvector of A. Let $b=A B A a^{\prime}$, and $W=\operatorname{span}\left\{A^{i} b \mid i=0, \ldots, d-2\right\}$. Clearly, W is a proper A-invariant subspace of V. By Proposition 1.7, W cannot contain a^{\prime}. Hence it cannot contain a either. Let $W^{\prime}=W+\operatorname{span}\left\{a^{\prime}\right\}$. Then it is easy to see that $a \notin W^{\prime}$, hence W^{\prime} is a proper A invariant subspace that contains b and $\delta^{-1} a^{\prime}=A B A b$. This would contradict Proposition 1.7.

Lemma 1.10. Let A and B be in ordered triangular form, and $C \in \mathrm{GL}_{d}(F)$.
a) If $A=C B C^{-1}$ then C is upper skew-triangular, that is $C_{i j}=0$ for $i+j>d+1$.
b) If $B=C A C^{-1}$ then C is lower skew-triangular, that is $C_{i j}=0$ for $i+j<d+1$.

In particular $A B$ is lower skew-triangular, and $B A$ is upper skew-triangular.
Proof: Let $\left\{v_{1}, \ldots, v_{d}\right\}$ be the standard basis for $V=F^{d}$, and let $V_{n}=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ and $W_{n}=\operatorname{span}\left\{v_{d-n+1}, \ldots, v_{d}\right\}$ for $1 \leq n \leq d$. We will prove that $A=C B C^{-1}$ implies $C W_{n}=V_{n}$ by induction. By the upper-triangular shape of A, v_{1} is an eigenvector of A with eigenvalue λ_{1} and v_{d} is an eigenvector of B with the same eigenvalue. Also, $C^{-1} v_{1}$ is an eigenvector of B with eigenvalue λ_{1}. We can conclude $\operatorname{span}\left\{C^{-1} v_{1}\right\}=\operatorname{span}\left\{v_{d}\right\}$, by Proposition 1.9. This establishes the base case.

Let λ_{n+1} occur k times among $\lambda_{1}, \ldots, \lambda_{n}$. By Proposition 1.9, A acts as a full Jordan block on its generalized eigenspaces. A has k generalized eigenvectors with eigenvalue λ_{n+1} in V_{n}, so they are all in the null space of $\left(A-\lambda_{n+1}\right)^{k}$. But A has $k+1$ generalized eigenvectors in V_{n+1}, so $\left(A-\lambda_{n+1}\right)^{k} v_{n+1} \neq 0$. An analogous argument shows that $\left(B-\lambda_{n+1}\right)^{k} v_{d-n} \neq 0$, but $\left(B-\lambda_{n+1}\right)^{k+1} v_{d-n}=0$. But B also consists of full Jordan blocks, so any vector with this property must be in $\operatorname{span}\left\{v_{d-n}\right\}$. Clearly, $C^{-1} v_{n+1}$ is such a vector, so span $\left\{C^{-1} v_{n+1}\right\}=\operatorname{span}\left\{v_{d-n}\right\}$. We can now use the inductive hypothesis to conclude

$$
C^{-1} V_{n+1}=C^{-1} V_{n}+C^{-1} \operatorname{span}\left\{v_{n+1}\right\}=W_{n}+\operatorname{span}\left\{v_{d-n}\right\}=W_{n+1} .
$$

Hence $C W_{n}=V_{n}$.

From now on, let us denote $d+1-i$ by \bar{i}.
Lemma 1.11. Let $A, B \in \mathrm{GL}_{d}(F)$ such that A and B are in ordered triangular form with eigenvalues $\lambda_{1}, \ldots, \lambda_{d} \in F^{*}$. The following are equivalent:
a) There exists $S \in \mathrm{GL}_{d}(F)$ skew-diagonal with $S^{2}=\gamma I$ for some $\gamma \in F^{*}$ such that $B=S A S^{-1},(A B)_{i j}=0$ for $i+j<d+1$ and $\lambda_{i}(A B)_{\bar{i} i}=S_{i \bar{i}}$.
b) There exists $S \in \mathrm{GL}_{d}(F)$ skew-diagonal with $S^{2}=\gamma I$ for some $\gamma \in F^{*}$ such that $B=S A S^{-1},(B A)_{i j}=0$ for $i+j>d+1$ and $\lambda_{i}(B A)_{i \bar{i}}=S_{i \bar{i}}$.
c) A and B satisfy the braid relation $A B A=B A B$.

Proof: For $(a) \Leftrightarrow(b)$, note that $B A=S(A B) S^{-1}$, hence

$$
(B A)_{i j}=S_{i \bar{i}}(A B)_{\overline{i j}} S_{j \bar{j}}^{-1}
$$

For $(b) \Longrightarrow(c)$, we already know $A B$ is lower skew-triangular by $(b) \Longrightarrow(a)$. Hence $A(B A)$ is upper skew-triangular, and $(A B) A$ is lower skew-triangular, that is $A B A$ is skew-diagonal. Also $(A B A)_{i \bar{i}}=\lambda_{i}(B A)_{i \bar{i}}=S_{i \bar{i}}$, thus $A B A=S$. Hence

$$
B A B=S(A B A) S^{-1}=S=A B A .
$$

$(c) \Longrightarrow(b)$ follows by setting $S=A B A$ and noting that S and $B A$ have the desired properties by Lemma 1.10 and by the upper-triangularity of A.

1.4 The Matrices

We are now ready to prove that we can always choose a basis of V which makes A and B ordered triangular.

Lemma 1.12. The set $\left\{a_{i} \left\lvert\, 1 \leq i \leq\left[\frac{d+1}{2}\right]\right.\right\} \cup\left\{b_{i} \left\lvert\, 1 \leq i \leq\left[\frac{d-1}{2}\right]\right.\right\}$ is a basis of V.
Proof: If $d=2$, span $\left\{a_{1}\right\} \neq \operatorname{span}\left\{b_{1}\right\}$, by Lemma 1.5. Hence

$$
\operatorname{dim} \operatorname{span}\left\{a_{1}, b_{1}\right\} \geq 2 .
$$

If $d=3$, then $b_{1} \notin \operatorname{span}\left\{a_{1}, a_{2}\right\}$, by Proposition 1.7. Hence

$$
\operatorname{dim}\left\{a_{1}, a_{2}, b_{1}\right\}>\operatorname{dim}\left\{a_{1}, a_{2}\right\}=2
$$

If $d=4$, let $V_{1}=\left\{a_{1}, a_{2}\right\}, V_{2}=V_{1}+(A B A) V_{1}, V_{3}=V_{1} \cap(A B A) V_{1}$. If $V_{1}=V_{3}$, then V_{1} is invariant under $\langle A, A B A\rangle$. Hence $\operatorname{dim} V_{3}<\operatorname{dim} V_{1}$ and $\operatorname{dim} V_{2}=$ $\operatorname{dim} V_{1}+\operatorname{dim}(A B A) V_{1}-\operatorname{dim} V_{3}=2 \operatorname{dim} V_{1}-\operatorname{dim} V_{3}>\operatorname{dim} V_{1}=2$.

If $\operatorname{dim} V_{2}=3$, then $\operatorname{dim} V_{3}=1$ and V_{3} is spanned by some eigenvector w of $A B A$. If $a_{1} \in V_{3}$ then $V_{3}=\operatorname{span}\left\{a_{1}\right\}$, so V_{3} would be invariant under $\langle A, A B A\rangle$. Hence $V_{1}=\operatorname{span}\left\{a_{1}, w\right\}$ and $(A B A) V_{1}=\operatorname{span}\left\{b_{1}, w\right\}$.

Note that $V_{3} \subseteq V_{1}$, so $(A B) V_{3} \subseteq(A B) V_{1}=(A B A) V_{1}$. If $(A B) V_{3}=V_{3}$, then V_{3} would be $\langle A B, A B A\rangle$-invariant. Hence $(A B A) V_{1}=V_{3}+(A B) V_{3}$.

Similarly, $V_{3} \subseteq(A B A) V_{1}$, so $(A B)^{2} V_{3}=A(B A B) V_{3}=A V_{3} \subseteq A V_{1}=V_{1}$. If $A V_{3}=(A B)^{2} V_{3} \subseteq V_{3}$, then V_{3} would be $\langle A, A B A\rangle$-invariant. Hence $V_{1}=V_{3}+(A B)^{2} V_{3}$.

So $V_{2}=V_{1}+(A B A) V_{1}=V_{3}+(A B) V_{3}+(A B)^{2} V_{3}$ and is invariant under $\langle A B A, A B\rangle$.

If $d=5$, we know span $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ is 4-dimensional, by the same argument as in the previous case. Let $V_{1}=\operatorname{span}\left\{a_{1}, a_{2}, a_{3}\right\}, V_{2}=V_{1}+(A B A) V_{1}$ and $V_{3}=$ $V_{1} \cap(A B A) V_{1}$. If $a_{3} \in \operatorname{span}\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$, then $b_{3}=(A B A) a_{3} \in \operatorname{span}\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ too. Hence $\operatorname{dim} V_{2}=4$ and $\operatorname{dim} V_{3}=\operatorname{dim} V_{1}+\operatorname{dim}(A B A) V_{1}-\operatorname{dim} V_{2}=2$.

Since $V_{3} \subsetneq V_{1}$, there exists $1 \leq i \leq 3$ such that $a_{i} \notin V_{3}$. Thus $V_{1}=\operatorname{span}\left\{a_{i}\right\}+V_{3}$ and $(A B A) V_{1}=\operatorname{span}\left\{b_{i}\right\}+V_{3}$.

Like before, $V_{3} \subseteq V_{1}$, so $(A B) V_{3} \subseteq(A B) V_{1}=(A B A) V_{1}$ and $(A B)^{2} V_{3}=$ $A(A B A) V_{3}=A V_{3} \subseteq A V_{1}=V_{1}$. If $(A B) V_{3}=V_{3}$ then V_{3} would be $\langle A B, A B A\rangle$ invariant. Hence $(A B A) V_{1}=V_{3}+(A B) V_{3}$. Analogously, if $A V_{3}=(A B)^{2} V_{3}=V_{3}$, then V_{3} would be $\langle A, A B A\rangle$-invariant. Therefore $V_{1}=V_{3}+(A B)^{2} V_{3}$.

Again, $V_{2}=V_{1}+(A B A) V_{1}=V_{3}+(A B) V_{3}+(A B)^{2} V_{3}$ and is a proper subspace invariant under $\langle A B A, A B\rangle$.

Proposition 1.13. If V is a simple B_{3}-module of dimension $d \leq 5$, then there is a basis of V that makes A and B ordered triangular.

Proof: If $d=2$, then $\left\{a_{1}, b_{1}\right\}$ is a basis of V by Lemma 1.12 and it is clear that A and B are ordered triangular with respect to this basis.

If $d=3$, let $v_{1}=a_{1}$ and $v_{3}=b_{1}$. By Lemma 1.12, $\left\{a_{1}, a_{2}, b_{1}\right\}$ is a basis of V. By Lemma 1.7, $a_{1} \notin \operatorname{span}\left\{b_{1}, b_{2}\right\}$, hence $a_{2}=\alpha a_{1}+\beta_{1} b_{1}+\beta_{2} b_{2}$ for some $\alpha, \beta_{1}, \beta_{2}$. Let $v_{2}=a_{2}-\alpha a_{1}$. Then $\operatorname{span}\left\{a_{1}, v_{2}\right\}=\operatorname{span}\left\{a_{1}, a_{2}\right\}$, so $\left\{a_{1}, v_{2}, b_{1}\right\}$ is still a basis of V. But $v_{2} \in \operatorname{span}\left\{a_{1}, a_{2}\right\} \cap \operatorname{span}\left\{b_{1}, b_{2}\right\}$ by construction, so $A v_{2} \in \operatorname{span}\left\{a_{1}, a_{2}\right\}$ and $B v_{2} \in \operatorname{span}\left\{b_{1}, b_{2}\right\}$, which shows that A and B are ordered triangular with respect to $\left\{v_{1}, v_{2}, v_{3}\right\}$.

