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ABSTRACT OF THE DISSERTATION

Braid Representations and Tensor Categories

by

Imre Tuba

Doctor of Philosophy in Mathematics

University of California San Diego, 2000

Professor Hans Wenzl, Chair

We classify all simple representations of the braid group B3 with dimension d � 5

over any algebraically closed �eld. In particular, we prove that a simple d-dimensional

representation � : B3 ! GL(V ) is determined up to isomorphism by the eigenvalues

�1; �2; : : : ; �d of the image of the generators �1 and �2 for d = 2; 3 and a choice of a

Æ =
p
det �(�1) for d = 4 or a choice of Æ = 5

p
det �(�1) for d = 5. We also showed

that such representations exist whenever the eigenvalues and Æ are not zeros of certain

explicitly given rational functions Q
(d)
ij . In this case, we construct the matrices via which

the generators act on V .

We go on to give a necessary and suÆcient condition for the unitarizability of

simple representations of B3 on complex vector spaces of dimension d � 5. We show

that a simple representation � : B3 ! GL(V ) (for dimV � 5) is unitarizable if and only

if the eigenvalues �1; �2; : : : ; �d of �(�1) are distinct, satisfy j�ij = 1 and �
(d)
i1 > 0 for

2 � i � d, where the �
(d)
i1 are functions of the eigenvalues, related to Q

(d)
ij .

Finally, we describe how these results can be used to compute categorical dimen-

sions of objects in braided tensor categories and give an example of such a computation.

ix



Chapter 1

Simple Representations of

Dimension d � 5

1.1 Introduction

In this chapter, we will characterize all simple representations of B3 of dimen-

sion d � 5. We will mostly follow the argument presented in [11] with some variations.

Suppose � : B3 ! GL(V ) is such a simple representation of B3 on the d-

dimensional vector space V over an algebraically closed �eld F of any characteristic.

Denote the images of �1 and �2 by A and B. In general, we will talk about V as a

B3-module, where B3 acts on V via �.

Then A and B are invertible d � d matrices with entries in F . They satisfy

ABA = BAB and

Proposition 1.1.

a) B = (AB)A (AB)�1 = (ABA)A (ABA)�1 and A = (BA)A (BA)�1 =

(ABA)A (ABA)�1.

b) The eigenvalues of A and B are the same.

c) If fa1; a2; : : : ; adg is a basis of eigenvectors of A, then fb1; b2; : : : ; bdg with bi =

(ABA) ai is a basis of eigenvectors of B.

d) (ABA)2 = (AB)3 = Æ I where Æ = det(A)6=d. Hence (ABA)�1 = Æ�1(ABA) .

1
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e) The map �0 : B3 ! GL(V ) de�ned by �0(�1) = Æ�1=6A and �0(�2) = Æ�1=6B is

still a representation of B3 for any choice of the sixth root. It has the property

det(�0(�i)) = 1 for i = 1; 2.

Proof: (a) follows from the corresponding relations in B3. (b) and (c) follow from (a).

Note that A and B generate all of Md(F ) as � is assumed to be a simple representation.

We know (�1�2)
3 is in the center of B3, so (AB)

3 is in the center of Md(F ), hence it is a

scalar matrix Æ I. Observe that Æd = det(Æ I) = det(AB)3 = det(A)6 by (a). This proves

(d). (e) is obvious.

1.2 A Particularly Nice Example

The key observation, motivated by the following example that will enable us to

compute A and B is that we can assume them to be in a special form.

Example 1.2. Only in this example, we will index the basis starting with 0 and we will

rede�ne i = d� i. So let V be a d+ 1-dimensional vector space with fv0; v1; : : : ; vdg as
a basis and �i�i =  6= 0 for some �xed  2 F and 0 � i � d.

A =

��
i

j

�
�j

�
ij

=

0
BBBBBBBBB@

�0
�

d
d�1

�
�1

�
d

d�2

�
�2 � � � �d

�1
�
d�1
d�2

�
�2 � � � �d

�2
...

. . .
...

�d

1
CCCCCCCCCA

and

B =

�
(�1)i+j

�
i

j

�
�i

�
ij

=

0
BBBBBBBB@

�d

��d�1 �d�1
...

. . .

(�1)d�1 �1 (�1)d
�
d�1
1

�
�1 � � � �1

(�1)d �0 (�1)d+1
�
d
1

�
�0 (�1)d+2

�
d
2

�
�0 � � � �0

1
CCCCCCCCA

satisfy ABA = BAB, and hence yield a representation of B3.
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Proof: By direct computation and Lemma 1.3,

(AB)ij =

dX
k=0

(�1)k+j
�
i

k

�
�k

�
k

j

�
�k = (�1)d+j

�
i

j

�
:

This shows that AB is lower skew-diagonal, that is (AB)ij = 0 for i < j.

Let

S0 =

0
BBBBBBBB@

�d

��d�1
�d�2

(�1)d�0

1
CCCCCCCCA
:

Note S0
2
= (�1)d  I, hence

S0
�1

= (�1)d �1 S =

0
BBBBBBBB@

(�1)d��10

��1d�2

���1d�1
��1d

1
CCCCCCCCA
:

By the above, �i (AB)ii = (�1)i  �i =  S0
ii
. Let S = S0.

Also,

(SAS�1)ij = S0AS0
�1

= (�1)i �iAij (�1)j ��1j =

(�1)i+j �i
�j

�
i

j

�
�j = Bij

Thus A, B and S satisfy the conditions of Lemma 1.11.

Lemma 1.3. For 0 � i; j � d,

dX
k=0

(�1)k
�
d� i

k

��
d� k

j

�
=

�
i

d� j

�
:

Proof: Expand

(1 + x)i ((1 + x) + y)n�i = (1 + x)i
n�iX
k=0

�
n� i

k

�
yk (1 + x)n�i�k =
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n�iX
k=0

�
n� i

k

�
yk (1 + x)n�k =

n�iX
k=0

n�kX
l=0

�
n� i

k

��
n� k

l

�
ykxl:

Now substitute y = �1:

(1 + x)i xn�i =

n�iX
k=0

n�kX
l=0

�
n� i

k

��
n� k

l

�
(�1)k xl:

Also

(1 + x)i xn�i =

iX
k=0

�
i

k

�
xi�kxn�i =

iX
k=0

�
i

k

�
xn�k:

Now equating coeÆcients of xj results in the desired identity.

1.3 Preliminary Results

De�nition 1.4. We will say that A and B are in ordered triangular form if A is up-

per triangular with the �1; �2; : : : ; �d down its diagonal, while B is lower triangular

with�d; �d�1; : : : ; �1 down its diagonal.

We will eventually prove that A and B can be assumed to be in ordered trian-

gular form without any loss of generality. But �rst, we need a few auxiliary results.

Let �1; �2; : : : ; �d be the (not necessarily distinct) eigenvalues of A with corre-

sponding (generalized) eigenvectors a1; a2; : : : ; ad. By Proposition 1.1, they are also the

eigenvalues of B corresponding to the (generalized) eigenvectors bi = ABAai.

Lemma 1.5.

a) �(B3) = hA; Bi = hA; ABi = hB; ABi = hA; ABAi = hB; ABAi = hAB; ABAi

b) If I is any subset of f1; 2; : : : ; dg, then W = span fai j i 2 Ig \ span fbi j i 2 Ig is

invariant under �(B3).

Proof: (a) is an obvious consequence of the analogous statements for B3. For (b), note

that W is invariant under hA; Bi.

Lemma 1.6. Let V be a simple B3-module of dimension d � 3 and V1 = span fa1; : : : ; ad�1g,
V2 = V1 \ (ABA)V1 and V3 = V1 \ (AB)V1 \ (AB)2 V1. Then V2 is ABA-invariant

and V3 is AB-invariant. Moreover V3 ( V2 ( V1 ( V and codimV1 = 1, codimV2 = 2,

and codimV3 = 3.
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Proof: The invariance statements are obvious. Note that (ABA) ai = �i (AB) ai, so

(ABA)V1 = (AB)V1. Hence V3 � V1 \ (AB)V1 = V2.

Note that codimV2 � 2 as V2 is the intersection of two subspaces of codimension

1. IfW = V2, thenW = span fb1; : : : ; bd�1g. But dimV1 = d�1, so V1 would be a proper
invariant subspace contradicting simplicity by Lemma 1.5. So V2 ( V1 and codimV2 = 2.

By the same logic, codimV3 � 3. If V2 = V3, then V2 is a proper subspace

invariant under hABA; ABi = �(B3), which contradicts simplicity. Hence V3 ( V2 and

codimV3 = 3.

