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ABSTRACT OF THE DISSERTATION

AÆne rings of low GK dimension

by

Jason Pierre Bell

Doctor of Philosophy in Mathematics

University of California San Diego, 2002

Lance W. Small, Chair

We consider algebras of low GK dimension. We give a new, completely combina-

torial proof that a �nitely generated domain of GK dimension 1 must be a �nite

module over its center (Theorem 2.4.2). We also show that the monic localiza-

tion of a polynomial ring over a left Noetherian ring is a Jacobson ring (Theorem

2.3.28). We show that any sub�eld of the quotient ring of a �nitely graded non-PI

Goldie algebra of GK dimension 2 over a �eld F must have transcendence degree

at most 1 over F (Theorem 3.3.19). In the fourth chapter we give counter-examples

to several questions in ring theory. We construct a prime aÆne algebra of GK di-

mension 2 that is neither primitive nor PI; we construct a prime aÆne algebra of

GK dimension 3 that has non-nil Jacobson radical; and we construct a primitve

aÆne algebra of GK dimension 3 with center that is not a �eld;

viii



Chapter 1

Preliminaries

1.1 Gelfand Kirillov dimension

We begin by providing background information to the reader. Many of the

proofs included in this thesis are standard arguments which can be found in many

algebra texts. Nevertheless, we include these arguments for the convenience of the

reader. Unless otherwise stated, all rings are assumed to have a multiplicative

identity.

Let F be a �eld and let R be a �nitely generated noncommutative F -algebra;

that is, there exist elements r1; : : : ; rm 2 R such that any element in R can be

expressed as a (noncommutative) polynomial over F in r1; : : : ; rm. We call such

an algebra an aÆne algebra over F , or, for short, an aÆne F -algebra. Let V be a

�nite dimensional F -vector subspace of R satisfying:

1. 1 2 V ;

2. V generates R as an F -algebra.

We call such a subspace a generating subspace. Given a basis f1; v1; : : : ; v`g for

V , we denote by V n the subspace of R consisting of all polynomials in v1; : : : ; v`

of degree at most n. In 1966 Gelfand and Kirillov introduced an isomorphism-

invariant on rings which now bears their names. We de�ne the Gelfand Kirillov
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dimension of R to be:

lim sup
n!1

log
�
dim V n

�.
log(n): (1.1.1)

We use the abbreviation GK dimension for Gelfand Kirillov dimension and de-

note it by GKdim(R). It is important to note that although it appears that the

GK dimension is dependent on the choice of generating subspaces V , it is in fact

independent of this choice. We prove this now.

Proposition 1.1.1 GK dimension is independent of the choice of generating sub-

space.

Proof. Let R be an aÆne F -algebra and let V andW be two generating subspaces

and let GKdimV (R) and GKdimW (R) denote the values which occur when we use

V andW respectively to compute the GK dimension of R as de�ned in item (1.1.1).

Notice

R =

1[
n=0

V n =

1[
n=0

W n

and hence there exists j such that V � W j. It follows that V n � W jn and hence

log
�
dim V n

�.
log(n) � log

�
dim W nj

�.
log(n)

=
�
1 + log(j)= log(n)

�
log
�
dim W nj

�.
log(nj):

Notice j is �xed and so

1 + log(j)= log(n)! 1 as n!1:

Hence taking the limsup of both sides as n goes to in�nity we see that

GKdimV (R) � GKdimW (R):

By symmetry, the reverse inequality holds and the result follows.

In general, when R is not aÆne, we de�ne

GKdim(R) = sup
n
GKdim(S)

��� S � R; S aÆne
o
: (1.1.2)
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Given an aÆne algebra R and a �nitely generated right R-module M , we de�ne

GKdim(MR) = lim sup
n!1

log
�
dim WV n

�Æ
logn; (1.1.3)

where V is a generating subspace for R and W is a �nite subspace of M which

generatesM as an R-module. As before, the value of GKdim(MR) is independent of

the choices of V andW . When either R is not aÆne orM is not �nitely generated,

we de�ne

GKdim(MR) (1.1.4)

= sup
n
GKdim(M 0

S)
��� S � R; S aÆne; M 0 �M; M 0 �nitely generated

o
:

Before giving examples, we make some remarks about GK dimension.

Remark 1.1.2 Let R be an aÆne F -algebra and let V be a generating subspace.

If there exist positive constants C1 and C2 such that

C1n
� � dim V n � C2n

�

for all n suÆciently large, then R has GK dimension �.

Remark 1.1.3 Let R and S be aÆne F -algebras with generating subspaces V and

W respectively. If there exist � � 0, an integer m, and a positive constants C such

that

dim V mn � Cn�dim W n

for all n suÆciently large, then

GKdim(R) � GKdim(S) + �:

If

dim V mn � Cn�dim W n

for all n suÆciently large, then

GKdim(R) � GKdim(S) + �:
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Remark 1.1.4 Let R be an F -algebra. The following are true:

� GKdim(S) � GKdim(R) whenever S is either a subring or a homomorphic

image of R.