If $d=4$, let $v_{1}=a_{1}$ and $v_{4}=b_{1}$. We can construct v_{2} similarly as in the previous case by noting that $a_{1} \notin \operatorname{span}\left\{b_{1}, b_{2}, b_{3}\right\}$ by Lemma 1.7 , so there exists α such that $a_{2}-\alpha a_{1} \in \operatorname{span}\left\{b_{1}, b_{2}, b_{3}\right\}$. Let $v_{3}=A B v_{2}$.

Note that span $\left\{a_{1}, v_{2}\right\}=\operatorname{span}\left\{a_{1}, a_{2}\right\}$ and by letting $A B A$ act on both sides we also have $\operatorname{span}\left\{b_{1}, v_{3}\right\}=\operatorname{span}\left\{b_{1}, b_{2}\right\}$. Hence $V=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Since $v_{2} \in \operatorname{span}\left\{a_{1}, a_{2}\right\} \cap \operatorname{span}\left\{b_{1}, b_{2}, b_{3}\right\}$ we also have $v_{3}=A B A v_{2} \in \operatorname{span}\left\{b_{1}, b_{2}\right\} \cap$ span $\left\{a_{1}, a_{2}, a_{3}\right\}$. This shows that A and B are ordered triangular with respect to $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.

If $d=5$, let $v_{1}=a_{1}$ and $v_{5}=b_{1}$. Now follow the method in the previous case to construct $v_{2}=a_{2}-\alpha a_{1} \in \operatorname{span}\left\{a_{1}, a_{2}\right\} \cap \operatorname{span}\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$. Let $v_{4}=A B A v_{2} \in v_{2} \in$ $\operatorname{span}\left\{b_{1}, b_{2}\right\} \cap \operatorname{span}\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. By Lemma 1.12, $a_{3}=\alpha_{1} a_{1}+\alpha_{2} a_{2}+\beta_{1} b_{1}+\beta_{2} b_{2}$. Let $v_{3}=a_{3}-\alpha_{1} a_{1}-\alpha_{2} a_{2}$. Then $v_{3} \in \operatorname{span}\left\{a_{1}, a_{2}, a_{3}\right\} \cap \operatorname{span}\left\{b_{1}, b_{2}, b_{3}\right\}$.

Note that $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=\operatorname{span}\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\operatorname{span}\left\{v_{1}, v_{2}\right\}=\operatorname{span}\left\{a_{1}, a_{2}\right\}$ by construction of v_{2} and v_{3}. Acting on both sides of the second equality by $A B A$ yields $\operatorname{span}\left\{v_{5}, v_{4}\right\}=\operatorname{span}\left\{b_{1}, b_{2}\right\}$. Hence $\operatorname{span}\left\{v_{1}, \ldots, v_{5}\right\}=\operatorname{span}\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}\right\}=V$. So $\left\{v_{1}, \ldots, v_{5}\right\}$ is a basis of V that makes A and B ordered triangular.

Actually, we can make A and B look even more special and the computation simpler without losing generality.

Corollary 1.14. If V is a simple B_{3}-module of dimension $d \leq 5$, then there is a basis of V that makes A and B ordered triangular and $B=S A S^{-1}$ for S skew-diagonal and $S_{i \bar{i}}=1$.

Proof: Choose a basis $\left\{v_{1}, \ldots, v_{d}\right\}$ such that A and B are ordered triangular. As in the proof of Lemma 1.11, we know that $A B A$ is skew-diagonal and $(A B A)^{2}=\delta$. If d is odd, let $\gamma=(A B A)_{\left[\frac{d+1}{2}\right],\left[\frac{d+1}{2}\right]}$ and note that $\gamma^{2}=\delta$, otherwise pick γ to be any square root
of δ. Let $S=\gamma^{-1} A B A$. Then $S^{2}=I$, so $S_{i \bar{i}} S_{\bar{i} i}=1$. For $i=1, \ldots,\left[\frac{d}{2}\right]$, let $v_{i} \mapsto S_{i \bar{i}} v_{i}$. Observe that for this new basis, $S v_{i}=v_{\bar{i}}$.

From now on, let A, B, and S be as in Corollary 1.14.
Lemma 1.15. If $B A$ is upper skew-triangular, A and B satisfy the braid relation.
Proof: Note $S^{-1}=S$, so $B=S A S$. Just like in the proof of Lemma 1.11, if $B A=$ $(S A S) A$ is upper skew-triangular, $A B=A(S A S)$ is lower skew-triangular and $A B A=$ $A(S A S) A$ is skew-diagonal. So is $B A B=S(A B A) S$. Hence

$$
(A B A)_{i \bar{i}}=A_{i i}(S A S A)_{i \bar{i}}=\lambda_{i}(S A S A)_{i \bar{i}}
$$

and

$$
(B A B)_{i \bar{i}}=(S A S A B)_{i \bar{i}}=(S A S A)_{i \bar{i}} B_{\bar{i} \bar{i}}=(S A S A)_{i \bar{i}} \lambda_{i} .
$$

Hence $A B A=B A B$.
Lemma 1.16. Let V be a simple B_{3}-module of dimension $d \leq 5$ and $\left\{v_{1}, \ldots, v_{d}\right\}$ a basis as in Corollary 1.14. Let D be a diagonal matrix such that $D_{i, i}=D_{\bar{i} i}$ for all i, and $A^{\prime}=D A D^{-1}$ and $B^{\prime}=D B D^{-1}$. Then A^{\prime} and B^{\prime} are still ordered triangular and $B^{\prime}=S A^{\prime} S^{-1}$.

Proof: Note that D corresponds only to a scaling of the basis vectors, so conjugating by D does not change the triangular shapes and the diagonal entries of A and B. By direct computation, $D S=D S$, hence

$$
B^{\prime}=D B D^{-1}=D S A S^{-1} D^{-1}=S D A D^{-1} S^{-1}=S A^{\prime} S^{-1}
$$

Now we are ready to start computing the representations. By Lemma 1.11, $(B A)_{i j}=0$ for $i+j>d$ is a necessary condition for $A B A=B A B$ and by Lemma 1.15 it is sufficient too.

Proposition 1.17. Let V be a simple 2-dimensional B_{3}-module. Then there exists a basis of V for which

$$
A=\left(\begin{array}{cc}
\lambda_{1} & \lambda_{1} \\
0 & \lambda_{2}
\end{array}\right) \quad B=\left(\begin{array}{cc}
\lambda_{2} & 0 \\
-\lambda_{2} & \lambda_{1}
\end{array}\right) .
$$

Proof: We set $0=(B A)_{22}=A_{12}^{2}+\lambda_{1} \lambda_{2}$, hence $A_{12}=\sqrt{-\lambda_{1} \lambda_{2}}$.
Now rescale $v_{1} \mapsto \frac{A_{12}}{\lambda_{1}} v_{1}$ to obtain A and B in the above form.
Proposition 1.18. Let V be a simple 3 -dimensional B_{3}-module. Then there exists a basis of V for which

$$
A=\left(\begin{array}{ccc}
\lambda_{1} & -\lambda_{1}-\frac{\lambda_{2}^{2}}{\lambda_{3}} & -\lambda_{2} \\
0 & \lambda_{2} & \lambda_{3} \\
0 & 0 & \lambda_{3}
\end{array}\right) \quad B=\left(\begin{array}{ccc}
\lambda_{3} & 0 & 0 \\
\lambda_{3} & \lambda_{2} & 0 \\
-\lambda_{2} & -\lambda_{1}-\frac{\lambda_{2}^{2}}{\lambda_{3}} & \lambda_{1}
\end{array}\right)
$$

Proof: Note that if $A_{23}=0$, then $B_{21}=0$ and span $\left\{v_{1}, v_{3}\right\}$ would be invariant. So $A_{23} \neq 0$, and we can let

$$
D=\left(\begin{array}{ccc}
1 & & \\
& \frac{\lambda_{3}}{A_{23}} & \\
& & 1
\end{array}\right)
$$

and we can replace A by $D A D^{-1}$, and B by $D B D^{-1}$ by Lemma 1.16 .
Now

$$
A=\left(\begin{array}{ccc}
\lambda_{1} & A_{12} & A_{13} \\
& \lambda_{2} & \lambda_{3} \\
& & \lambda_{3}
\end{array}\right) \quad B=\left(\begin{array}{ccc}
\lambda_{3} & & \\
\lambda_{3} & \lambda_{2} & \\
A_{13} & A_{12} & \lambda_{1}
\end{array}\right)
$$

Hence

$$
0=(B A)_{23}=\lambda_{3} A_{13}+\lambda_{2} \lambda_{3}
$$

forces $A_{13}=-\lambda_{2}$, and

$$
0=(B A)_{33}=A_{13}^{2}+A_{12} A_{23}+\lambda_{1} \lambda_{3}=\lambda_{2}^{2}+\lambda_{3} A_{12}+\lambda_{1} \lambda_{3}
$$

forces $A_{12}=-\lambda_{1}-\lambda_{2}^{2} \lambda_{3}^{-1}$.
Proposition 1.19. Let V be a simple 4-dimensional B_{3}-module and $D=-\sqrt{\lambda_{1} \lambda_{4} / \lambda_{2} \lambda_{3}}$.
Then there exists a basis of V for which

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & \lambda_{2}\left(1+D+D^{2}\right) & \lambda_{3}\left(1+D+D^{2}\right) & \lambda_{4} \\
0 & \lambda_{2} & \lambda_{3}(1+D) & \lambda_{4} \\
0 & 0 & \lambda_{3} & \lambda_{4} \\
0 & 0 & 0 & \lambda_{4}
\end{array}\right)
$$

$$
B=\left(\begin{array}{cccc}
\lambda_{4} & 0 & 0 & 0 \\
-\lambda_{3} & \lambda_{3} & 0 & 0 \\
\lambda_{2} D^{-1} & -\lambda_{2}\left(1+D^{-1}\right) & \lambda_{2} & 0 \\
-\lambda_{1} D^{-3} & \lambda_{1}\left(D^{-1}+D^{-2}+D^{-3}\right) & -\lambda_{1}\left(1+D^{-1}+D^{-2}\right) & \lambda_{1}
\end{array}\right) .
$$

Proof: If $A_{24} \neq 0$, then $0=(B A)_{33}=A_{14} A_{24}+A_{23} A_{24}+\lambda_{2} A_{34}$ forces $A_{34}=0$. But span $\left\{v_{1}, v_{4}\right\}$ would then be invariant. By Lemma 1.16, we can conjugate A and B by

$$
D=\left(\begin{array}{llll}
1 & & & \\
& \lambda_{4} A_{24}^{-1} & & \\
& & \lambda_{4} A_{24}^{-1} & \\
& & & 1
\end{array}\right)
$$

to get

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & A_{12} & A_{13} & A_{14} \\
& \lambda_{2} & A_{23} & \lambda_{4} \\
& & \lambda_{3} & A_{34} \\
& & & \lambda_{4}
\end{array}\right) \quad B=\left(\begin{array}{cccc}
\lambda_{4} & & & \\
A_{34} & \lambda_{3} & & \\
\lambda_{4} & A_{23} & \lambda_{2} & \\
A_{14} & A_{13} & A_{12} & \lambda_{1}
\end{array}\right)
$$

It follows from

$$
0=(B A)_{24}=A_{14} A_{34}+\lambda_{3} \lambda_{4}
$$

that $A_{14} \neq 0$ and $A_{34}=-\lambda_{3} \lambda_{4} A_{14}{ }^{-1}$.
Now

$$
0=(B A)_{33}=\lambda_{4} A_{13}+A_{23}^{2}+\lambda_{2} \lambda_{3} \Longrightarrow A_{13}=-\frac{A_{23}^{2}+\lambda_{2} \lambda_{3}}{\lambda_{4}}
$$

and

$$
0=(B A)_{34}=\lambda_{4}\left(A_{14}+A_{23}-\frac{\lambda_{2} \lambda_{3}}{A_{14}}\right) \Longrightarrow A_{23}=-A_{14}+\frac{\lambda_{2} \lambda_{3}}{A_{14}}
$$

Also

$$
\begin{gathered}
0=(B A)_{42}=A_{14} A_{12}-\lambda_{2} \lambda_{4}^{-1} A_{14}^{2}+\lambda_{2}^{2} \lambda_{3} \lambda_{4}^{-1}-\frac{\lambda_{2}^{3} \lambda_{3}^{2}}{\lambda_{4} A_{14}^{2}}=0 \Longrightarrow \\
A_{12}=\lambda_{2} \lambda_{4}^{-1} A_{14}-\frac{\lambda_{2}^{2} \lambda_{3}}{\lambda_{4} A_{14}}+\frac{\lambda_{2}^{3} \lambda_{3}^{2}}{\lambda_{4} A_{14}^{3}} .
\end{gathered}
$$

And finally

$$
0=(B A)_{44}=\lambda_{1} \lambda_{4}-\frac{\lambda_{2}^{3} \lambda_{3}^{3}}{A_{14}^{4}} \Longrightarrow A_{14}=\sqrt[4]{\frac{\lambda_{2}^{3} \lambda_{3}^{3}}{\lambda_{1} \lambda_{4}}}
$$

Now rescale $v_{i} \mapsto A_{i 4} / \lambda_{4} v_{i}$ and substitute $D=-\sqrt{\lambda_{1} \lambda_{4} / \lambda_{2} \lambda_{3}}$ to obtain A and B in the desired form.