Proposition 1.7. If V is a simple B3 module of dimension d � 5 and W is a proper

subspace of V invariant under A or B then W cannot contain both ai and bi = (ABA) ai.

Proof: If W is a proper A-invariant subspace that contains ai and bi, then (ABA)W is

a proper B-invariant subspace that contains ai = Æ�1ABAbi and bi = ABAai. So we

may assume without loss of generality that W isB-invariant by replacing it by (ABA)W

if necessary.

Suppose W is B-invariant and does contain both ai and bi. We are free to

reindex the eigenvalues if necessary, so we may assume without loss of generality that

i = 1. Let d0 = dimW . Extend b1 to a basis of generalized eigenvectors hb1; : : : ; bd0i of
B on W , then extend to an eigenbasis of V . Let ai = (ABA)�1 bi = Æ�1(ABA) bi. Let

V1 = span fb1; : : : ; bd�1g and V2; V3 as in Lemma 1.6.

a1 2 W � V1. Hence a1 2 V2 = V1 \ span fa1; : : : ; ad�1g. As V2 is ABA-

invariant, b1 = (ABA) a1 2 V2. In particular V2 6= 0.

By Lemma 1.6, dimV2 = d � 2, which immediately leads to contradiction if

d = 2.

If d = 3, then dimV2 = 1, so V2 = span fa1g = span fb1g, which contradicts

Lemma 1.5.

If d = 4, dimV2 = 2 and dimV3 = 1. If a1 2 V3, then V3 = span fa1g, so
V3 is invariant under hA;ABi = �(B3), which contradicts simplicity. So b1 2 V2 =

span fa1g+ V3, that is b1 = �a1 + w for some � 2 F and w 2 V3. Then

(AB) b1 = AB(�a1 + w) = �(ABA)A�1a1 + (AB)w = ��11 �b1 + (AB)w 2 V2:

Hence V2 is invariant under hABA; ABi = �(B3), which is again a contradiction.
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If d = 5, the argument is similar. Now dimV2 = 3 and dimV3 = 2. If a1 2 V3,

then b1 = (ABA) a1 = �1(AB) a1 2 V3 too. Hence V3 = span fa1; b1g, so V3 is invariant
under hAB; ABAi = �(B3) contradicting simplicity. Therefore V2 = span fa1g + V3 =

span fb1g+ V3. Hence b1 = �a1 + w for some � 2 F and w 2 V3, and

(AB) b1 = AB(�a1 + w) = �(ABA)A�1a1 + (AB)w = ��11 �b1 + (AB)w 2 V2:

Thus V2 = span fb1g+ V3 is a proper subspace invariant under hABA; ABi = �(B3).

The statement about an A-invariant subspace follows either by a symmetric

argument, or simply by noting that (ABA)W would then be B-invariant and would still

contain ai and bi.

Lemma 1.8. If A is diagonalizable, then its eigenvalues are distinct.

Proof: Let A be diagonalizable. If all of the eigenvalues are the same, then A = � I and

hence B = � I. But then any subspace is invariant, so V must be 1-dimensional and the

statement holds.

Suppose not all eigenvalues are distinct. So we may assume without loss of

generality, that �1 = �2 and �d 6= �1. Let b be an eigenvector of B that corresponds to

�d. Let W = span
�
Ai b j i = 0; : : : ; d� 2

	
. Since the minimal polynomial has at most

degree d�1, W is A-invariant. Note that W = span
�
(A� �1)

i b j i = 0; : : : ; d� 2
	
. Let

wi = (A� �1)
i b and n such that wn 6= 0 but wn+1 = 0.

Then it is easy to see that fw0; w1; : : : ; wng is a basis for W . Let �0w0 + : : :+

�nwn = 0. Multiply both sides by (A � �1)
n to get �0w0 = 0, hence �0 = 0. Now

proceed by induction to conclude that �i = 0 for all i.

It is obvious that A acts as a full Jordan block with respect to this basis, hence

its eigenspace in W for �1 is at most 1-dimensional. Let W 0 = W + span fABAbg.
Since ABAb is an eigenvector of A corresponding to �d, A still cannot have two linearly

independent eigenvectors in W 0. Hence W 0 is a proper A-invariant subspace of V , which

contains b and ABAb, contradicting Proposition 1.7.

Proposition 1.9. The minimal polynomial of A (and B) is the characteristic polyno-

mial. In other words, the Jordan form of A consists of full Jordan blocks.
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Proof: If A is diagonalizable, the statement follows from Lemma 1.8. If not, assume the

minimal polynomial properly divides the characteristic polynomial, hence its degree is

at most d� 1.

Then A has an eigenvalue � and a corresponding generalized eigenvector a such

that (A � �)2 a = 0, and a0 = (A � �) a 6= 0 is an eigenvector of A. Let b = ABAa0,

and W = span
�
Ai b j i = 0; : : : ; d� 2

	
. Clearly, W is a proper A-invariant subspace

of V . By Proposition 1.7, W cannot contain a0. Hence it cannot contain a either. Let

W 0 =W+span fa0g. Then it is easy to see that a =2W 0, henceW 0 is a proper A invariant

subspace that contains b and Æ�1a0 = ABAb. This would contradict Proposition 1.7.

Lemma 1.10. Let A and B be in ordered triangular form, and C 2 GLd(F ).

a) If A = CBC�1 then C is upper skew-triangular, that is Cij = 0 for i+ j > d+ 1.

b) If B = CAC�1 then C is lower skew-triangular, that is Cij = 0 for i+ j < d+ 1.

In particular AB is lower skew-triangular, and BA is upper skew-triangular.

Proof: Let fv1; : : : ; vdg be the standard basis for V = F d, and let Vn = span fv1; : : : ; vng
and Wn = span fvd�n+1; : : : ; vdg for 1 � n � d. We will prove that A = CBC�1 implies

CWn = Vn by induction. By the upper-triangular shape of A, v1 is an eigenvector of A

with eigenvalue �1 and vd is an eigenvector of B with the same eigenvalue. Also, C�1 v1

is an eigenvector of B with eigenvalue �1. We can conclude span
�
C�1 v1

	
= span fvdg,

by Proposition 1.9. This establishes the base case.

Let �n+1 occur k times among �1; : : : ; �n. By Proposition 1.9, A acts as a

full Jordan block on its generalized eigenspaces. A has k generalized eigenvectors with

eigenvalue �n+1 in Vn, so they are all in the null space of (A � �n+1)
k. But A has

k+1 generalized eigenvectors in Vn+1, so (A��n+1)
k vn+1 6= 0. An analogous argument

shows that (B � �n+1)
k vd�n 6= 0, but (B � �n+1)

k+1vd�n = 0. But B also consists of

full Jordan blocks, so any vector with this property must be in span fvd�ng. Clearly,

C�1 vn+1 is such a vector, so span
�
C�1 vn+1

	
= span fvd�ng. We can now use the

inductive hypothesis to conclude

C�1 Vn+1 = C�1 Vn + C�1 span fvn+1g =Wn + span fvd�ng =Wn+1:

Hence CWn = Vn.
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From now on, let us denote d+ 1� i by i.

Lemma 1.11. Let A;B 2 GLd(F ) such that A and B are in ordered triangular form

with eigenvalues �1; : : : ; �d 2 F �. The following are equivalent:

a) There exists S 2 GLd(F ) skew-diagonal with S2 =  I for some  2 F � such that

B = SAS�1, (AB)ij = 0 for i+ j < d+ 1 and �i (AB)ii = Sii.

b) There exists S 2 GLd(F ) skew-diagonal with S2 =  I for some  2 F � such that

B = SAS�1, (BA)ij = 0 for i+ j > d+ 1 and �i (BA)ii = Sii.

c) A and B satisfy the braid relation ABA = BAB.

Proof: For (a), (b), note that BA = S(AB)S�1, hence

(BA)ij = Sii (AB)ij S
�1

jj
:

For (b) =) (c), we already know AB is lower skew-triangular by (b) =) (a).

Hence A(BA) is upper skew-triangular, and (AB)A is lower skew-triangular, that is

ABA is skew-diagonal. Also (ABA)ii = �i (BA)ii = Sii, thus ABA = S. Hence

BAB = S (ABA)S�1 = S = ABA:

(c) =) (b) follows by setting S = ABA and noting that S and BA have the

desired properties by Lemma 1.10 and by the upper-triangularity of A.

1.4 The Matrices

We are now ready to prove that we can always choose a basis of V which makes

A and B ordered triangular.

Lemma 1.12. The set
�
ai j 1 � i �

�
d+1
2

�	
[
�
bi j 1 � i �

�
d�1
2

�	
is a basis of V .