� GKdim(R1 �R2) = maxfGKdim(R1);GKdim(R2)g.

� GKdim(R1 
F R2) � GKdim(R1) + GKdim(R2).

� If 0 ! M 00 ! M ! M 0 ! 0 is a short exact sequence of right R-modules,

then GKdim(MR) = max
�
GKdim(M 0

R);GKdim(M
00
R)
�
.

� If M �= �n
i=1Mi as right R-modules, then

GKdim(M) = max
1�i�n

GKdim
�
(Mi)R

�
:

Proofs of these statements can be found in Chapter 3 of [19] and Proposition 5.1

of [19].

Example 1.1.5 Let d � 2 and let A = Ffx1; : : : ; xdg be the free F -algebra on d

variables; i.e., A is the algebra consisting of all \noncommutative" polynomials in

x1; : : : ; xd. Then the GK dimension of A is in�nite.

Proof. Let V be the F -vector space spanned by 1; x1; : : : ; xd. Notice that a basis

for V n is given by all words in x1; : : : ; xd of length at most n. A word of length n

has n letters and for each letter we have d possible choices. Hence the number of

words in x1; : : : ; xd of length n is dn. It follows that

dim V n = 1 + d+ d2 + � � �+ dn � dn:

Hence

log
�
dim V n

�.
log(n) � n log(d)= logn!1 as n!1:
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An algebra such as this, in which dim V n � dn for some d > 1, is said to grow

exponentially. An algebra of exponential growth has in�nite GK dimension, but

the converse is not true. Here is an example.

Example 1.1.6 Let R = Ffx; yg be the free algebra on two generators and let

I =
�
y2; yxiyxjy

��� i > j
�
:

Then R=I has in�nite GK dimension but does not have exponential growth.

Proof. Notice that R=I is an aÆne monomial algebra with an F -basis given by

n
xjyxi1yxi2y � � �xi`yxk

��� i1 � i2 � � � � � i`

o
[ �xjyxk	 [ �xj	:

Notice

V := F + Fx + Fy

is a generating subspace and

V 2n � Span
n
yxi1yxi2 � � � yxi`

��� i1 + � � �+ i` = n; 1 � i1 � i2 � � � � � i`

o
:

Hence

dim V 2n � p(n); (1.1.5)

the number of partitions of n. We also have

V n � Span
n
xjyxi1y � � �xi`yxk

��� i1 + � � �+ i` � n; 1 � i1 � � � � � ik; j; k � n
o

+ Span
�
xjyxk

�� j; k � n
	

+ Span
�
xj
�� j � n

	
:

Thus

dim V n � (n + 1)2
nX
j=0

p(j) + (n+ 1)2 + (n + 1) � 3(n+ 1)3p(n): (1.1.6)

From Rademacher's formula for partitions of a number n [26] we have

p(n) � 1

4n
p
3
exp

�
�
p
2n=3

�
:
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From equations (1.1.5) and (1.1.6), R has in�nite GK dimension and does not grow

exponentially.

An algebra that does not have exponential growth is said to have subexponential

growth. An algebra with �nite GK dimension is said to have polynomially bounded

growth.

Example 1.1.7 The Weyl algebra

W (F ) = Ffx; yg=(xy � yx� 1)

has GK dimension 2.

Proof. The relation yx = xy�1 allows us to write any word in x and y as a linear

combination of elements of the form xiyj. Let V = F +Fx+Fy. The vector space

V is a generating subspace. Moreover,

V n � Span
n
xiyj

��� i; j � n
o

and hence dim V n � (n+ 1)2. On the other hand,

V 2n � Span
n
xiyj

��� i; j � n
o

and so V 2n has dimension at least (n+ 1)2. We see that W (F ) has GK dimension

2 by Remark 1.1.2.

The Weyl algebra can be though of in terms of di�erentiation operators. Notice

that the operator (d=dt)t� t(d=dt) is the identity operator. We can therefore think

of y as being multiplication by the indeterminate t and x being di�erentiation with

respect to t.

Example 1.1.8 Let R be a �nite dimensional F -algebra. Then GKdim(R) = 0.

Proof. Take V = R. Note that V is a generating subspace for R and V n = V for

all n. Hence dim V n = dim R for all n and so by item (1.1.1) we see that R has

GK dimension zero.
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In fact, the converse is true for aÆne algebras.

Proposition 1.1.9 Let F be a �eld and let A be an F algebra. If A has GK dimen-

sion 0, then every aÆne subalgebra of A is �nite dimensional over F ; moreover, if

A is aÆne and in�nite dimensional over F , then GKdim(A) � 1.

Proof. Let B � A be an aÆne subalgebra with generators b1; : : : ; bm. Take

V = Fb1 + � � �Fbm + F:

If V n+1 strictly contains V n for all n � 1, then we must have dimV n � n by

induction for all n � 1. It follows that B has GK dimension at least 1 by Remark

1.1.2 and so A must have GK dimension at least 1. Hence if A has GK dimension

less than 1, every aÆne subalgebra must be �nite dimensional over F . It follows

that every aÆne subalgebra has GK dimension 0, and so A, too, has GK dimension

0.