The computation proceeds similarly for $d=5$, only the matrix entries turn out to be more complicated. Therefore we will omit listing the actual matrices.

Proposition 1.20. Let V be a simple 5 -dimensional B_{3}-module and $D=\sqrt[5]{\operatorname{det} A}$. Then for each choice of D, there exists a basis of V for which A and B are in ordered triangular form and the B_{3} action is unique up to conjugation.

Proof: Note that $A_{15} \neq 0$, otherwise $(B A)_{15}=\lambda_{5} A_{15}=0$, which would eventually make $(A B A)_{15}=0$ and $A B A$ singular.

If $A_{35}=0$, then

$$
0=(B A)_{35}=A_{35} A_{15}+A_{34} A_{25}+\lambda_{3} A_{35}
$$

implies either $A_{34}=0$ or $A_{25}=0$. If $A_{34}=0$, then $B_{31}=B_{32}=0$ too, so span $\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ would be B_{3}-invariant. Hence $A_{25}=0$ and

$$
0=(B A)_{25}=A_{45} A_{15}+\lambda_{4} A_{25}
$$

and either $A_{45}=0$ as $A_{15} \neq 0$. If $A_{45}=0$, then $B_{21}=B_{31}=B_{41}=0$, so span $\left\{v_{1}, v_{5}\right\}$ would be B_{3}-invariant. Hence $A_{35} \neq 0$.

If $A_{45}=0$, then $(B A)_{25}=0$ would make $A_{25}=0$ too and

$$
0=(B A)_{45}=A_{25} A_{15}+A_{24} A_{25}+A_{23} A_{35}+\lambda_{2} A_{45}
$$

would imply $A_{23}=0$. Hence $B_{21}=B_{41}=B_{43}=0$, and $\operatorname{span}\left\{v_{1}, v_{3}, v_{5}\right\}$ would be B_{3}-invariant. So $A_{45} \neq 0$.

Hence we can rescale

$$
\begin{aligned}
& v_{4} \mapsto-\frac{A_{45}}{\lambda_{4}} v_{4} \\
& v_{3}
\end{aligned} \mapsto \frac{A_{35}}{A_{15}} v_{3}-1 .
$$

With respect to this new basis, $A_{45}=-\lambda_{4}$ and $A_{35}=A_{15}$.
From $(B A)_{25}=0, A_{25}=A_{15}$ and now

$$
0=(B A)_{35}=A_{15}\left(A_{15}+A_{34}+\lambda_{3}\right)
$$

implies $A_{34}=-A_{15}-\lambda_{3}$.
Setting

$$
0=(B A)_{52}=A_{15} A_{12}+\lambda_{2} A_{14}
$$

If $A_{12}=0$, then $A_{14}=0$ and

$$
0=(B A)_{53}=A_{13}\left(A_{15}+\lambda_{3}\right) .
$$

If $A_{13}=0$, then $B_{52}=B_{53}=B_{54}=0$ and hence $\operatorname{span}\left\{v_{2}, v_{3}, v_{4}\right\}$ is B_{3}-invariant. If $A_{15}=-\lambda_{3}$, then $A_{34}=0$ and in turn $B_{32}=B_{54}=B_{52}=0$ making span $\left\{v_{2}, v_{4}\right\}$ a proper B_{3}-invariant subspace. Hence we can assume $A_{12} \neq 0$ and

$$
A_{14}=\frac{A_{15} A_{12}}{\lambda_{2}} .
$$

Now

$$
0=(B A)_{34}=-\frac{A_{15}^{2} A_{12}+\lambda_{2} A_{24} A 15+\lambda_{2} \lambda_{3} A_{24}+\lambda_{2} \lambda_{3} A_{15}+\lambda_{2} \lambda_{3}^{2}}{\lambda_{2}}
$$

forces

$$
A_{12}=-\frac{\lambda_{2}\left(A_{24}+l 3\right)\left(A_{15}+l 3\right)}{A_{15}^{2}}
$$

and

$$
0=(B A)_{53}=\frac{\left(A_{15}+\lambda_{3}\right)\left(A_{15} A_{13}+A_{24} A_{23}+A_{23} \lambda_{3}\right)}{A_{15}} .
$$

If $A_{15}=-\lambda_{3}$, then $A_{12}=0$ by $(B A)_{34}=0$, which we have ruled out already. Therefore

$$
A_{13}=-\frac{\left(A_{24}+\lambda_{3}\right) A_{23}}{A_{15}} .
$$

Letting

$$
0=(B A)_{45}=A_{15}^{2}+A_{24} A_{15}+A_{23} A_{15}-\lambda_{4} \lambda_{2}
$$

implies

$$
A_{23}=-A_{15}-A_{24}+\frac{\lambda_{2} \lambda_{4}}{A_{15}} .
$$

To solve for A_{24}, set

$$
0=(B A)_{55}-(B A)_{44}=\frac{\lambda_{2} \lambda_{3} \lambda_{4} A_{24}+\lambda_{2} \lambda_{3}^{2} \lambda_{4}+\lambda_{1} \lambda_{5} A_{15}^{2}+\lambda_{2} \lambda_{3} \lambda_{4} A_{15}}{A_{15}^{2}}
$$

to obtain

$$
A_{24}=-A_{15}-\lambda_{2} \lambda_{3} \lambda_{4}-\frac{\lambda_{1} \lambda_{5} A_{15}^{2}}{\lambda_{2} \lambda_{3} \lambda_{4}} .
$$

Finally substitute this back in

$$
0=(B A)_{44}=\frac{\lambda_{1}^{2} \lambda_{5}^{2} A_{15}^{5}-\lambda_{2}^{3} \lambda_{3}^{3} \lambda_{4}^{3}}{\lambda_{2}^{2} \lambda_{3}^{2} \lambda_{4}^{2} A_{15}}
$$

to get

$$
A_{15}=\frac{\sqrt[5]{\lambda_{1}^{3} \lambda_{2}^{3} \lambda_{3}^{3} \lambda_{4}^{3} \lambda_{5}^{3}}}{\left.\lambda_{1} \lambda_{5}\right)}
$$

1.5 Characterization of All Simple Representations

Now that we know that simple representations of dimension $d \leq 5$ of B_{3} are of the form described in the last four theorems, the natural question to ask is whether all representations of this form are simple. We will find that the answer is no, but we can give an explicit necessary and sufficient condition for simplicity in terms of the eigenvalues.

Let $P_{n}^{(d)}(x)=\prod_{i \neq n}\left(x-\lambda_{i}\right)$ for $1 \leq n \leq d$. Note that $\left(x-\lambda_{n}\right) P_{n}^{(d)}(x)$ is the characteristic polynomial of A and B. Hence $\left(A-\lambda_{n}\right) P_{n}^{(d)}(A)=0$ so the columns of $P_{n}^{(d)}(A)$ are 0 or eigenvectors of A. By Proposition $1.9, P_{n}^{(d)}(A) \neq 0$ so at least one of the columns is nonzero and the others are multiples of this column. So $P_{n}^{(d)}(A)$ is of rank 1. Analogous statements hold for $P_{n}^{(d)}(B)$. Hence

$$
P_{n}^{(d)}(A) P_{m}^{(d)}(B) P_{n}^{(d)}(A)=Q_{m n}^{(d)} P_{n}^{(d)}(A)
$$

for some constant $Q_{m n}^{(d)}$. A and B can be switched in the last equation by conjugating by $A B A$. The entries of A and B are rational functions in $\lambda_{1}, \ldots, \lambda_{d}, \delta$, therefore the $Q_{m n}^{(d)}$ are also rational functions of the same variables.

Denote by $E_{i j}^{(d)}$ the elementary $d \times d$ matrix whose only nonzero entry is a 1 in the (i, j) position.

Lemma 1.21.

a) $P_{1}^{(d)}(B) P_{d}^{(d)}(A)=Q_{1 d}^{(d)} E_{d d}^{(d)}$.
b) $P_{m}^{(d)}(B) P_{n}^{(d)}(A)=0$ if and only if $Q_{m n}^{(d)}=0$.
c) The polynomials are

$$
\begin{gathered}
Q_{m n}^{(2)}=-\lambda_{m}^{2}+\lambda_{m} \lambda_{n}-\lambda_{n}^{2} \\
Q_{m n}^{(3)}=\left(\lambda_{m}^{2}+\lambda_{n} \lambda_{k}\right)\left(\lambda_{n}^{2}+\lambda_{m} \lambda_{k}\right)
\end{gathered}
$$

with $k \neq m, n$.

$$
Q_{m n}^{(4)}=-\gamma^{-1}\left(\lambda_{m}^{2}+\gamma\right)\left(\lambda_{n}^{2}+\gamma\right)\left(\gamma+\lambda_{m} \lambda_{k}+\lambda_{n} \lambda_{l}\right)\left(\gamma+\lambda_{m} \lambda_{l}+\lambda_{n} \lambda_{k}\right)
$$

with $\gamma^{2}=\lambda_{1} \cdots \lambda_{4}$ and $k, l \neq m, n$.

$$
Q_{m n}^{(5)}=\gamma^{-8}\left(\gamma^{2}+\lambda_{m} \gamma+\lambda_{m}^{2}\right)\left(\gamma^{2}+\lambda_{n} \gamma+\lambda_{n}^{2}\right) \prod_{k \neq m, n}\left(\gamma^{2}+\lambda_{m} \lambda_{k}\right)\left(\gamma^{2}+\lambda_{n} \lambda_{k}\right)
$$

with $\gamma^{5}=\lambda_{1} \cdots \lambda_{5}$.

Proof:
a) Observe that $\left(B-\lambda_{i}\right) v_{j} \in \operatorname{span}\left\{v_{i+1}, \ldots, v_{d}\right\}$ for all $j \geq i$. Hence $P_{1}^{(d)}(B) V \subseteq$ span $\left\{v_{d}\right\}$, that is the only nonzero entries of $P_{1}^{(d)}(B)$ are in the bottom row.