Proof: If d = 2, span fa1g 6= span fb1g, by Lemma 1.5. Hence

dim span fa1; b1g � 2:
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If d = 3, then b1 62 span fa1; a2g, by Proposition 1.7. Hence

dim fa1; a2; b1g > dim fa1; a2g = 2:

If d = 4, let V1 = fa1; a2g, V2 = V1 + (ABA)V1, V3 = V1 \ (ABA)V1. If

V1 = V3, then V1 is invariant under hA; ABAi. Hence dimV3 < dimV1 and dimV2 =

dimV1 + dim(ABA)V1 � dimV3 = 2dimV1 � dimV3 > dimV1 = 2.

If dimV2 = 3, then dimV3 = 1 and V3 is spanned by some eigenvector w of

ABA. If a1 2 V3 then V3 = span fa1g, so V3 would be invariant under hA; ABAi. Hence
V1 = span fa1; wg and (ABA)V1 = span fb1; wg.

Note that V3 � V1, so (AB)V3 � (AB)V1 = (ABA)V1. If (AB)V3 = V3, then

V3 would be hAB; ABAi-invariant. Hence (ABA)V1 = V3 + (AB)V3.

Similarly, V3 � (ABA)V1, so (AB)2 V3 = A(BAB)V3 = AV3 � AV1 = V1. If

AV3 = (AB)2 V3 � V3, then V3 would be hA; ABAi-invariant. Hence V1 = V3+(AB)
2 V3.

So V2 = V1 + (ABA)V1 = V3 + (AB)V3 + (AB)2 V3 and is invariant under

hABA; ABi.
If d = 5, we know span fa1; a2; b1; b2g is 4-dimensional, by the same argument

as in the previous case. Let V1 = span fa1; a2; a3g, V2 = V1 + (ABA)V1 and V3 =

V1 \ (ABA)V1. If a3 2 span fa1; a2; b1; b2g, then b3 = (ABA) a3 2 span fa1; a2; b1; b2g
too. Hence dimV2 = 4 and dimV3 = dimV1 + dim(ABA)V1 � dimV2 = 2.

Since V3 ( V1, there exists 1 � i � 3 such that ai 62 V3. Thus V1 = span faig+V3
and (ABA)V1 = span fbig+ V3.

Like before, V3 � V1, so (AB)V3 � (AB)V1 = (ABA)V1 and (AB)2 V3 =

A(ABA)V3 = AV3 � AV1 = V1. If (AB)V3 = V3 then V3 would be hAB; ABAi-
invariant. Hence (ABA)V1 = V3+(AB)V3. Analogously, if AV3 = (AB)2 V3 = V3, then

V3 would be hA;ABAi-invariant. Therefore V1 = V3 + (AB)2 V3.

Again, V2 = V1+(ABA)V1 = V3+(AB)V3+(AB)2 V3 and is a proper subspace

invariant under hABA; ABi.

Proposition 1.13. If V is a simple B3-module of dimension d � 5, then there is a basis

of V that makes A and B ordered triangular.

Proof: If d = 2, then fa1; b1g is a basis of V by Lemma 1.12 and it is clear that A and

B are ordered triangular with respect to this basis.
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If d = 3, let v1 = a1 and v3 = b1. By Lemma 1.12, fa1; a2; b1g is a basis of

V . By Lemma 1.7, a1 62 span fb1; b2g, hence a2 = �a1 + �1b1 + �2b2 for some �; �1; �2.

Let v2 = a2 � �a1. Then span fa1; v2g = span fa1; a2g, so fa1; v2; b1g is still a basis of

V . But v2 2 span fa1; a2g \ span fb1; b2g by construction, so Av2 2 span fa1; a2g and

Bv2 2 span fb1; b2g, which shows that A and B are ordered triangular with respect to

fv1; v2; v3g.
If d = 4, let v1 = a1 and v4 = b1. We can construct v2 similarly as in the

previous case by noting that a1 62 span fb1; b2; b3g by Lemma 1.7, so there exists � such

that a2 � �a1 2 span fb1; b2; b3g. Let v3 = AB v2.

Note that span fa1; v2g = span fa1; a2g and by letting ABA act on both sides

we also have span fb1; v3g = span fb1; b2g. Hence V = span fv1; v2; v3; v4g. Since

v2 2 span fa1; a2g \ span fb1; b2; b3g we also have v3 = ABAv2 2 span fb1; b2g \
span fa1; a2; a3g. This shows that A and B are ordered triangular with respect to

fv1; v2; v3; v4g.
If d = 5, let v1 = a1 and v5 = b1. Now follow the method in the previous case to

construct v2 = a2 � �a1 2 span fa1; a2g \ span fb1; b2; b3; b4g. Let v4 = ABAv2 2 v2 2
span fb1; b2g \ span fa1; a2; a3; a4g. By Lemma 1.12, a3 = �1a1 + �2a2 + �1b1 + �2b2.

Let v3 = a3 � �1a1 � �2a2. Then v3 2 span fa1; a2; a3g \ span fb1; b2; b3g.
Note that span fv1; v2; v3g = span fa1; a2; a3g and span fv1; v2g = span fa1; a2g

by construction of v2 and v3. Acting on both sides of the second equality by ABA yields

span fv5; v4g = span fb1; b2g. Hence span fv1; : : : ; v5g = span fa1; a2; a3; b1; b2g = V . So

fv1; : : : ; v5g is a basis of V that makes A and B ordered triangular.

Actually, we can make A and B look even more special and the computation

simpler without losing generality.

Corollary 1.14. If V is a simple B3-module of dimension d � 5, then there is a basis

of V that makes A and B ordered triangular and B = SAS�1 for S skew-diagonal and

Sii = 1.

Proof: Choose a basis fv1; : : : ; vdg such that A and B are ordered triangular. As in the

proof of Lemma 1.11, we know that ABA is skew-diagonal and (ABA)2 = Æ. If d is odd,

let  = (ABA)[ d+1
2
];[ d+1

2
] and note that 2 = Æ, otherwise pick  to be any square root
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of Æ. Let S = �1ABA. Then S2 = I, so SiiSii = 1. For i = 1; : : : ;
�
d
2

�
, let vi 7! Siivi.

Observe that for this new basis, Svi = vi.

From now on, let A, B, and S be as in Corollary 1.14.

Lemma 1.15. If BA is upper skew-triangular, A and B satisfy the braid relation.

Proof: Note S�1 = S, so B = SAS. Just like in the proof of Lemma 1.11, if BA =

(SAS)A is upper skew-triangular, AB = A(SAS) is lower skew-triangular and ABA =

A(SAS)A is skew-diagonal. So is BAB = S(ABA)S. Hence

(ABA)ii = Aii(SASA)ii = �i(SASA)ii

and

(BAB)ii = (SASAB)ii = (SASA)iiBii = (SASA)ii�i:

Hence ABA = BAB.

Lemma 1.16. Let V be a simple B3-module of dimension d � 5 and fv1; : : : ; vdg a

basis as in Corollary 1.14. Let D be a diagonal matrix such that Di;i = Dii for all i,

and A0 = DAD�1 and B0 = DBD�1. Then A0 and B0 are still ordered triangular and

B0 = SA0S�1.

Proof: Note that D corresponds only to a scaling of the basis vectors, so conjugating by

D does not change the triangular shapes and the diagonal entries of A and B. By direct

computation, DS = DS, hence

B0 = DBD�1 = DSAS�1D�1 = SDAD�1S�1 = SA0S�1:

Now we are ready to start computing the representations. By Lemma 1.11,

(BA)ij = 0 for i+ j > d is a necessary condition for ABA = BAB and by Lemma 1.15

it is suÆcient too.

Proposition 1.17. Let V be a simple 2-dimensional B3-module. Then there exists a

basis of V for which

A =

0
@ �1 �1

0 �2

1
A B =

0
@ �2 0

��2 �1

1
A :
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Proof: We set 0 = (BA)22 = A2
12 + �1�2, hence A12 =

p
��1�2.

Now rescale v1 7! A12

�1
v1 to obtain A and B in the above form.

Proposition 1.18. Let V be a simple 3-dimensional B3-module. Then there exists a

basis of V for which

A =

0
BB@

�1 ��1 � �2
2

�3
��2

0 �2 �3

0 0 �3

1
CCA B =

0
BB@

�3 0 0

�3 �2 0

��2 ��1 � �2
2

�3
�1

1
CCA :

Proof: Note that if A23 = 0, then B21 = 0 and span fv1; v3g would be invariant. So

A23 6= 0, and we can let

D =

0
BB@

1

�3
A23

1

1
CCA

and we can replace A by DAD�1, and B by DBD�1 by Lemma 1.16.

Now

A =

0
BB@

�1 A12 A13

�2 �3

�3

1
CCA B =

0
BB@

�3

�3 �2

A13 A12 �1

1
CCA :

Hence

0 = (BA)23 = �3A13 + �2�3

forces A13 = ��2, and

0 = (BA)33 = A2
13 +A12A23 + �1�3 = �22 + �3A12 + �1�3

forces A12 = ��1 � �22�
�1
3 .

Proposition 1.19. Let V be a simple 4-dimensional B3-module and D = �
p
�1�4=�2�3.

Then there exists a basis of V for which

A =

0
BBBBB@

�1 �2(1 +D +D2) �3(1 +D +D2) �4

0 �2 �3(1 +D) �4

0 0 �3 �4

0 0 0 �4

1
CCCCCA
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B =

0
BBBBB@

�4 0 0 0

��3 �3 0 0

�2D
�1 ��2(1 +D�1) �2 0

��1D�3 �1(D
�1 +D�2 +D�3) ��1(1 +D�1 +D�2) �1

1
CCCCCA :

Proof: If A24 6= 0, then 0 = (BA)33 = A14A24 + A23A24 + �2A34 forces A34 = 0. But

span fv1; v4g would then be invariant. By Lemma 1.16, we can conjugate A and B by

D =

0
BBBBB@

1

�4A
�1
24

�4A
�1
24

1

1
CCCCCA

to get

A =

0
BBBBB@

�1 A12 A13 A14

�2 A23 �4

�3 A34

�4

1
CCCCCA B =

0
BBBBB@

�4

A34 �3

�4 A23 �2

A14 A13 A12 �1

1
CCCCCA :

It follows from

0 = (BA)24 = A14A34 + �3�4

that A14 6= 0 and A34 = ��3�4A14
�1.

Now

0 = (BA)33 = �4A13 +A23
2 + �2�3 =) A13 = �A

2
23 + �2�3

�4

and

0 = (BA)34 = �4

�
A14 +A23 �

�2�3

A14

�
=) A23 = �A14 +

�2�3

A14
:

Also

0 = (BA)42 = A14A12 � �2�
�1
4 A2

14 + �22�3�
�1
4 � �32�

2
3

�4A
2
14

= 0 =)

A12 = �2�
�1
4 A14 �

�22�3

�4A14
+

�32�
2
3

�4A
3
14

:

And �nally

0 = (BA)44 = �1�4 �
�32�

3
3

A4
14

=) A14 =
4

s
�32�

3
3

�1�4
:
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Now rescale vi 7! Ai4=�4vi and substitute D = �
p
�1�4=�2�3 to obtain A and

B in the desired form.

The computation proceeds similarly for d = 5, only the matrix entries turn out

to be more complicated. Therefore we will omit listing the actual matrices.

Proposition 1.20. Let V be a simple 5-dimensional B3-module and D =
5
p
detA. Then

for each choice of D, there exists a basis of V for which A and B are in ordered triangular

form and the B3 action is unique up to conjugation.

Proof: Note that A15 6= 0, otherwise (BA)15 = �5A15 = 0, which would eventually make

(ABA)15 = 0 and ABA singular.

If A35 = 0, then

0 = (BA)35 = A35A15 +A34A25 + �3A35

implies either A34 = 0 or A25 = 0. If A34 = 0, then B31 = B32 = 0 too, so

span fv1; v2; v4; v5g would be B3-invariant. Hence A25 = 0 and

0 = (BA)25 = A45A15 + �4A25

and either A45 = 0 as A15 6= 0. If A45 = 0, then B21 = B31 = B41 = 0, so span fv1; v5g
would be B3-invariant. Hence A35 6= 0.

If A45 = 0, then (BA)25 = 0 would make A25 = 0 too and

0 = (BA)45 = A25A15 +A24A25 +A23A35 + �2A45

would imply A23 = 0. Hence B21 = B41 = B43 = 0, and span fv1; v3; v5g would be

B3-invariant. So A45 6= 0.

Hence we can rescale

v4 7! �A45

�4
v4

v3 7! A35

A15
v3

With respect to this new basis, A45 = ��4 and A35 = A15.

From (BA)25 = 0, A25 = A15 and now

0 = (BA)35 = A15(A15 +A34 + �3)



15

implies A34 = �A15 � �3.

Setting

0 = (BA)52 = A15A12 + �2A14

If A12 = 0, then A14 = 0 and

0 = (BA)53 = A13(A15 + �3):

If A13 = 0, then B52 = B53 = B54 = 0 and hence span fv2; v3; v4g is B3-invariant. If

A15 = ��3, then A34 = 0 and in turn B32 = B54 = B52 = 0 making span fv2; v4g a

proper B3-invariant subspace. Hence we can assume A12 6= 0 and

A14 =
A15A12

�2
:

Now

0 = (BA)34 = �A
2
15A12 + �2A24A15 + �2�3A24 + �2�3A15 + �2�

2
3

�2

forces

A12 = ��2(A24 + l3)(A15 + l3)

A2
15

and

0 = (BA)53 =
(A15 + �3)(A15A13 +A24A23 +A23�3)

A15
:

If A15 = ��3, then A12 = 0 by (BA)34 = 0, which we have ruled out already. Therefore

A13 = �(A24 + �3)A23

A15
:

Letting

0 = (BA)45 = A2
15 +A24A15 +A23A15 � �4�2

implies

A23 = �A15 �A24 +
�2�4

A15
:

To solve for A24, set

0 = (BA)55 � (BA)44 =
�2�3�4A24 + �2�

2
3�4 + �1�5A

2
15 + �2�3�4A15

A2
15

to obtain

A24 = �A15 � �2�3�4 �
�1�5A

2
15

�2�3�4
:
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Finally substitute this back in

0 = (BA)44 =
�21�

2
5A

5
15 � �32�

3
3�

3
4

�22�
2
3�

2
4A15

to get

A15 =
5
p
�31�

3
2�

3
3�

3
4�

3
5

�1�5)
:

1.5 Characterization of All Simple Representations

Now that we know that simple representations of dimension d � 5 of B3 are

of the form described in the last four theorems, the natural question to ask is whether

all representations of this form are simple. We will �nd that the answer is no, but

we can give an explicit necessary and suÆcient condition for simplicity in terms of the

eigenvalues.

Let P
(d)
n (x) =

Q
i6=n(x � �i) for 1 � n � d. Note that (x � �n)P

(d)
n (x) is the

characteristic polynomial of A and B. Hence (A � �n)P
(d)
n (A) = 0 so the columns of

P
(d)
n (A) are 0 or eigenvectors of A. By Proposition 1.9, P

(d)
n (A) 6= 0 so at least one of

the columns is nonzero and the others are multiples of this column. So P
(d)
n (A) is of

rank 1. Analogous statements hold for P
(d)
n (B). Hence

P (d)
n (A)P (d)

m (B)P (d)
n (A) = Q(d)

mn P
(d)
n (A)

for some constant Q
(d)
mn. A and B can be switched in the last equation by conjugating

by ABA. The entries of A and B are rational functions in �1; : : : ; �d; Æ, therefore the

Q
(d)
mn are also rational functions of the same variables.

Denote by E
(d)
ij the elementary d� d matrix whose only nonzero entry is a 1 in

the (i; j) position.

Lemma 1.21.

a) P
(d)
1 (B)P

(d)
d (A) = Q

(d)
1d E

(d)
dd .

b) P
(d)
m (B)P

(d)
n (A) = 0 if and only if Q

(d)
mn = 0.
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c) The polynomials are

Q(2)
mn = ��2m + �m�n � �2n

Q(3)
mn = (�2m + �n�k)(�

2
n + �m�k)

with k 6= m;n.

Q(4)
mn = ��1(�2m + )(�2n + )( + �m�k + �n�l)( + �m�l + �n�k)

with 2 = �1 � � � �4 and k; l 6= m;n.

Q(5)
mn = �8(2 + �m + �2m)(

2 + �n + �2n)
Y

k 6=m;n

(2 + �m�k)(
2 + �n�k)

with 5 = �1 � � � �5.

Proof:

a) Observe that (B � �i) vj 2 span fvi+1; : : : ; vdg for all j � i. Hence P
(d)
1 (B)V �

span fvdg, that is the only nonzero entries of P
(d)
1 (B) are in the bottom row.