Also, $\left(A-\lambda_{i}\right) v_{j} \in \operatorname{span}\left\{v_{1}, \ldots, v_{i-1}\right\}$ for all $j \leq i$. Hence $P_{d}^{(d)}(A) v_{j}=0$ for $j<d$, and $P_{d}^{(d)}(A) v_{d} \in \operatorname{span}\left\{v_{1}\right\}$, that is the only nonzero entry of $P_{d}^{(d)}(A)$ is in the top right corner. So $P_{d}^{(d)}(A)=\alpha E_{1 d}^{(d)}$ and $P_{1}^{(d)}(B) P_{d}^{(d)}(A)=\beta E_{d d}^{(d)}$ for some $\alpha, \beta \in F$. So

$$
\begin{aligned}
& P_{d}^{(d)}(A) P_{1}^{(d)}(B) P_{d}^{(d)}(A)=\alpha \beta E_{1 d}^{(d)} \\
& Q_{1 d}^{(d)} P_{d}^{(d)}(A)=Q_{1 d}^{(d)} \beta E_{1 d}^{(d)}
\end{aligned}
$$

and hence $\alpha=Q_{1 d}^{(d)}$.
b) This follows from a) by reindexing the eigenvalues.
c) Using a), $Q_{1 d}^{(d)}$ can be easily found by direct computation. Then just reindex the eigenvalues so that 1 and d are replaced by m and n for the general case.

Theorem 1.22. Let F be an algebraically closed field.
a) There exists a simple representation of B_{3} on a vector space V of F-dimension $d \leq 5$ if and only if the eigenvalues and (for $d=4,5) \gamma$, as defined in Lemma 1.21, satisfy $Q_{m n}^{(d)} \neq 0$ for $1 \leq m, n \leq d$.
b) Any simple B_{3}-module over F is uniquely determined by the eigenvalues and (for $d=4,5)$ by a choice of the root γ.

Proof:

a) Assume V is a simple B_{3}-module. Then, as we have already observed, $P_{n}^{(d)}(A)$ is nonzero for all $1 \leq n \leq d$. Suppose $Q_{m n}^{(d)}=0$ for some m, n. Then $P_{m}^{(d)}(B) P_{n}^{(d)}(A)=$ 0 by Lemma 1.21. Since $P_{n}^{(d)}(A) \neq 0$, there exists a vector $v \in V$ such that $a_{n}=P_{n}^{(d)}(A) v \neq 0$, hence a_{n} is an eigenvector of A with eigenvalue λ_{n}. Let $b_{n}=A B A a_{n}$, which is then an eigenvector of B with the same eigenvalue. Since $P_{m}^{(d)}(B) a_{n}=P_{m}^{(d)}(B) P_{n}^{(d)}(A) v=0, W=\operatorname{span}\left\{a_{n}, B a_{n}, \ldots, B^{d-2} a_{n}, b_{n}\right\}$ is B invariant. Observe that

$$
P_{m}^{(d)}(B) B^{i} a_{n}=B_{i} P_{m}^{(d)}(B) a_{n}=0
$$

and

$$
P_{m}^{(d)}(B) b_{n}=\prod_{i \neq m, n}\left(B-\lambda_{i}\right)\left(B-\lambda_{n}\right) b_{n}=0 .
$$

Thus $P_{m}^{(d)}(B)$ restricted to W is 0 , which shows W is a proper subspace of V. This contradicts Proposition 1.7.

Conversely, let $Q_{m n}^{(d)} \neq 0$ for all $m \neq n$. Let $W \subseteq V$ be a nonzero B_{3}-submodule. Then A has an eigenvector a_{i} in W. We know by Lemma 1.21 that $P_{n}^{(d)}(A) \neq 0$ for $1 \leq n \leq d$, so the minimal polynomial of A is the characteristic polynomial, hence the Jordan form of A contains only full blocks, so its eigenspaces are 1-dimensional. Since $P_{i}^{(d)}(A) \neq 0$, there exists $v \in V$ such that $P_{i}^{(d)}(A) v \neq 0$. So $P_{i}^{(d)}(A) v$ is an eigenvector of A with eigenvalue λ_{i}, just like a_{i}. Hence $a_{i} \in \operatorname{span}\left\{P_{i}^{(d)}(A) v\right\}$ and we can always scale v so that $a_{i}=P_{i}^{(d)}(A) v$.

We will now show that $v_{1}, v_{d} \in W$. If $i=1$, then

$$
v_{d}=A B A v_{1} \in(A B A) W=W
$$

If not, let $b_{1}=P_{1}^{(d)}(B) P_{i}^{(d)}(A) v$. Now

$$
P_{i}^{(d)}(A) b_{1}=P_{i}^{(d)}(A) P_{1}^{(d)}(B) P_{i}^{(d)}(A) v=Q_{1 i}^{(d)} P_{i}^{(d)}(A) v \neq 0
$$

so $b_{1} \neq 0$ and b_{1} is an eigenvector of B with eigenvalue λ_{1}. So is v_{d}, thus $v_{d} \in$ $\operatorname{span}\left\{b_{1}\right\} \subseteq W$ and we may scale v_{d} so that $v_{d}=b_{1}$. Also, $v_{1}=(A B A)^{-1} v_{d} \in W$. Let $w_{1}=v_{1}, w_{d}=v_{d}$ and $w_{i}=\prod_{j=i+1}^{d}\left(A-\lambda_{j}\right) v_{d}$ for $2 \leq i<d$. Obviously, $w_{i} \in W$. Note that

$$
\begin{gathered}
P_{1}^{(d)}(B)\left(A-\lambda_{1}\right)\left(A-\lambda_{3}\right) \cdots\left(A-\lambda_{i}\right) w_{i}=P_{1}^{(d)}(B) P_{2}^{(d)}(A) v_{d}= \\
P_{1}^{(d)}(B) P_{2}^{(d)}(A) v_{d} P_{1}^{(d)}(B) a_{i}=Q_{12}^{(d)} P_{1}^{(d)}(B) a_{i} \neq 0
\end{gathered}
$$

so $w_{i} \neq 0$ for all i. We will prove that they are linearly independent. Let $\sum \alpha_{i} w_{i}=$ 0 with at least one nonzero coefficient. Let k be maximal with respect to $\alpha_{k} \neq 0$. If $k=1$, then $\alpha_{1} v_{1}=0$ implies $\alpha_{1}=0$, a contradiction. So $k \geq 2$, and

$$
\prod_{j=1}^{k-1}\left(A-\lambda_{j}\right) \sum_{i=1}^{d} \alpha_{i} w_{i}=\alpha_{k} P_{k}^{(d)}(A) v_{d}=0
$$

But $P_{k}^{(d)}(A) v_{d}=P_{k}^{(d)}(A) P_{1}^{(d)}(B) a_{i} \neq 0$ by the usual argument, so $\alpha_{k}=0$, which is a contradiction.

So span $\left\{w_{1}, \ldots, w_{d}\right\}$ is a d-dimensional subspace of W. Hence $W=V$.
b) This follows from our earlier computations.

Chapter 2

Unitary Representations

2.1 Introduction

Unitary braid representations have been constructed in several ways using the representation theory of Kac-Moody algebras and quantum groups, see e.g. [6], [9], and [16], and specializations of the reduced Burau and Gassner representations in [1]. Such representations easily lead to representations of $\operatorname{PSL}(2, \mathbb{Z})=B_{3} / Z$, where Z is the center of B_{3}, and $\operatorname{PSL}(2, \mathbb{Z})=\operatorname{SL}(2, \mathbb{Z}) /\{ \pm 1\}$, where $\{ \pm 1\}$ is the center of $\operatorname{SL}(2, \mathbb{Z})$. We give a complete classification of simple unitary representations of B_{3} of dimension $d \leq 5$ in this paper. In particular, the unitarizability of a braid representation depends only on the the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ of the images the two generating twists of B_{3}. The condition for unitarizability is a set of linear inequalities in the logarithms of these eigenvalues. In other words, the representation is unitarizable if and only if the $\left(\arg \lambda_{1}, \arg \lambda_{2}, \ldots, \arg \lambda_{d}\right)$ is a point inside a polyhedron in $(\mathbb{R} / 2 \pi)^{d}$, where we give the equations of the hyperplanes that bound this polyhedron. This classification shows that the approaches mentioned previously do not produce all possible unitary braid representations. We obtain representations that seem to be new for $d \geq 3$. As any unitary representation of B_{n} restricts to a unitary representation of B_{3} in an obvious way, these results may also be useful in classifying such representation of B_{n}.

Since we are interested in unitarizable representations, we will let $F=\mathbb{C}$ and we will require that $\left|\lambda_{i}\right|=1$. Let $\rho: B_{3} \rightarrow V$ be a simple d-dimensional representation $(d \leq 5)$, and $A=\rho\left(\sigma_{1}\right), B=\rho\left(\sigma_{2}\right)$. Any unitarizable complex matrix is diagonalizable,
so we can assume that A and B are diagonalizable. So the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ are distinct by Proposition 1.8. Denote the \mathbb{C}-algebra generated by A and B by \mathcal{B}. In other words, $\mathcal{B}=\rho\left(\mathbb{C} B_{3}\right)$, where $\mathbb{C} B_{3}$ is the group algebra. Note that $\mathcal{B}=\operatorname{End}(V)$ by simplicity.

The proof proceeds by defining a vector space antihomomorphism $\imath: \mathcal{B} \rightarrow \mathcal{B}$ and proving that it is an algebra antihomomorphism and an involution of \mathcal{B} in section 2.2. In section 2.3, we define a sesquilinear form $\langle.,$.$\rangle on the ideal I=\mathcal{B} e_{B, 1}$ that is invariant under multiplication by A and B. We prove that $\langle.,$.$\rangle is positive definite if \mu_{i 1}^{(d)}>0$ for $2 \leq i \leq d$. In this case, ρ is a unitary representation of B_{3} on the d-dimensional vector space I. We also prove that if ρ is a unitarizable representation $\mu_{i 1}^{(d)}>0$ for $2 \leq i \leq d$. In section 2.4, we give some examples of using the positivity of $\mu_{i 1}^{(d)}$.

2.2 An Involution of the Image of B_{3}

Let $e_{M, i}$ be the eigenprojection of M to the eigenspace of λ_{i}, where $M \in\{A, B\}$. That is

$$
e_{M, i}=\prod_{j \neq i} \frac{M-\lambda_{j}}{\lambda_{i}-\lambda_{j}}=\frac{P_{i}^{(d)}(M)}{P_{i}^{(d)}\left(\lambda_{i}\right)} .
$$

Note that $e_{A, i}$ and $e_{B, i}$ always exist because the eigenvalues are distinct. Also $e_{M, i} e_{M, j}=$ $\delta_{i j} e_{M, i}$. Define $\mu_{j i}^{(d)}$ by $e_{B, i} e_{A, j} e_{B, i}=\mu_{j i}^{(d)} e_{B, i}$. Note that

$$
\mu_{j i}^{(d)}=\frac{Q_{j i}^{(d)}}{P_{i}^{(d)}\left(\lambda_{i}\right) P_{j}^{(d)}\left(\lambda_{j}\right)}
$$

Lemma 2.1. The $\mu_{i j}^{(d)}$ are real numbers.
Proof: For $i \neq j$, the proof is by direct computation using $\overline{\lambda_{i}}=\lambda_{i}^{-1}$ and $\bar{\gamma}=\gamma^{-1}$. For example, for $d=5$:

$$
\begin{aligned}
\mu_{i j}^{(d)} & =\frac{\left(\gamma^{2}+\lambda_{i} \gamma+\lambda_{i}^{2}\right)\left(\gamma^{2}+\lambda_{j} \gamma+\lambda_{j}^{2}\right) \prod_{k \neq i, j}\left(\gamma^{2}+\lambda_{i} \lambda_{k}\right)\left(\gamma^{2}+\lambda_{j} \lambda_{k}\right)}{\gamma^{8} \prod_{k \neq i}\left(\lambda_{i}-\lambda_{k}\right) \prod_{k \neq j}\left(\lambda_{j}-\lambda_{k}\right)} \\
& =\frac{\left(\gamma \lambda_{i}^{-1}+1+\gamma^{-1} \lambda_{i}\right)\left(\gamma \lambda_{j}^{-1}+1+\gamma^{-1} \lambda_{j}\right)}{\left(1-\lambda_{j} \lambda_{i}^{-1}\right)\left(1-\lambda_{i} \lambda_{j}^{-1}\right)} \frac{\prod_{k \neq i, j}\left(\gamma^{2}+\lambda_{i} \lambda_{k}\right)\left(\gamma^{2}+\lambda_{j} \lambda_{k}\right)}{\gamma^{6} \prod_{k \neq i, j}\left(\lambda_{i}-\lambda_{k}\right)\left(\lambda_{j}-\lambda_{k}\right)}
\end{aligned}
$$