Also, (A��i) vj 2 span fv1; : : : ; vi�1g for all j � i. Hence P
(d)
d (A) vj = 0 for j < d,

and P
(d)

d (A)vd 2 span fv1g, that is the only nonzero entry of P
(d)

d (A) is in the top

right corner. So P
(d)
d (A) = �E

(d)
1d and P

(d)
1 (B)P

(d)
d (A) = � E

(d)
dd for some �; � 2 F .

So

P
(d)
d (A)P

(d)
1 (B)P

(d)
d (A) = �� E

(d)
1d

Q
(d)

1d P
(d)

d (A) = Q
(d)

1d � E
(d)

1d

and hence � = Q
(d)

1d .

b) This follows from a) by reindexing the eigenvalues.

c) Using a), Q
(d)
1d can be easily found by direct computation. Then just reindex the

eigenvalues so that 1 and d are replaced by m and n for the general case.

Theorem 1.22. Let F be an algebraically closed �eld.
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a) There exists a simple representation of B3 on a vector space V of F -dimension

d � 5 if and only if the eigenvalues and (for d = 4; 5) , as de�ned in Lemma

1.21, satisfy Q
(d)
mn 6= 0 for 1 � m; n � d.

b) Any simple B3-module over F is uniquely determined by the eigenvalues and (for

d = 4; 5) by a choice of the root .

Proof:

a) Assume V is a simple B3-module. Then, as we have already observed, P
(d)
n (A) is

nonzero for all 1 � n � d. SupposeQ
(d)
mn = 0 for somem; n. Then P

(d)
m (B)P

(d)
n (A) =

0 by Lemma 1.21. Since P
(d)
n (A) 6= 0, there exists a vector v 2 V such that

an = P
(d)
n (A) v 6= 0, hence an is an eigenvector of A with eigenvalue �n. Let

bn = ABAan, which is then an eigenvector of B with the same eigenvalue. Since

P
(d)
m (B) an = P

(d)
m (B)P

(d)
n (A) v = 0, W = span

�
an; B an; : : : ; B

d�2 an; bn
	
is B-

invariant. Observe that

P (d)
m (B)Bi an = Bi P

(d)
m (B) an = 0

and

P (d)
m (B) bn =

Y
i6=m;n

(B � �i) (B � �n)bn = 0:

Thus P
(d)
m (B) restricted to W is 0, which shows W is a proper subspace of V . This

contradicts Proposition 1.7.

Conversely, let Q
(d)
mn 6= 0 for all m 6= n. Let W � V be a nonzero B3-submodule.

Then A has an eigenvector ai inW . We know by Lemma 1.21 that P
(d)
n (A) 6= 0 for

1 � n � d, so the minimal polynomial of A is the characteristic polynomial, hence

the Jordan form of A contains only full blocks, so its eigenspaces are 1-dimensional.

Since P
(d)
i (A) 6= 0, there exists v 2 V such that P

(d)
i (A) v 6= 0. So P

(d)
i (A) v is an

eigenvector of A with eigenvalue �i, just like ai. Hence ai 2 span
n
P
(d)
i (A) v

o
and

we can always scale v so that ai = P
(d)
i (A) v.

We will now show that v1; vd 2W . If i = 1, then

vd = ABAv1 2 (ABA)W =W:
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If not, let b1 = P
(d)
1 (B)P

(d)
i (A) v. Now

P
(d)
i (A) b1 = P

(d)
i (A)P

(d)
1 (B)P

(d)
i (A) v = Q

(d)
1i P

(d)
i (A) v 6= 0

so b1 6= 0 and b1 is an eigenvector of B with eigenvalue �1. So is vd, thus vd 2
span fb1g �W and we may scale vd so that vd = b1. Also, v1 = (ABA)�1 vd 2W .

Let w1 = v1, wd = vd and wi =
Qd

j=i+1(A � �j) vd for 2 � i < d. Obviously,

wi 2W . Note that

P
(d)
1 (B) (A� �1)(A� �3) � � � (A� �i)wi = P

(d)
1 (B)P

(d)
2 (A) vd =

P
(d)
1 (B)P

(d)
2 (A)vd P

(d)
1 (B) ai = Q

(d)
12 P

(d)
1 (B) ai 6= 0

so wi 6= 0 for all i. We will prove that they are linearly independent. Let
P

�iwi =

0 with at least one nonzero coeÆcient. Let k be maximal with respect to �k 6= 0.

If k = 1, then �1v1 = 0 implies �1 = 0, a contradiction. So k � 2, and

k�1Y
j=1

(A� �j)

dX
i=1

�iwi = �kP
(d)
k (A) vd = 0:

But P
(d)
k (A) vd = P

(d)
k (A)P

(d)
1 (B) ai 6= 0 by the usual argument, so �k = 0, which

is a contradiction.

So span fw1; : : : ; wdg is a d-dimensional subspace of W . Hence W = V .

b) This follows from our earlier computations.



Chapter 2

Unitary Representations

2.1 Introduction

Unitary braid representations have been constructed in several ways using the

representation theory of Kac-Moody algebras and quantum groups, see e.g. [6], [9], and

[16], and specializations of the reduced Burau and Gassner representations in [1]. Such

representations easily lead to representations of PSL(2;Z) = B3=Z, where Z is the

center of B3, and PSL(2;Z) = SL(2;Z)=f�1g, where f�1g is the center of SL(2;Z).

We give a complete classi�cation of simple unitary representations of B3 of dimension

d � 5 in this paper. In particular, the unitarizability of a braid representation depends

only on the the eigenvalues �1; �2; : : : ; �d of the images the two generating twists of

B3. The condition for unitarizability is a set of linear inequalities in the logarithms

of these eigenvalues. In other words, the representation is unitarizable if and only if

the (arg �1; arg �2; : : : ; arg �d) is a point inside a polyhedron in (R=2�)d , where we give

the equations of the hyperplanes that bound this polyhedron. This classi�cation shows

that the approaches mentioned previously do not produce all possible unitary braid

representations. We obtain representations that seem to be new for d � 3. As any

unitary representation of Bn restricts to a unitary representation of B3 in an obvious

way, these results may also be useful in classifying such representation of Bn.

Since we are interested in unitarizable representations, we will let F = C and

we will require that j�ij = 1. Let � : B3 ! V be a simple d-dimensional representation

(d � 5), and A = �(�1), B = �(�2). Any unitarizable complex matrix is diagonalizable,

20
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so we can assume that A and B are diagonalizable. So the eigenvalues �1; �2; : : : ; �d

are distinct by Proposition 1.8. Denote the C -algebra generated by A and B by B. In
other words, B = �(C B3), where C B3 is the group algebra. Note that B = End(V ) by

simplicity.

The proof proceeds by de�ning a vector space antihomomorphism { : B ! B
and proving that it is an algebra antihomomorphism and an involution of B in section 2.2.

In section 2.3, we de�ne a sesquilinear form h: ; :i on the ideal I = BeB;1 that is invariant
under multiplication by A and B. We prove that h: ; :i is positive de�nite if �(d)i1 > 0 for

2 � i � d. In this case, � is a unitary representation of B3 on the d-dimensional vector

space I. We also prove that if � is a unitarizable representation �
(d)
i1 > 0 for 2 � i � d.

In section 2.4, we give some examples of using the positivity of �
(d)
i1 .

2.2 An Involution of the Image of B3

Let eM;i be the eigenprojection ofM to the eigenspace of �i, whereM 2 fA;Bg.
That is

eM;i =
Y
j 6=i

M � �j

�i � �j
=

P
(d)
i (M)

P
(d)
i (�i)

:

Note that eA;i and eB;i always exist because the eigenvalues are distinct. Also eM;ieM;j =

ÆijeM;i. De�ne �
(d)
ji by eB;ieA;jeB;i = �

(d)
ji eB;i. Note that

�
(d)
ji =

Q
(d)
ji

P
(d)
i (�i)P

(d)
j (�j)

:

Lemma 2.1. The �
(d)
ij are real numbers.