The first of the two quotients is easily seen to be real. For the second quotient,

$$
\overline{\left(\frac{\prod_{k \neq i, j}\left(\gamma^{2}+\lambda_{i} \lambda_{k}\right)\left(\gamma^{2}+\lambda_{j} \lambda_{k}\right)}{\gamma^{6} \prod_{k \neq i, j}\left(\lambda_{i}-\lambda_{k}\right)\left(\lambda_{j}-\lambda_{k}\right)}\right)}=\frac{\prod_{k \neq i, j}\left(\gamma^{-2}+\lambda_{i}^{-1} \lambda_{k}^{-1}\right)\left(\gamma^{-2}+\lambda_{j}^{-1} \lambda_{k}^{-1}\right)}{\gamma^{-6} \prod_{k \neq i, j}\left(\lambda_{i}^{-1}-\lambda_{k}^{-1}\right)\left(\lambda_{j}^{-1}-\lambda_{k}^{-1}\right)}
$$

Multiply the numerator and the denominator by $\gamma^{12} \lambda_{i}^{3} \lambda_{j}^{3} \prod_{k \neq i, j} \lambda_{k}^{2}$ to see that this is still

$$
\frac{\prod_{k \neq i, j}\left(\gamma^{2}+\lambda_{i} \lambda_{k}\right)\left(\gamma^{2}+\lambda_{j} \lambda_{k}\right)}{\gamma^{6} \prod_{k \neq i, j}\left(\lambda_{i}-\lambda_{k}\right)\left(\lambda_{j}-\lambda_{k}\right)}
$$

For the case $i=j$, note that $\sum_{k=1}^{d} e_{A, k}=I$, so

$$
\begin{aligned}
e_{B, i} & =e_{B, i} I e_{B, i} \\
& =e_{B, i} \sum_{k=1}^{d} e_{A, k} e_{B, i} \\
& =\sum_{k=1}^{d} e_{B, i} e_{A, k} e_{B, i} \\
& =\sum_{k=1}^{d} \mu_{k i}^{(d)} e_{B, i}
\end{aligned}
$$

Hence $\sum_{k=1}^{d} \mu_{k i}^{(d)}=1$, and $\mu_{i i}^{(d)}=1-\sum_{k \neq i} \mu_{k i}^{(d)}$ is real.
Proposition 2.2. $S=\left\{e_{A, i} e_{B, 1} e_{A, j} \mid 1 \leq i, j \leq d, i \neq j\right\} \cup\left\{e_{A, i} \mid 1 \leq i \leq d\right\}$ is a basis for the \mathbb{C}-vector space \mathcal{B}.

Proof: Suppose

$$
\sum_{i=1}^{d} \sum_{\substack{j=1 \\ j \neq i}}^{d} \alpha_{i j} e_{A, i} e_{B, 1} e_{A, j}+\sum_{i=1}^{d} \alpha_{i i} e_{A, i}=0
$$

Multiply by $e_{A, i}$ both on the left and on the right. The only term of the sum that survives is

$$
\alpha_{i i} e_{A, i}=0
$$

Let v_{i} be an eigenvector of A corresponding to λ_{i}. Then $e_{A, i} v_{i}=v_{i} \neq 0$, so $e_{A, i} \neq 0$. Hence $\alpha_{i i}=0$.

For $i \neq j$, multiplying by $e_{A, i}$ on the left and by $e_{A, j}$ on the right shows

$$
\alpha_{i j} e_{A, i} e_{B, 1} e_{A, j}=0
$$

But

$$
e_{B, 1} e_{A, i} e_{B, 1} e_{A, j} e_{B, 1}=\left(e_{B, 1} e_{A, i} e_{B, 1}\right)\left(e_{B, 1} e_{A, j} e_{B, 1}\right)=\mu_{j 1}^{(d)} \mu_{i 1}^{(d)} e_{B, 1} \neq 0
$$

so $e_{A, i} e_{B, 1} e_{A, j} \neq 0$. Hence $\alpha_{i j}=0$. So S is linearly independent. It has d^{2} elements, hence it is a basis of the d^{2}-dimensional space \mathcal{B}.

Note: if we know $\mu_{i i}^{(d)} \neq 0$ for all i, we can use the basis $S^{\prime}=\left\{e_{A, i} e_{B, 1} e_{A, j} \mid\right.$ $1 \leq i, j \leq d\}$ instead of S. As $e_{A, i} e_{B, 1} e_{A, i}=\mu_{i i}^{(d)} e_{A, i}, S^{\prime}$ is almost the same as S. Since S^{\prime} is more symmetric than S, its use makes the following computations simpler and the arguments more transparent. In the most general case however, $\mu_{i i}^{(d)}$ could be 0 .

Define $\imath: \mathbb{C} \rightarrow \mathbb{C}$ as the usual complex conjugation. Extend \imath to $\mathcal{B} \rightarrow \mathcal{B}$ by requiring \imath to be an antilinear map with $\imath\left(e_{A, i}\right)=e_{A, i}$ and $\imath\left(e_{A, i} e_{B, 1} e_{A, j}\right)=e_{A, j} e_{B, 1} e_{A, i}$ for $i \neq j$. Note that $\imath\left(\mu_{i j}^{(d)}\right)=\mu_{i j}^{(d)}$.

Lemma 2.3. \imath as defined above is an antihomomorphism on the algebra \mathcal{B} and $\imath^{2}=\operatorname{Id}_{\mathcal{B}}$.
Proof: It is sufficient to prove that \imath acts as an antihomomorphism on the elements of the basis $S . S$ has two different types of elements, therefore we will have four different cases. Since each can verified directly by a simple computation, we will show the details for only one:
1.

$$
\imath\left(e_{A, i} e_{A, j}\right)=\imath\left(e_{A, j}\right) \imath\left(e_{A, i}\right)
$$

2.

$$
\begin{aligned}
\imath\left(e_{A, i}\left(e_{A, j} e_{B, 1} e_{A, k}\right)\right) & =\imath\left(e_{A, j} e_{B, 1} e_{A, k}\right) \imath\left(e_{A, i}\right) \\
\imath\left(\left(e_{A, i} e_{B, 1} e_{A, j}\right) e_{A, k}\right) & =\imath\left(e_{A, k}\right) \imath\left(e_{A, j} e_{B, 1} e_{A, k}\right)
\end{aligned}
$$

3. For $i \neq k$,

$$
\imath\left(\left(e_{A, i} e_{B, 1} e_{A, j}\right)\left(e_{A, k} e_{B, 1} e_{A, l}\right)\right)=\left(e_{A, l} e_{B, 1} e_{A, k}\right)\left(e_{A, j} e_{B, 1} e_{A, i}\right)
$$

4.

$$
\begin{aligned}
\imath\left(\left(e_{A, i} e_{B, 1} e_{A, j}\right)\left(e_{A, j} e_{B, 1} e_{A, k}\right)\right) & =\imath\left(e_{A, i}\left(e_{B, 1} e_{A, j} e_{B, 1}\right) e_{A, k}\right) \\
& =\imath\left(e_{A, i}\left(\mu_{j 1}^{(d)} e_{B, 1}\right) e_{A, k}\right) \\
& =\overline{\mu_{j 1}^{(d)}} \imath\left(e_{A, i} e_{B, 1} e_{A, k}\right) \\
& =\mu_{j 1}^{(d)} e_{A, k} e_{B, 1} e_{A, i}
\end{aligned}
$$

Also

$$
\begin{aligned}
\imath\left(e_{A, j} e_{B, 1} e_{A, k}\right) \imath\left(e_{A, i} e_{B, 1} e_{A, j}\right) & =\left(e_{A, k} e_{B, 1} e_{A, j}\right)\left(e_{A, j} e_{B, 1} e_{A, i}\right) \\
& =e_{A, k}\left(e_{B, 1} e_{A, j} e_{B, 1}\right) e_{A, i} \\
& =\mu_{j 1}^{(d)} e_{A, k} e_{B, 1} e_{A, i}
\end{aligned}
$$

That $\imath^{2}=\operatorname{Id}_{\mathcal{B}}$ follows immediately from the definition.
Lemma 2.4. $\imath\left(e_{B, 1}\right)=e_{B, 1}$.
Proof: First note that $\imath\left(e_{A, i} e_{B, 1} e_{A, i}\right)=\imath\left(\mu_{i i}^{(d)} e_{A, i}\right)=\mu_{i i}^{(d)} e_{A, i}=e_{A, i} e_{B, 1} e_{A, i}$. Multiply $e_{B, 1}$ by $1=\sum_{i=1}^{d} e_{A, i}$ on both sides:

$$
e_{B, 1}=\left(\sum_{i=1}^{d} e_{A, i}\right) e_{B, 1}\left(\sum_{j=1}^{d} e_{A, j}\right)=\sum_{i, j} e_{A, i} e_{B, 1} e_{A, j}
$$

into

$$
\begin{aligned}
\imath\left(e_{B, 1}\right) & =\imath\left(\sum_{i=1}^{d} \sum_{j=1}^{d} e_{A, i} e_{B, 1} e_{A, j}\right)=\sum_{i=1}^{d} \sum_{j=1}^{d} \imath\left(e_{A, i} e_{B, 1} e_{A, j}\right) \\
& =\sum_{i=1}^{d} \sum_{j=1}^{d}\left(e_{A, j} e_{B, 1} e_{A, i}\right)=e_{B, 1}
\end{aligned}
$$

Corollary 2.5. $\imath(A)=A^{-1}$, and $\imath(I)=I$.
Proof:

$$
\imath(A)=\imath\left(\sum_{i=1}^{d} \lambda_{i} e_{A, i}\right)=\sum_{i=1}^{d} \overline{\lambda_{i}} \imath\left(e_{A, i}\right)=\sum_{i=1}^{d} \lambda_{i}^{-1} e_{A, i}=A^{-1}
$$

Similarly,

$$
\imath(I)=\imath\left(\sum_{i=1}^{d} e_{A, i}\right)=\sum_{i=1}^{d} \imath\left(e_{A, i}\right)=\sum_{i=1}^{d} e_{A, i}=I
$$

Lemma 2.6. $\imath(B)=B^{-1}$.
Proof: Note that $A^{-1} \imath(B) A^{-1}=\imath(A) \imath(B) \imath(A)=\imath(A B A)=\imath(B A B)=\imath(B) A^{-1} \imath(B)$. That is A^{-1} and $\imath(B)$ satisfy the braid relation. So the group homomorphism $\rho^{\prime}: B_{3} \rightarrow$ $\mathrm{GL}(V)$ defined by $\rho^{\prime}\left(\sigma_{1}\right)=A^{-1}$ and $\rho^{\prime}\left(\sigma_{2}\right)=\imath(B)$ is another representation of B_{3} on V. Once again, the braid relation implies that A^{-1} and $\imath(B)$ are conjugates. Hence they have the same eigenvalues, namely $\lambda_{1}^{-1}, \lambda_{2}^{-1}, \ldots, \lambda_{d}^{-1}$.

But $\imath: \mathcal{B} \rightarrow \mathcal{B}$ only permutes the basis S of $\mathcal{B}=\operatorname{End}(V)$. Hence $\imath(\mathcal{B})=$ $\imath(\operatorname{End}(V))=\operatorname{End}(V)$ and A^{-1} and $\imath(B)$ generate the algebra $\operatorname{End}(V)$. That is ρ^{\prime} is also a simple representation of B_{3}

Now, $\left(A^{-1} \imath(B)\right)^{3}=\imath(B A)^{3}=\imath(A B)^{3}=\imath(\delta I)=\bar{\delta}=\delta^{-1} I$ (recall $|\delta|=1$). By Corollary 1.22 , the eigenvalues $\lambda_{1}^{-1}, \lambda_{2}^{-1}, \ldots, \lambda_{d}^{-1}$ (if $\mathrm{d}=2,3$) or the eigenvalues together with δ (if $d=4,5$) uniquely determine a simple representation of B_{3} on V up to isomorphism.

But we already know such a representation, namely $\sigma_{1} \mapsto A^{-1}$ and $\sigma_{2} \mapsto B^{-1}$. Hence there exists $M \in \mathrm{GL}(V)$ such that $A^{-1}=M A^{-1} M^{-1}$ and $\imath(B)=M B^{-1} M^{-1}$. Then M is in the centralizer of A.

$$
\begin{aligned}
M e_{B, 1} M^{-1} & =M\left(\prod_{i=2}^{d} \frac{B-\lambda_{i}}{\lambda_{1}-\lambda_{i}}\right) M^{-1} \\
& =\prod_{i=2}^{d} \frac{M B M^{-1}-\lambda_{i}}{\lambda_{1}-\lambda_{i}} \\
& =\prod_{i=2}^{d} \frac{\imath\left(B^{-1}\right)-\lambda_{i}}{\lambda_{1}-\lambda_{i}} \\
& =\prod_{i=2}^{d} \imath\left(\frac{B^{-1}-\lambda_{i}^{-1}}{\lambda_{1}^{-1}-\lambda_{i}^{-1}}\right) \\
& =\imath\left(\prod_{i=2}^{d} \frac{B^{-1}-\lambda_{i}^{-1}}{\lambda_{1}^{-1}-\lambda_{i}^{-1}}\right)
\end{aligned}
$$

Call the quantity in parentheses ϕ. Note that ϕ is the eigenprojection to the subspace spanned by the eigenvector w_{1} of B^{-1} with eigenvalue λ_{1}^{-1}. But the eigenvectors $w_{1}, w_{2}, \ldots, w_{d}$ of B^{-1} are also eigenvectors of B and span V (the eigenvalues are distinct). Hence $\phi\left(w_{1}\right)=w_{1}=e_{B, 1} w_{1}$ and $\phi\left(w_{i}\right)=0=e_{B, 1} w_{i}$ for $i \geq 2$. That is $\phi=e_{B, 1}$ as their action on the basis $\left\{w_{1}, w_{2}, \ldots, w_{d}\right\}$ is identical. Then Lemma 2.4 shows $\imath\left(M e_{B, 1} M^{-1}\right)=\imath(\phi)=\imath\left(e_{B, 1}\right)=e_{B, 1}$.

Hence conjugation by M is a \mathcal{B}-algebra isomorphism that fixes A and $e_{B, 1}$. But A and $e_{B, 1}$ generate the basis S of \mathcal{B}, hence they generate the algebra \mathcal{B}. So conjugation by M must fix every element of \mathcal{B}. In particular, $\imath(B)=M B^{-1} M^{-1}=B^{-1}$.

2.3 An Invariant Inner Product

Let \mathcal{B} act on the left algebra ideal $\mathcal{B} e_{B, 1}$. Note that $\mathcal{B} e_{B, 1}$ is a d-dimensional \mathbb{C}-vector space, as $e_{B, 1}$ is an idempotent of rank 1 .

Definition 2.7. Define the form $\langle.,$.$\rangle on \mathcal{B} e_{B, 1}$ by $\left\langle a e_{B, 1}, b e_{B, 1}\right\rangle e_{B, 1}=\imath\left(b e_{B, 1}\right) a e_{B, 1}=$ $e_{B, 1} \imath(b) a e_{B, 1}$ for $a e_{B, 1}, b e_{B, 1} \in \mathcal{B} e_{B, 1}$.

It is easy to verify that $\langle\cdot,$.$\rangle is a sesquilinear form on the \mathbb{C}$-vector space $\mathcal{B} e_{B, 1}$. Since $\imath(A)=A^{-1}$ and $\imath(B)=B^{-1}$, this form is clearly invariant under the action by A and B, hence $\rho\left(B_{3}\right)$.

Lemma 2.8. $T=\left\{e_{A, i} e_{B, 1} \mid 2 \leq i \leq d\right\} \cup\left\{A B A e_{B, 1}\right\}$ is a basis for the left algebra ideal $\mathcal{B} e_{B, 1}$ considered as a \mathbb{C}-vector space.

Proof: Suppose

$$
\alpha_{1} A B A e_{B, 1}+\sum_{i=2}^{d} \alpha_{i} e_{A, i} e_{B, 1}=0
$$

Note that $\left(e_{A, i} A B A e_{B, 1}\right)(A B A)^{-1}=e_{A, i} e_{A, 1}=\delta_{1 i} e_{A, 1}$. Since $(A B A)^{-1}$ is invertible $e_{A, i} A B A e_{B, 1}=0$ if and only if $i \geq 2$.

Multiply by $e_{A, 1}$ on the left. Then $\alpha_{1} e_{A, 1} A B A e_{B, 1}=0$ But $e_{A, 1} A B A e_{B, 1} \neq 0$, so $\alpha_{1}=0$.

Now, multiply by $e_{A, i}(i \geq 2)$ on the left. Then $\alpha_{i} e_{A, i} e_{B, 1}=0$. We know $e_{B, 1} e_{A, i} e_{B, 1}=\mu_{i 1}^{(d)} e_{B, 1} \neq 0$ by simplicity, so $e_{A, i} e_{B, 1} \neq 0$ and $\alpha_{i}=0$.

Hence T is a linearly independent set, and we can conclude that it is a basis of the d-dimensional vector space $\mathcal{B} e_{B, 1}$.

Note: if we know $e_{A, 1} e_{B, 1} \neq 0$, we can use the more symmetric basis $T^{\prime}=$ $\left\{e_{A, i} e_{B, 1} \mid 1 \leq i \leq d\right\}$ to simplify this and some of the following computations. Unfortunately, $e_{A, 1} e_{B, 1}$ could in general be 0 . In particular, if $\mu_{11}^{(d)}=0$, then $e_{A, 1} e_{B, 1}=0$ too.

Theorem 2.9. The braid representation \mathcal{B} is unitarizable if and only if $\mu_{i 1}^{(d)}>0$ for all $2 \leq i \leq d$.

Proof: Suppose $\mu_{i 1}^{(d)}>0$ for all $2 \leq i \leq d$. Consider the action of \mathcal{B} on $\mathcal{B} e_{B, 1}$. The sesquilinear form defined above is invariant under the action of $\rho\left(B_{3}\right)$. So it is sufficient to show that it is an inner product. That is we need to prove that it is positive definite. On the basis T :

$$
\begin{aligned}
\left\langle e_{A, i} e_{B, 1}, e_{A, i} e_{B, 1}\right\rangle e_{B, 1} & =e_{B, 1} \imath\left(e_{A, i}\right) e_{A, i} e_{B, 1}=e_{B, 1} e_{A, i} e_{A, i} e_{B, 1} \\
& =e_{B, 1} e_{A, i} e_{B, 1}=\mu_{i 1}^{(d)} e_{B, 1} \\
\left\langle A B A e_{B, 1}, A B A e_{B, 1}\right\rangle e_{B, 1} & =\left\langle e_{B, 1}, e_{B, 1}\right\rangle e_{B, 1}=e_{B, 1} e_{B, 1}=e_{B, 1}
\end{aligned}
$$

Hence $\left\langle e_{A, i} e_{B, 1}, e_{A, i} e_{B, 1}\right\rangle=\mu_{i 1}^{(d)}$ for $i \geq 2$, which is positive by our condition, and $\left\langle A B A e_{B, 1}, A B A e_{B, 1}\right\rangle=1$. We claim that T is orthogonal with respect to $\langle\cdot,$,$\rangle . Let$ $i, j \neq 1$ and $i \neq j$:

$$
\begin{aligned}
\left\langle e_{A, i} e_{B, 1}, e_{A, j} e_{B, 1}\right\rangle e_{B, 1} & =e_{B, 1} \imath\left(e_{A, i}\right) e_{A, j} e_{B, 1}=e_{B, 1} e_{A, i} e_{A, j} e_{B, 1}=0 \\
\left\langle A B A e_{B, 1}, e_{A, i} e_{B, 1}\right\rangle e_{B, 1} & =e_{B, 1} \imath\left(e_{A, i}\right) A B A e_{B, 1}=e_{B, 1} e_{A, i} A B A e_{B, 1}=0
\end{aligned}
$$

We used $e_{A, i} A B A e_{B, 1}=0$ in the last computation just like in Lemma 2.8.
Hence $\langle.,$.$\rangle is a positive definite form. Then \mathcal{B} e_{B, 1}$ is a \mathbb{C}-vector space with inner product $\langle.,$.$\rangle and the action of \rho\left(B_{3}\right)$ on this space is unitary.

Conversely, suppose \mathcal{B} is unitarizable. So there exists V a \mathbb{C} vector space with inner product $\langle.,$.$\rangle and \rho: B_{3} \rightarrow \operatorname{GL}(V)$ such that $A=\rho\left(\sigma_{1}\right)$ and $B=\rho\left(\sigma_{2}\right)$ act as unitary operators on V. Let * be the transpose induced by $\langle.,$.$\rangle . We know A^{*}=A^{-1}$ and $B^{*}=B^{-1}$. Let $v \in V$ be an eigenvector of B with eigenvalue λ_{1}. Then $e_{B, 1} v=v$
and

$$
\begin{aligned}
0 \leq\left\langle e_{A, i} e_{B, 1} v, e_{A, i} e_{B, 1} v\right\rangle & =\left\langle v, e_{B, 1}^{*} e_{A, i}^{*} e_{A, i} e_{B, 1} v\right\rangle \\
& =\left\langle v, e_{B, 1} e_{A, i} e_{B, 1} v\right\rangle=\left\langle v, \mu_{i 1}^{(d)} e_{B, 1} v\right\rangle=\mu_{i 1}^{(d)}\langle v, v\rangle
\end{aligned}
$$

Hence $\mu_{i 1}^{(d)} \geq 0$. We know $\mu_{i 1}^{(d)} \neq 0$ for $i \geq 2$ by simplicity, so $\mu_{i 1}^{(d)}>0$ in this case.