Proof: For i 6= j, the proof is by direct computation using �i = ��1i and  = �1. For

example, for d = 5:

�
(d)
ij =

(2 + �i + �2i )(
2 + �j + �2j)

Q
k 6=i;j(

2 + �i�k)(
2 + �j�k)

8
Q

k 6=i(�i � �k)
Q

k 6=j(�j � �k)

=
(��1i + 1 + �1�i)(�

�1
j + 1 + �1�j)

(1� �j�
�1
i )(1� �i�

�1
j )

Q
k 6=i;j(

2 + �i�k)(
2 + �j�k)

6
Q

k 6=i;j(�i � �k)(�j � �k)
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The �rst of the two quotients is easily seen to be real. For the second quotient,

 Q
k 6=i;j(

2 + �i�k)(2 + �j�k)

6
Q

k 6=i;j(�i � �k)(�j � �k)

!
=

Q
k 6=i;j(

�2 + ��1i ��1k )(�2 + ��1j ��1k )

�6
Q

k 6=i;j(�
�1
i � ��1k )(��1j � ��1k )

Multiply the numerator and the denominator by 12�3i�
3
j

Q
k 6=i;j �

2
k to see that this is

still Q
k 6=i;j(

2 + �i�k)(
2 + �j�k)

6
Q

k 6=i;j(�i � �k)(�j � �k)

For the case i = j, note that
Pd

k=1 eA;k = I, so

eB;i = eB;iIeB;i

= eB;i

dX
k=1

eA;keB;i

=

dX
k=1

eB;ieA;keB;i

=

dX
k=1

�
(d)
ki eB;i

Hence
Pd

k=1 �
(d)
ki = 1, and �

(d)
ii = 1�Pk 6=i �

(d)
ki is real.

Proposition 2.2. S = feA;ieB;1eA;j j 1 � i; j � d; i 6= jg [ feA;i j 1 � i � dg is a basis

for the C -vector space B.

Proof: Suppose
dX
i=1

dX
j=1

j 6=i

�ijeA;ieB;1eA;j +

dX
i=1

�iieA;i = 0

Multiply by eA;i both on the left and on the right. The only term of the sum that

survives is

�iieA;i = 0

Let vi be an eigenvector of A corresponding to �i. Then eA;ivi = vi 6= 0, so eA;i 6= 0.

Hence �ii = 0.

For i 6= j, multiplying by eA;i on the left and by eA;j on the right shows

�ijeA;ieB;1eA;j = 0



23

But

eB;1eA;ieB;1eA;jeB;1 = (eB;1eA;ieB;1)(eB;1eA;jeB;1) = �
(d)
j1 �

(d)
i1 eB;1 6= 0

so eA;ieB;1eA;j 6= 0. Hence �ij = 0. So S is linearly independent. It has d2 elements,

hence it is a basis of the d2-dimensional space B.

Note: if we know �
(d)
ii 6= 0 for all i, we can use the basis S0 = feA;ieB;1eA;j j

1 � i; j � dg instead of S. As eA;ieB;1eA;i = �
(d)
ii eA;i, S

0 is almost the same as S. Since

S0 is more symmetric than S, its use makes the following computations simpler and the

arguments more transparent. In the most general case however, �
(d)
ii could be 0.

De�ne { : C ! C as the usual complex conjugation. Extend { to B ! B by

requiring { to be an antilinear map with {(eA;i) = eA;i and {(eA;ieB;1eA;j) = eA;jeB;1eA;i

for i 6= j. Note that {(�
(d)
ij ) = �

(d)
ij .

Lemma 2.3. { as de�ned above is an antihomomorphism on the algebra B and {2 = IdB.

Proof: It is suÆcient to prove that { acts as an antihomomorphism on the elements of

the basis S. S has two di�erent types of elements, therefore we will have four di�erent

cases. Since each can veri�ed directly by a simple computation, we will show the details

for only one:

1.

{(eA;ieA;j) = {(eA;j){(eA;i)

2.

{(eA;i(eA;jeB;1eA;k)) = {(eA;jeB;1eA;k){(eA;i)

{((eA;ieB;1eA;j)eA;k) = {(eA;k){(eA;jeB;1eA;k)

3. For i 6= k,

{((eA;ieB;1eA;j)(eA;keB;1eA;l)) = (eA;leB;1eA;k)(eA;jeB;1eA;i)
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4.

{((eA;ieB;1eA;j)(eA;jeB;1eA;k)) = {(eA;i(eB;1eA;jeB;1)eA;k)

= {(eA;i(�
(d)
j1 eB;1)eA;k)

= �
(d)
j1 {(eA;ieB;1eA;k)

= �
(d)
j1 eA;keB;1eA;i

Also

{(eA;jeB;1eA;k){(eA;ieB;1eA;j) = (eA;keB;1eA;j)(eA;jeB;1eA;i)

= eA;k(eB;1eA;jeB;1)eA;i

= �
(d)
j1 eA;keB;1eA;i

That {2 = IdB follows immediately from the de�nition.

Lemma 2.4. {(eB;1) = eB;1.

Proof: First note that {(eA;ieB;1eA;i) = {(�
(d)
ii eA;i) = �

(d)
ii eA;i = eA;ieB;1eA;i. Multiply

eB;1 by 1 =
Pd

i=1 eA;i on both sides:

eB;1 =

 
dX
i=1

eA;i

!
eB;1

0
@ dX

j=1

eA;j

1
A =

X
i;j

eA;ieB;1eA;j

into

{(eB;1) = {

0
@ dX

i=1

dX
j=1

eA;ieB;1eA;j

1
A =

dX
i=1

dX
j=1

{(eA;ieB;1eA;j)

=

dX
i=1

dX
j=1

(eA;jeB;1eA;i) = eB;1

Corollary 2.5. {(A) = A�1, and {(I) = I.

Proof:

{(A) = {(

dX
i=1

�ieA;i) =

dX
i=1

�i{(eA;i) =

dX
i=1

��1i eA;i = A�1
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Similarly,

{(I) = {(

dX
i=1

eA;i) =

dX
i=1

{(eA;i) =

dX
i=1

eA;i = I

Lemma 2.6. {(B) = B�1.

Proof: Note that A�1{(B)A�1 = {(A){(B){(A) = {(ABA) = {(BAB) = {(B)A�1{(B).

That is A�1 and {(B) satisfy the braid relation. So the group homomorphism �0 : B3 !
GL(V ) de�ned by �0(�1) = A�1 and �0(�2) = {(B) is another representation of B3 on V .

Once again, the braid relation implies that A�1 and {(B) are conjugates. Hence they

have the same eigenvalues, namely ��11 ; ��12 ; : : : ; ��1d .

But { : B ! B only permutes the basis S of B = End(V ). Hence {(B) =

{(End(V )) = End(V ) and A�1 and {(B) generate the algebra End(V ). That is �0 is also

a simple representation of B3

Now, (A�1{(B))3 = {(BA)3 = {(AB)3 = {(ÆI) = Æ = Æ�1I (recall jÆj = 1).

By Corollary 1.22, the eigenvalues ��11 ; ��12 ; : : : ; ��1d (if d=2; 3) or the eigenvalues to-

gether with Æ (if d = 4; 5) uniquely determine a simple representation of B3 on V up to

isomorphism.

But we already know such a representation, namely �1 7! A�1 and �2 7! B�1.

Hence there exists M 2 GL(V ) such that A�1 = MA�1M�1 and {(B) = MB�1M�1.

Then M is in the centralizer of A.

MeB;1M
�1 = M

 
dY
i=2

B � �i

�1 � �i

!
M�1

=

dY
i=2

MBM�1 � �i

�1 � �i

=

dY
i=2

{(B�1)� �i

�1 � �i

=

dY
i=2

{

�
B�1 � ��1i

��11 � ��1i

�

= {

 
dY
i=2

B�1 � ��1i

��11 � ��1i

!
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Call the quantity in parentheses �. Note that � is the eigenprojection to the sub-

space spanned by the eigenvector w1 of B
�1 with eigenvalue ��11 . But the eigenvectors

w1; w2; : : : ; wd of B�1 are also eigenvectors of B and span V (the eigenvalues are dis-

tinct). Hence �(w1) = w1 = eB;1w1 and �(wi) = 0 = eB;1wi for i � 2. That is

� = eB;1 as their action on the basis fw1; w2; : : : ; wdg is identical. Then Lemma 2.4

shows {(MeB;1M
�1) = {(�) = {(eB;1) = eB;1.

Hence conjugation byM is a B-algebra isomorphism that �xes A and eB;1. But

A and eB;1 generate the basis S of B, hence they generate the algebra B. So conjugation
by M must �x every element of B. In particular, {(B) =MB�1M�1 = B�1.

2.3 An Invariant Inner Product

Let B act on the left algebra ideal BeB;1. Note that BeB;1 is a d-dimensional

C -vector space, as eB;1 is an idempotent of rank 1.

De�nition 2.7. De�ne the form h: ; :i on BeB;1 by haeB;1; beB;1i eB;1 = {(beB;1)aeB;1 =

eB;1{(b)aeB;1 for aeB;1; beB;1 2 BeB;1.

It is easy to verify that h: ; :i is a sesquilinear form on the C -vector space BeB;1.
Since {(A) = A�1 and {(B) = B�1, this form is clearly invariant under the action by A

and B, hence �(B3).