2.4 Examples

Example 2.10. $d=2$

$$
\begin{aligned}
\mu_{21}^{(2)} & =\frac{-\lambda_{1}^{2}+\lambda_{1} \lambda_{2}-\lambda_{2}^{2}}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{2}-\lambda_{1}\right)} \\
& =\frac{\lambda_{1}^{2}-\lambda_{1} \lambda_{2}+\lambda_{2}^{2}}{\left(\lambda_{1}-\lambda_{2}\right)^{2}} \\
& =1+\frac{\lambda_{1} \lambda_{2}}{\left(\lambda_{1}-\lambda_{2}\right)^{2}} \\
& =1-\frac{1}{\left(\lambda_{1} / \lambda_{2}-1\right)\left(\lambda_{2} / \lambda_{1}-1\right)} \\
& =1-\left|\frac{\lambda_{1}}{\lambda_{2}}-1\right|^{-2}>0
\end{aligned}
$$

That is

$$
\left|\frac{\lambda_{1}}{\lambda_{2}}-1\right|>1
$$

or $\lambda_{1} / \lambda_{2}=e^{i t}$ for $\pi / 3<t<5 \pi / 3$.
Example 2.11. $d=3$

$$
\begin{aligned}
\mu_{21}^{(3)} & =\frac{\left(\lambda_{1}^{2}+\lambda_{2} \lambda_{3}\right)\left(\lambda_{2}^{2}+\lambda_{1} \lambda_{3}\right)}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)} \\
& =\frac{\left(1+\frac{\lambda_{3}}{\lambda_{1}} \frac{\lambda_{2}}{\lambda_{1}}\right)\left(\frac{\lambda_{2}}{\lambda_{1}}+\frac{\lambda_{3}}{\lambda_{2}}\right)}{\left(1-\frac{\lambda_{2}}{\lambda_{1}}\right)\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right)\left(1-\frac{\lambda_{3}}{\lambda_{1}}\right)\left(\frac{\lambda_{2}}{\lambda_{1}}-\frac{\lambda_{3}}{\lambda_{1}}\right)} \\
\mu_{31}^{(3)} & =\frac{\left(\lambda_{1}^{2}+\lambda_{2} \lambda_{3}\right)\left(\lambda_{3}^{2}+\lambda_{1} \lambda_{2}\right)}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)} \\
& =\frac{\left(1+\frac{\lambda_{2}}{\lambda_{1}} \frac{\lambda_{3}}{\lambda_{1}}\right)\left(\frac{\lambda_{3}}{\lambda_{1}}+\frac{\lambda_{2}}{\lambda_{3}}\right)}{\left(1-\frac{\lambda_{3}}{\lambda_{1}}\right)\left(1-\frac{\lambda_{1}}{\lambda_{3}}\right)\left(1-\frac{\lambda_{2}}{\lambda_{1}}\right)\left(\frac{\lambda_{3}}{\lambda_{1}}-\frac{\lambda_{2}}{\lambda_{1}}\right)}
\end{aligned}
$$

Let $\omega_{2}=\lambda_{2} / \lambda_{1}$ and $\omega_{3}=\lambda_{3} / \lambda_{1}$. Then

$$
\begin{aligned}
& \mu_{21}^{(3)}=\frac{\left(1+\omega_{3} \omega_{2}\right)\left(\omega_{2}+\omega_{3} \omega_{2}^{-1}\right)}{\left|1-\omega_{2}\right|^{2}\left(1-\omega_{3}\right)\left(\omega_{2}-\omega_{3}\right)} \\
& \mu_{31}^{(3)}=\frac{\left(1+\omega_{2} \omega_{3}\right)\left(\omega_{3}+\omega_{2} \omega_{3}^{-1}\right)}{\left|1-\omega_{3}\right|^{2}\left(1-\omega_{2}\right)\left(\omega_{3}-\omega_{2}\right)}
\end{aligned}
$$

Let $e^{2 \pi t_{2}}=\omega_{2}$ and $e^{2 \pi t_{3}}=\omega_{3}$. So we are looking for $\left(t_{2}, t_{3}\right) \in[0,1)^{2}$ such that both $\mu_{21}^{(3)}>0$ and $\mu_{31}^{(3)}>0 . \mu_{21}^{(3)}$ and $\mu_{31}^{(3)}$ can change signs at

$$
\begin{aligned}
\omega_{2} \omega_{3} & =-1 \\
\omega_{3} \omega_{2}^{-1} & =-\omega_{2} \\
\omega_{2} \omega_{3}^{-1} & =-\omega_{3} \\
w_{2} & =1 \\
w_{3} & =1 \\
w_{2} & =w_{3}
\end{aligned}
$$

These equations can be transformed into linear equations in t_{2} and t_{3} by taking logs:

$$
\begin{aligned}
t_{2}+t_{3} & =\frac{1}{2} \\
t_{3} & =2 t_{2}+\frac{1}{2} \\
t_{2} & =2 t_{3}+\frac{1}{2} \\
t_{2} & =0 \\
t_{3} & =0 \\
t_{2} & =t_{3}
\end{aligned}
$$

Of course, the above equations are all understood mod 1.
Computation by Maple shows that $\mu_{21}^{(3)}>0$ and $\mu_{31}^{(3)}>0$ in the open set colored black on the plot below. The grey regions are those where one of $\mu_{21}^{(3)}$ and $\mu_{31}^{(3)}$ is positive and the other is negative. The line $t_{2}=t_{3}$ corresponds to $\lambda_{2}=\lambda_{3}$, in which case the representation cannot be unitarizable.

Figure 2.1: Region of unitarizability for $d=3$

Chapter 3

Tensor Categories

3.1 Definitions

Definition 3.1. A monoidal category $\tilde{\mathcal{C}}$ is a category \mathcal{C} with a tensor product $\otimes: \tilde{\mathcal{C}} \times \tilde{\mathcal{C}} \rightarrow$ $\tilde{\mathcal{C}}$ on the objects and morphisms of $\tilde{\mathcal{C}}$, a natural transformation a between $\otimes \circ\left(\otimes \times \operatorname{Id}_{\tilde{\mathcal{C}}}\right)$ and $\otimes \circ\left(\operatorname{Id}_{\tilde{\mathcal{C}}} \times \otimes\right)$, and a unit object $\mathbb{1} \in \tilde{\mathcal{C}}$ such that
1.

is commutative.
2. $X \otimes \mathbb{1} \cong \mathbb{1} \otimes X \cong X$ for all $X \in \tilde{\mathcal{C}}$.

Definition 3.2. A monoidal category is called strict if a is the identity and $\mathbb{1} \otimes X=$ $X \otimes \mathbb{l}=X$ for any $X \in \tilde{\mathcal{C}}$.

Definition 3.3. A strict monoidal category is called rigid if every object $X \in \tilde{\mathcal{C}}$ has a dual object $X^{*} \in \tilde{\mathcal{C}}$ and a pair of morphisms $i_{X}: \mathbb{1} \rightarrow X \otimes X^{*}$ and $e_{X}: X^{*} \otimes X \rightarrow \mathbb{1}$ such that the maps

$$
X=\mathbb{1} \otimes X \xrightarrow{i_{X} \otimes \operatorname{ld}_{X}} X \otimes X^{*} \otimes X \xrightarrow{\operatorname{Id}_{X} \otimes e_{X}} X \otimes \mathbb{1}=X
$$

$$
X^{*}=X^{*} \otimes \mathbb{1} \xrightarrow{\mathrm{Id}_{X} \otimes i_{X}} X^{*} \otimes X \otimes X^{*} \xrightarrow{e_{X} \otimes \operatorname{Id}_{X}} \mathbb{1} \otimes X^{*}=X^{*}
$$

are Id_{X} and $\mathrm{Id}_{X^{*}}$.
Definition 3.4. A tensor category is a monoidal category equipped with a direct sum $\oplus: \tilde{\mathcal{C}} \times \tilde{\mathcal{C}} \rightarrow \tilde{\mathcal{C}}$ and an operation of projection onto subobjects.

Definition 3.5. The Grothendieck semiring \mathcal{R} of the tensor category $\tilde{\mathcal{C}}$ is the set of equivalence classes of objects of $\tilde{\mathcal{C}}$ with \oplus and \otimes as addition and multiplication.

We call an object X in category simple if $\operatorname{End}(X)$ is a field. We will always assume that $\mathbb{1}$ is simple. A tensor category is semisimple if each object is semisimple, that is it is a direct sum of simple objects.

Definition 3.6. A monoidal category $\tilde{\mathcal{C}}$ is called braided if there exists a family c of natural isomorphisms $c_{V, W}: V \otimes W \rightarrow W \otimes V$ such that:

and

commute. Naturality means that for any morphisms $f: X \rightarrow X^{\prime}$ and $g: Y \rightarrow Y^{\prime}$

$$
(f \otimes g) \circ c_{X, Y}=c_{X^{\prime}, Y^{\prime}} \circ(f \otimes g) .
$$

This is a generalization of the flip, which is the natural isomorphism between $P_{A, B}: A \otimes B \rightarrow B \otimes A$, where A and B are modules over the commutative ring R. Note that the flip is involutive, that is $P_{B, A} \circ P_{A, B}=\operatorname{Id}_{A \otimes B}$. This is not required for a braiding, but the property is generalized in the notion of a twist:

Definition 3.7. A twist in a braided monoidal category $\tilde{\mathcal{C}}$ is family θ of isomorphisms $\theta_{V}: V \rightarrow V$ such that

$$
\theta_{X \otimes Y}=c_{Y, X} \circ c_{X, Y} \circ\left(\theta_{X} \otimes \theta_{Y}\right)
$$

for all $X, Y \in \tilde{\mathcal{C}}$. θ is required to be natural in the sense that for any morphism $f: X \rightarrow Y, \theta_{Y} \circ f=f \circ \theta_{X}$.

Definition 3.8. A ribbon category $\tilde{\mathcal{C}}$ is a rigid braided monoidal category with a compatible twist, meaning:

$$
\left(\theta_{X} \otimes \operatorname{Id}_{X^{*}}\right) \circ i_{X}=\left(\operatorname{Id}_{X} \otimes \theta_{X^{*}}\right) \circ i_{X} .
$$

In a ribbon category, we can define the trace of an endomorphism and the dimension of an object as follows.

Definition 3.9. Let $\tilde{\mathcal{C}}$ be a ribbon category, $X \in \tilde{\mathcal{C}}$, and $f \in \operatorname{End}(X)$. Then the trace of f is defined as

$$
\operatorname{tr}(f)=e_{X} \circ c_{X, X^{*}} \circ\left(\left(\theta_{X} \circ f\right) \otimes \operatorname{Id}_{X^{*}}\right) \circ i_{X} \in \operatorname{End}(\mathbb{1})
$$

and the categorical dimension of X as

$$
\operatorname{dim} X=\operatorname{tr}\left(\operatorname{Id}_{X}\right)
$$

It can be shown (see [13]) that $\operatorname{tr}(f g)=\operatorname{tr}(g f)$ for any $f \in \operatorname{Hom}(X, Y)$ and $g \in \operatorname{Hom}(Y, X)$. Also $\operatorname{tr}(f \otimes g)=\operatorname{tr}(f) \operatorname{tr}(g)$ for any $f \in \operatorname{End}(X)$ and $g \in \operatorname{End}(Y)$. If $f \in \operatorname{End}(\mathbb{1})$, then $\operatorname{tr}(f)=f$.

3.2 An Application of Braid Representations

Let $\tilde{\mathcal{C}}$ be a semisimple ribbon tensor category with $\operatorname{End}(\mathbb{1})=F$ an algebraically closed field. Then $\operatorname{Hom}(X, Y)$ is an F-vector space for all $X, Y \in \tilde{\mathcal{C}}$ and $\operatorname{End}(X)$ is a semisimple F-algebra.

Assume that $\tilde{\mathcal{C}}$ contains a self dual object Z, that is $\mathbb{1}$ appears exactly once in the direct sum decomposition of $Z \otimes Z$. Let $p \in \operatorname{End}(Z \otimes Z)$ be the projection to $\mathbb{1}$ and $p^{(1)}=p \otimes \operatorname{Id}_{Z}$ and $p^{(2)}=\operatorname{Id}_{Z} \otimes p$ in $\operatorname{End}\left(Z^{\otimes 3}\right)$.