Lemma 2.8. T = feA;ieB;1 j 2 � i � dg[fABAeB;1g is a basis for the left algebra ideal

BeB;1 considered as a C -vector space.

Proof: Suppose

�1ABAeB;1 +

dX
i=2

�ieA;ieB;1 = 0

Note that (eA;iABAeB;1)(ABA)
�1 = eA;ieA;1 = Æ1i eA;1. Since (ABA)�1 is

invertible eA;iABAeB;1 = 0 if and only if i � 2.

Multiply by eA;1 on the left. Then �1eA;1ABAeB;1 = 0 But eA;1ABAeB;1 6= 0,

so �1 = 0.

Now, multiply by eA;i (i � 2) on the left. Then �ieA;ieB;1 = 0. We know

eB;1eA;ieB;1 = �
(d)
i1 eB;1 6= 0 by simplicity, so eA;ieB;1 6= 0 and �i = 0.
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Hence T is a linearly independent set, and we can conclude that it is a basis of

the d-dimensional vector space BeB;1.

Note: if we know eA;1eB;1 6= 0, we can use the more symmetric basis T 0 =

feA;ieB;1 j 1 � i � dg to simplify this and some of the following computations. Unfor-

tunately, eA;1eB;1 could in general be 0. In particular, if �
(d)
11 = 0, then eA;1eB;1 = 0

too.

Theorem 2.9. The braid representation B is unitarizable if and only if �
(d)
i1 > 0 for all

2 � i � d.

Proof: Suppose �
(d)
i1 > 0 for all 2 � i � d. Consider the action of B on BeB;1. The

sesquilinear form de�ned above is invariant under the action of �(B3). So it is suÆcient

to show that it is an inner product. That is we need to prove that it is positive de�nite.

On the basis T :

heA;ieB;1; eA;ieB;1i eB;1 = eB;1{(eA;i)eA;ieB;1 = eB;1eA;ieA;ieB;1

= eB;1eA;ieB;1 = �
(d)
i1 eB;1

hABAeB;1; ABAeB;1i eB;1 = heB;1; eB;1i eB;1 = eB;1eB;1 = eB;1

Hence heA;ieB;1; eA;ieB;1i = �
(d)
i1 for i � 2, which is positive by our condition, and

hABAeB;1; ABAeB;1i = 1. We claim that T is orthogonal with respect to h:; ; i. Let

i; j 6= 1 and i 6= j:

heA;ieB;1; eA;jeB;1i eB;1 = eB;1{(eA;i)eA;jeB;1 = eB;1eA;ieA;jeB;1 = 0

hABAeB;1; eA;ieB;1i eB;1 = eB;1{(eA;i)ABAeB;1 = eB;1eA;iABAeB;1 = 0

We used eA;iABAeB;1 = 0 in the last computation just like in Lemma 2.8.

Hence h:; :i is a positive de�nite form. Then BeB;1 is a C -vector space with

inner product h: ; :i and the action of �(B3) on this space is unitary.

Conversely, suppose B is unitarizable. So there exists V a C vector space with

inner product h: ; :i and � : B3 ! GL(V ) such that A = �(�1) and B = �(�2) act as

unitary operators on V . Let � be the transpose induced by h: ; :i. We know A� = A�1

and B� = B�1. Let v 2 V be an eigenvector of B with eigenvalue �1. Then eB;1v = v
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and

0 � heA;ieB;1v; eA;ieB;1vi =


v; e�B;1e

�
A;ieA;ieB;1v

�
= hv; eB;1eA;ieB;1vi =

D
v; �

(d)
i1 eB;1v

E
= �

(d)
i1 hv; vi

Hence �
(d)
i1 � 0. We know �

(d)
i1 6= 0 for i � 2 by simplicity, so �

(d)
i1 > 0 in this case.

2.4 Examples

Example 2.10. d = 2

�
(2)
21 =

��21 + �1�2 � �22
(�1 � �2)(�2 � �1)

=
�21 � �1�2 + �22
(�1 � �2)2

= 1 +
�1�2

(�1 � �2)2

= 1� 1

(�1=�2 � 1)(�2=�1 � 1)

= 1�
�����1�2 � 1

����
�2

> 0

That is �����1�2 � 1

���� > 1

or �1=�2 = eit for �=3 < t < 5�=3.

Example 2.11. d = 3

�
(3)
21 =

(�21 + �2�3)(�
2
2 + �1�3)

(�1 � �2)(�1 � �3)(�2 � �1)(�2 � �3)

=

�
1 + �3

�1

�2
�1

��
�2
�1

+ �3
�2

�
�
1� �2

�1

��
1� �1

�2

��
1� �3

�1

��
�2
�1
� �3

�1

�
�
(3)
31 =

(�21 + �2�3)(�
2
3 + �1�2)

(�1 � �2)(�1 � �3)(�3 � �1)(�3 � �2)

=

�
1 + �2

�1

�3
�1

��
�3
�1

+ �2
�3

�
�
1� �3

�1

��
1� �1

�3

��
1� �2

�1

��
�3
�1
� �2

�1

�
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Let !2 = �2=�1 and !3 = �3=�1. Then

�
(3)
21 =

(1 + !3!2)
�
!2 + !3!

�1
2

�
j1� !2j2 (1� !3) (!2 � !3)

�
(3)
31 =

(1 + !2!3)
�
!3 + !2!

�1
3

�
j1� !3j2 (1� !2) (!3 � !2)

Let e2�t2 = !2 and e2�t3 = !3. So we are looking for (t2; t3) 2 [0; 1)2 such that

both �
(3)
21 > 0 and �

(3)
31 > 0. �

(3)
21 and �

(3)
31 can change signs at

!2!3 = �1

!3!
�1
2 = �!2

!2!
�1
3 = �!3
w2 = 1

w3 = 1

w2 = w3

These equations can be transformed into linear equations in t2 and t3 by taking logs:

t2 + t3 =
1

2

t3 = 2t2 +
1

2

t2 = 2t3 +
1

2

t2 = 0

t3 = 0

t2 = t3

Of course, the above equations are all understood mod 1.

Computation by Maple shows that �
(3)
21 > 0 and �

(3)
31 > 0 in the open set colored

black on the plot below. The grey regions are those where one of �
(3)
21 and �

(3)
31 is positive

and the other is negative. The line t2 = t3 corresponds to �2 = �3, in which case the

representation cannot be unitarizable.
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Figure 2.1: Region of unitarizability for d = 3



Chapter 3

Tensor Categories

3.1 De�nitions

De�nition 3.1. A monoidal category ~C is a category C with a tensor product
 : ~C� ~C !
~C on the objects and morphisms of ~C, a natural transformation a between 
 Æ (
� Id ~C)

and 
 Æ (Id ~C �
), and a unit object 11 2 ~C such that

1.

((X 
 Y )
 V )
W

aX
Y;V;W

��

aX;Y;V 
IdW // (X 
 (Y 
 V ))
W

aX;Y
V;W

��

(X 
 Y )
 (V 
W )

aX;Y;V
W

��
X 
 (Y 
 (V 
W )) X 
 ((Y 
 V )
W )

IdX 
aY;V;W

oo

is commutative.

2. X 
 11 �= 11
X �= X for all X 2 ~C.

De�nition 3.2. A monoidal category is called strict if a is the identity and 11 
 X =

X 
 11 = X for any X 2 ~C.

De�nition 3.3. A strict monoidal category is called rigid if every object X 2 ~C has a

dual object X� 2 ~C and a pair of morphisms iX : 11 ! X 
X� and eX : X� 
X ! 11

such that the maps

X = 11
X
iX
IdX // X 
X� 
X

IdX 
eX // X 
 11 = X

31
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X� = X� 
 11
IdX 
iX // X� 
X 
X�

eX
IdX // 11 
X� = X�

are IdX and IdX� .

De�nition 3.4. A tensor category is a monoidal category equipped with a direct sum

� : ~C � ~C ! ~C and an operation of projection onto subobjects.

De�nition 3.5. The Grothendieck semiring R of the tensor category ~C is the set of

equivalence classes of objects of ~C with � and 
 as addition and multiplication.

We call an object X in category simple if End(X) is a �eld. We will always

assume that 11 is simple. A tensor category is semisimple if each object is semisimple,

that is it is a direct sum of simple objects.

De�nition 3.6. A monoidal category ~C is called braided if there exists a family c of

natural isomorphisms cV;W : V 
W !W 
 V such that:

X 
 Y 
 Z cX;Y
Z
//

cX;Y
IdZ ((PPPPPPPPPPPP X 
 Z 
 Y

Y 
X 
 Z

IdY 
cX;Z

66nnnnnnnnnnnn

and

X 
 Y 
 Z cX
Y;Z

//

IdU 
cY;Z ((PPPPPPPPPPPP Y 
 Z 
X

X 
 Z 
 Y

cX;Z
IdY

66nnnnnnnnnnnn

commute. Naturality means that for any morphisms f : X ! X 0 and g : Y ! Y 0

(f 
 g) Æ cX;Y = cX0;Y 0 Æ (f 
 g):

This is a generalization of the ip, which is the natural isomorphism between

PA;B : A 
 B ! B 
 A, where A and B are modules over the commutative ring R.

Note that the ip is involutive, that is PB;A Æ PA;B = IdA
B. This is not required for a

braiding, but the property is generalized in the notion of a twist:

De�nition 3.7. A twist in a braided monoidal category ~C is family � of isomorphisms

�V : V ! V such that

�X
Y = cY;X Æ cX;Y Æ (�X 
 �Y )
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for all X; Y 2 ~C. � is required to be natural in the sense that for any morphism

f : X ! Y , �Y Æ f = f Æ �X .

De�nition 3.8. A ribbon category ~C is a rigid braided monoidal category with a com-

patible twist, meaning:

(�X 
 IdX�) Æ iX = (IdX 
�X�) Æ iX :

In a ribbon category, we can de�ne the trace of an endomorphism and the

dimension of an object as follows.

De�nition 3.9. Let ~C be a ribbon category, X 2 ~C, and f 2 End(X). Then the trace

of f is de�ned as

tr(f) = eX Æ cX;X� Æ ((�X Æ f)
 IdX�) Æ iX 2 End(11)

and the categorical dimension of X as

dimX = tr(IdX):

It can be shown (see [13]) that tr(fg) = tr(gf) for any f 2 Hom(X;Y ) and

g 2 Hom(Y;X). Also tr(f 
 g) = tr(f) tr(g) for any f 2 End(X) and g 2 End(Y ). If

f 2 End(11), then tr(f) = f .

3.2 An Application of Braid Representations

Let ~C be a semisimple ribbon tensor category with End(11) = F an algebraically

closed �eld. Then Hom(X;Y ) is an F -vector space for all X;Y 2 ~C and End(X) is a

semisimple F -algebra.

Assume that ~C contains a self dual object Z, that is 11 appears exactly once in

the direct sum decomposition of Z 
Z. Let p 2 End(Z 
Z) be the projection to 11 and

p(1) = p
 IdZ and p(2) = IdZ 
p in End(Z
3).

Lemma 3.10.

p(2) p(1) p(2) 6= 0:
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Proof: Let q = iZ eZ 2 End(Z
2), q(1) = q 
 IdZ , and q(2) = IdZ 
q. Then

q(2) q(1) q(2) = (IdZ 
iZ) (IdZ 
eZ)(iZ 
 IdZ)| {z }
IdZ

(eZ 
 IdZ)(IdZ 
iZ)| {z }
IdZ

(IdZ 
eZ) = q(2):

Note q(1) 6= 0 because

IdZ = (IdZ 
eZ)(iZ 
 IdZ)| {z }
IdZ

(eZ 
 IdZ)(IdZ 
iZ)| {z }
IdZ

= (IdZ 
eZ)q(1)(IdZ 
iZ)

and similarly q(2) 6= 0 either. Let � = eZ iZ 2 End(11) = F . Then

q2 = iZ eZ iZ| {z }
�

eZ = � q:

and hence q2i = � qi for i = 1; 2.

Observe that q 2 End(Z
2) which is a semisimple F -algebra, hence isomorphic

to a direct sum of full matrix rings. Suppose � = 0 hence q is nilpotent. As q can only

be nonzero on the direct summand 11 of Z
2 and the multiplicity of 11 is 1, q is nilpotent

if and only if q = 0. But then q(1) = 0, which we have proven is not the case. Therefore

� 6= 0.

Note (1=� q(i))2 = 1=� q(i) for i = 1; 2 and im1=� q(i) = im pi. Hence

p(2) p(1) p(2) =
1

�3
q(2) q(1) q(2) =

1

�3
q(2) 6= 0:

Let f 2 End(Z
2). Note that Z 
 11 = Z, hence p(2)(f 
 IdZ)p
(2) is a multiple

of p(2). In particular, let f = pX be a projection onto some term X in a direct sum

decomposition of Z
2. De�ne dimX by

(dimX)p(2) = (dimZ)2p(2)(pX 
 IdZ)p
(2)

where we choose dimZ so that dim11 = 1. This determines dimZ up to sign and dimX

is clearly independent of the choice of sign. It can be checked that this de�nition of

dimX is equivalent to the usual one given in De�nition 3.9 for direct summands in Z
2.

Let c1 = cZ;Z
 IdZ and c2 = IdZ 
cZ;Z . By the de�nition of braiding c1 c2 c1 =
c2 c1 c2. Assume Z
2 =

L
iXi where the Xi are d nonisomorphic simple objects of

nonzero dimension. Then the braiding cZ;Z acts on these simple objects via scalars �i.

Assume that the �i are distinct.
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Proposition 3.11. In this case, we can de�ne an action of B3 on V = Hom(Z;Z
3) by

�if = ci Æ f for f 2 Hom(Z;Z
3). Then V is a simple B3 module and each eigenvalue

of �i is of multiplicity 1.

Proof: Index the Xi so that X1 = 11 � Z
2. Then p(1) = pX1

 IdZ and p(2) = IdZ 
pX1

.

Let { : 11! Z
2 be a nonzero morphism. Then im { = x1. As dimXi 6= 0, the projections

p(i) must be nonzero when restricted to Z
X1 � Z
3. Hence vi = (p(i)
IdZ)(IdZ 
{) 6=
0 and �1vi = �ivi. As dimHom(Z;Z
3) = dimHom(Z
2; Z
2), the vi form an eigenbasis

of V for c1.

Suppose V is not simple. Let 0 � V1 � : : : � Vn = V be a composition series of

V . Clearly, each p(i) 
 IdZ acts nonzero on exactly one simple factor in the series, and

each simple factor has at least one p(i) 
 IdZ acting nonzero on it. There are at least

two simple factors so we can choose i so that p(i)
 IdZ and p(1) act nonzero on di�erent

simple factors. Since p(2) is conjugate to p(1), p(2) acts nonzero on the same simple factor

as p(1), Hence p(2)(p(i) 
 IdZ)p
(2) = 0 which would contradict dimxi 6= 0.

Corollary 3.12. We have

dimXi = �
(d)
i1 (dimZ)2

with �
(d)
i1 as in Chapter 2.

Proof: As the eigenvalues are all of multiplicity 1, we have well-de�ned eigenprojections

p(i) = P
(d)
i (c1)=P

(d)
i (�i) and p(2) = P

(d)
1 (c2)=P

(d)
1 (�1). Hence

(dimXi)
P
(d)
1 (c2)

P
(d)
1 (�1)

= (dimZ)2
P
(d)
1 (c2)P

(d)
i (c1)P

(d)
1 (c2)

P
(d)
1 (�1)P

(d)
i (�i)P

(d)
1 (�1)

= (dimZ)2
Q
(d)
i1 P

(d)
1 (c2)

P
(d)
1 (�1)P

(d)
i (�i)P

(d)
1 (�1)

:

In particular, let C be a braided tensor category whose Grothendieck semiring

is isomorphic to that of the representation category of g where g is of orthogonal or

symplectic type. Let Z 2 C be the object corresponding to the vector representation of

g. Then Z 
Z �= 11
X 
Y and the above result applies with d = 3. Choose alpha 2 C
so that the eigenvalues of c1 on X and Y are �q and ��q�1. Denote the eigenvalue on
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11 by r�1. It can be shown that � is a fourth root of 1, but we will not need it in this

discussion. The categorical dimensions are

dimX =

�
rq � r�1q�1

q2 � q�2
+ 1

�
r � r�1

q � q�1

dimY =

�
rq�1 � r�1q

q2 � q�2
+ 1

�
r � r�1

q � q�1

dimZ = �
�
r � r�1

q � q�1
+ 1

�
:

It is possible to prove that r = qN�1 for g is orthogonal type and r = q�N�1 if it is

symplectic.

If g is an exceptional Lie algebra, we can choose Z to correspond to the ad-

joint representation to get a 5-dimensional simple representation of B3. The categorical

dimesnions of the 5 simple summands of Z
 Z can be computed like in the previous

case (see [11]).
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