Lemma 3.10.

$$
p^{(2)} p^{(1)} p^{(2)} \neq 0 .
$$

Proof: Let $q=i_{Z} e_{Z} \in \operatorname{End}\left(Z^{\otimes 2}\right), q^{(1)}=q \otimes \operatorname{Id}_{Z}$, and $q^{(2)}=\operatorname{Id}_{Z} \otimes q$. Then

$$
q^{(2)} q^{(1)} q^{(2)}=\left(\operatorname{Id}_{Z} \otimes i_{Z}\right) \underbrace{\left(\operatorname{Id}_{Z} \otimes e_{Z}\right)\left(i_{Z} \otimes \operatorname{Id}_{Z}\right)}_{\operatorname{Id}_{Z}} \underbrace{\left(e_{Z} \otimes \operatorname{Id}_{Z}\right)\left(\operatorname{Id}_{Z} \otimes i_{Z}\right)}_{\operatorname{Id}_{Z}}\left(\operatorname{Id}_{Z} \otimes e_{Z}\right)=q^{(2)}
$$

Note $q^{(1)} \neq 0$ because

$$
\operatorname{Id}_{Z}=\underbrace{\left(\operatorname{Id}_{Z} \otimes e_{Z}\right)\left(i_{Z} \otimes \operatorname{Id}_{Z}\right)}_{\operatorname{Id}_{Z}} \underbrace{\left(e_{Z} \otimes \operatorname{Id}_{Z}\right)\left(\operatorname{Id}_{Z} \otimes i_{Z}\right)}_{\operatorname{Id}_{Z}}=\left(\operatorname{Id}_{Z} \otimes e_{Z}\right) q^{(1)}\left(\operatorname{Id}_{Z} \otimes i_{Z}\right)
$$

and similarly $q^{(2)} \neq 0$ either. Let $\alpha=e_{Z} i_{Z} \in \operatorname{End}(\mathbb{1})=F$. Then

$$
q^{2}=i_{Z} \underbrace{e_{Z} i_{Z}}_{\alpha} e_{Z}=\alpha q
$$

and hence $q_{i}^{2}=\alpha q_{i}$ for $i=1,2$.
Observe that $q \in \operatorname{End}\left(Z^{\otimes 2}\right)$ which is a semisimple F-algebra, hence isomorphic to a direct sum of full matrix rings. Suppose $\alpha=0$ hence q is nilpotent. As q can only be nonzero on the direct summand $\mathbb{1}$ of $Z^{\otimes 2}$ and the multiplicity of $\mathbb{1}$ is $1, q$ is nilpotent if and only if $q=0$. But then $q^{(1)}=0$, which we have proven is not the case. Therefore $\alpha \neq 0$.

Note $\left(1 / \alpha q^{(i)}\right)^{2}=1 / \alpha q^{(i)}$ for $i=1,2$ and $\operatorname{im} 1 / \alpha q^{(i)}=\operatorname{im} p_{i}$. Hence

$$
p^{(2)} p^{(1)} p^{(2)}=\frac{1}{\alpha^{3}} q^{(2)} q^{(1)} q^{(2)}=\frac{1}{\alpha^{3}} q^{(2)} \neq 0
$$

Let $f \in \operatorname{End}\left(Z^{\otimes 2}\right)$. Note that $Z \otimes \mathbb{1}=Z$, hence $p^{(2)}\left(f \otimes \operatorname{Id}_{Z}\right) p^{(2)}$ is a multiple of $p^{(2)}$. In particular, let $f=p_{X}$ be a projection onto some term X in a direct sum decomposition of $Z^{\otimes 2}$. Define $\operatorname{dim} X$ by

$$
(\operatorname{dim} X) p^{(2)}=(\operatorname{dim} Z)^{2} p^{(2)}\left(p_{X} \otimes \operatorname{Id}_{Z}\right) p^{(2)}
$$

where we choose $\operatorname{dim} Z$ so that $\operatorname{dim} \mathbb{1}=1$. This determines $\operatorname{dim} Z$ up to sign and $\operatorname{dim} X$ is clearly independent of the choice of sign. It can be checked that this definition of $\operatorname{dim} X$ is equivalent to the usual one given in Definition 3.9 for direct summands in $Z^{\otimes 2}$.

Let $c_{1}=c_{Z, Z} \otimes \operatorname{Id}_{Z}$ and $c_{2}=\operatorname{Id}_{Z} \otimes c_{Z, Z}$. By the definition of braiding $c_{1} c_{2} c_{1}=$ $c_{2} c_{1} c_{2}$. Assume $Z^{\otimes 2}=\bigoplus_{i} X_{i}$ where the X_{i} are d nonisomorphic simple objects of nonzero dimension. Then the braiding $c_{Z, Z}$ acts on these simple objects via scalars λ_{i}. Assume that the λ_{i} are distinct.

Proposition 3.11. In this case, we can define an action of B_{3} on $V=\operatorname{Hom}\left(Z, Z^{\otimes 3}\right)$ by $\sigma_{i} f=c_{i} \circ f$ for $f \in \operatorname{Hom}\left(Z, Z^{\otimes 3}\right)$. Then V is a simple B_{3} module and each eigenvalue of σ_{i} is of multiplicity 1 .

Proof: Index the X_{i} so that $X_{1}=\mathbb{1} \subseteq Z^{\otimes 2}$. Then $p^{(1)}=p_{X_{1}} \otimes \operatorname{Id}_{Z}$ and $p^{(2)}=\operatorname{Id}_{Z} \otimes p_{X_{1}}$. Let $\imath: \mathbb{1} \rightarrow Z^{\otimes 2}$ be a nonzero morphism. Then $\operatorname{im} \imath=x_{1}$. As $\operatorname{dim} X_{i} \neq 0$, the projections $p^{(i)}$ must be nonzero when restricted to $Z \otimes X_{1} \subseteq Z^{\otimes 3}$. Hence $v_{i}=\left(p^{(i)} \otimes \operatorname{Id}_{Z}\right)\left(\operatorname{Id}_{Z} \otimes \imath\right) \neq$ 0 and $\sigma_{1} v_{i}=\lambda_{i} v_{i}$. As $\operatorname{dim} \operatorname{Hom}\left(Z, Z^{\otimes 3}\right)=\operatorname{dim} \operatorname{Hom}\left(Z^{\otimes 2}, Z^{\otimes 2}\right)$, the v_{i} form an eigenbasis of V for c_{1}.

Suppose V is not simple. Let $0 \subseteq V_{1} \subseteq \ldots \subseteq V_{n}=V$ be a composition series of V. Clearly, each $p^{(i)} \otimes \operatorname{Id}_{Z}$ acts nonzero on exactly one simple factor in the series, and each simple factor has at least one $p^{(i)} \otimes \mathrm{Id}_{Z}$ acting nonzero on it. There are at least two simple factors so we can choose i so that $p^{(i)} \otimes \operatorname{Id}_{Z}$ and $p^{(1)}$ act nonzero on different simple factors. Since $p^{(2)}$ is conjugate to $p^{(1)}, p^{(2)}$ acts nonzero on the same simple factor as $p^{(1)}$, Hence $p^{(2)}\left(p^{(i)} \otimes \operatorname{Id}_{Z}\right) p^{(2)}=0$ which would contradict $\operatorname{dim} x_{i} \neq 0$.

Corollary 3.12. We have

$$
\operatorname{dim} X_{i}=\mu_{i 1}^{(d)}(\operatorname{dim} Z)^{2}
$$

with $\mu_{i 1}^{(d)}$ as in Chapter 2.
Proof: As the eigenvalues are all of multiplicity 1, we have well-defined eigenprojections $p^{(i)}=P_{i}^{(d)}\left(c_{1}\right) / P_{i}^{(d)}\left(\lambda_{i}\right)$ and $p^{(2)}=P_{1}^{(d)}\left(c_{2}\right) / P_{1}^{(d)}\left(\lambda_{1}\right)$. Hence

$$
\begin{aligned}
\left(\operatorname{dim} X_{i}\right) \frac{P_{1}^{(d)}\left(c_{2}\right)}{P_{1}^{(d)}\left(\lambda_{1}\right)} & =(\operatorname{dim} Z)^{2} \frac{P_{1}^{(d)}\left(c_{2}\right) P_{i}^{(d)}\left(c_{1}\right) P_{1}^{(d)}\left(c_{2}\right)}{P_{1}^{(d)}\left(\lambda_{1}\right) P_{i}^{(d)}\left(\lambda_{i}\right) P_{1}^{(d)}\left(\lambda_{1}\right)} \\
& =(\operatorname{dim} Z)^{2} \frac{Q_{i 1}^{(d)} P_{1}^{(d)}\left(c_{2}\right)}{P_{1}^{(d)}\left(\lambda_{1}\right) P_{i}^{(d)}\left(\lambda_{i}\right) P_{1}^{(d)}\left(\lambda_{1}\right)} .
\end{aligned}
$$

In particular, let \mathcal{C} be a braided tensor category whose Grothendieck semiring is isomorphic to that of the representation category of \mathfrak{g} where \mathfrak{g} is of orthogonal or symplectic type. Let $Z \in \mathcal{C}$ be the object corresponding to the vector representation of \mathfrak{g}. Then $Z \otimes Z \cong \mathbb{1} \otimes X \otimes Y$ and the above result applies with $d=3$. Choose alpha $\in \mathbb{C}$ so that the eigenvalues of c_{1} on X and Y are αq and $-\alpha q^{-1}$. Denote the eigenvalue on
$\mathbb{1}$ by r^{-1}. It can be shown that α is a fourth root of 1 , but we will not need it in this discussion. The categorical dimensions are

$$
\begin{gathered}
\operatorname{dim} X=\left(\frac{r q-r^{-1} q^{-1}}{q^{2}-q^{-2}}+1\right) \frac{r-r^{-1}}{q-q^{-1}} \\
\operatorname{dim} Y=\left(\frac{r q^{-1}-r^{-1} q}{q^{2}-q^{-2}}+1\right) \frac{r-r^{-1}}{q-q^{-1}} \\
\operatorname{dim} Z= \pm\left(\frac{r-r^{-1}}{q-q^{-1}}+1\right)
\end{gathered}
$$

It is possible to prove that $r=q^{N-1}$ for \mathfrak{g} is orthogonal type and $r=q^{-N-1}$ if it is symplectic.

If \mathfrak{g} is an exceptional Lie algebra, we can choose Z to correspond to the adjoint representation to get a 5 -dimensional simple representation of B_{3}. The categorical dimesnions of the 5 simple summands of $\mathbb{Z} \otimes Z$ can be computed like in the previous case (see [11]).

Bibliography

[1] M. N. Abdulrahim. A faithfulness criterion for the Gassner representation of the pure braid group. Proc. Amer. Math. Soc., 125(5):1249-1257, 1997.
[2] E. Artin. Theory of braids. Ann. of Math. (2), 48:101-126, 1947.
[3] J. S. Birman. Braids, links, and mapping class groups. Princeton University Press, Princeton, N.J., 1974. Annals of Mathematics Studies, No. 82.
[4] V. G. Drinfeld. On the structure of quasitriangular quasi-Hopf algebras. Funktsional. Anal. i Prilozhen., 26(1):78-80, 1992.
[5] J. Fröhlich and T. Kerler. Quantum groups, quantum categories and quantum field theory. Springer-Verlag, Berlin, 1993.
[6] V. G. Kac. Infinite-dimensional Lie algebras. Cambridge University Press, Cambridge, third edition, 1990.
[7] C. Kassel. Quantum groups. Springer-Verlag, New York, 1995.
[8] D. Kazhdan and H. Wenzl. Reconstructing monoidal categories. Adv. Soviet Math., 16(2):111-135, 1993.
[9] C. C. Squier. The Burau representation is unitary. Proc. Amer. Math. Soc., 90(2):199-202, 1984.
[10] I. Tuba. Low-dimensional unitary representations of B_{3}. Proc. Amer. Math. Soc., to appear. Preprint posted at http://euclid.ucsd.edu~ituba and http://xxx.lanl.gov.
[11] I. Tuba and H. Wenzl. Representations of the braid group B_{3} and of $S L(2, Z)$. $P a$ cific J. Math., to appear. Preprint posted at http://euclid.ucsd.edu~ituba and http://xxx.lanl.gov.
[12] V. Turaev and H. Wenzl. Semisimple and modular categories from link invariants. Math. Ann., 309(3):411-461, 1997.
[13] V. G. Turaev. Quantum invariants of knots and 3-manifolds. Walter de Gruyter \& Co., Berlin, 1994.
[14] V. S. Varadarajan. Lie groups, Lie algebras, and their representations. Springer-Verlag, New York, 1984. Reprint of the 1974 edition.
[15] H. Wenzl. Quantum groups and subfactors of type B, C, and D. Comm. Math. Phys., 133(2):383-432, 1990.
[16] H. Wenzl. C^{*} tensor categories from quantum groups. J. Amer. Math. Soc., 11(2):261-282, 1998.