Proposition 1.1.10 Suppose R is an F -algebra of GK dimension �. Then R[t]

has GK dimension � + 1.

Proof. Let V be a generating subspace for R. Then W = V + Ft is a generating

subspace for R[t]. Notice that since t commutes, we have that

W n � V n + V nt+ � � �+ V ntn

and hence dim W n � (n + 1)dim V n. On the other hand if m = bn=2c, then

W n � V m + V mt + � � �V mtm

and so dim W n � (n=2)dim V m. It follows from Remark 1.1.3 that R[t] has GK

dimension equal to GKdim(R) + 1 = � + 1.

Corollary 1.1.11 Let A = F [x1; : : : ; xd] be a commutative polynomial ring in d

variables. Then the GK dimension of A is d.
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Proof. By Example 1.1.8, F has GK dimension zero as an F -algebra. Using Propo-

sition 1.1.10 and arguing by induction we see that A has GK dimension d.

Another important fact about GK dimension is given by looking at \large"

subalgebras of an algebra. We make this more precise. Given F -algebras A and B

with B � A, we say that A is a �nite module over B (or a �nite B-module) if

there exist a1; : : : ; am 2 A such that A = Ba1 + � � �+Bam. We have the following

useful proposition.

Proposition 1.1.12 Let A and B be aÆne F -algebras and suppose that B is a

subalgebra of A and that A is a �nite B-module. Then A and B have the same GK

dimension.

Proof. Fix a generating subspace V of B. Write A = Ba1 + � � �Bam. Let W =

V + Fa1 + � � �+ Fam. Notice that BW = A � W 2 and hence there exists a �nite

dimensional subspace U of B such that UW � W 2. By enlarging U if necessary,

we may assume that U is a generating subspace for B. It follows that

UnW � W n:

Notice that

dim W n � dim UnW � dim Un � dim W:

Thus

dim Un � 1

dim W
dim W n:

Since W is a generating subspace for A and U is a generating subspace for B we

see that the GK dimension of B is at least as large as the GK dimension of A. On

the other hand, B is a subalgebra of A and hence its GK dimension cannot exceed

the GK dimension of A. The result follows.

We note that in commutative algebra there is another notion of dimension

called the Krull dimension after Wolfgang Krull.
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De�nition 1.1.13 Given a commutative algebra A, we de�ne the Krull dimension

of A to be

sup
n
n
��� there exists a chain P0 ( � � � ( Pn; P0; : : : ; Pn prime ideals

o
:

We denote the Krull dimension by Kdim(A).

A related concept is that of transcendence degree

De�nition 1.1.14 Given a commutative algebra A over a �eld F , we de�ne the

transcendence degree of A to be the cardinality of the largest F -algebraically inde-

pendent subset of A.

We now give some important theorems about Krull dimension.

Theorem 1.1.15 (Noether's normalization theorem) Let A be a commutative

aÆne F -algebra of Krull dimension n. Then there exists a subalgebra B �=
F [x1; : : : ; xn] with A a �nite module over B.

Proof. See [12] page 283 Theorem 13.3.

Corollary 1.1.16 Suppose A is a commutative aÆne F -algebra. Then Kdim(A) =

GKdim(A).

Proof. Let m denote the Krull dimension of A. By Theorem 1.1.15 we have that

there exists an A-subalgebra B such that

1. A is a �nite B-module, and

2. B �= F [t1; : : : ; tm].

By Proposition 1.1.12 we have that A and B have the same GK dimension and by

Corollary 1.1.11 we have that the GK dimension of B is equal to m = Kdim(A).

The result follows.

This corollary shows that GK dimension is a natural noncommutative analogue

of Krull dimension. For non-aÆne commutative algebras it is not necessarily the
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case that the values of the Krull dimension and the Gelfand Kirillov dimension

coincide. We give an example to show this.

Example 1.1.17 Let F be a �eld and let A = F (t1; t2; t3; � � � ) be a purely transcen-
dental extension of F of in�nite transcendence degree. Then the Krull dimension

of A is 0 and the GK dimension of A is in�nite.

Proof. Notice the only prime ideal of A is (0) and hence A has Krull dimension 1.

Let m be a positive integer. Notice that F [t1; t2; t3 � � � ; tm] � A and hence A has

GK dimension at least m. Since m is arbitrary, we see that GKdim(A) =1.

There is another property of GK dimension that shows that it is not always

well-behaved; namely, the fact that the GK dimension of an algebra need not be

an integer.

Theorem 1.1.18 (War�eld [32]) For any real number � � 2 there exists an F -

algebra A� having GK dimension �.

Proof. It suÆces to prove the claim for 2 < � < 3 by Proposition 1.1.10, because

if A has GK dimension �, then A[t1; : : : ; td] has GK dimension �+d. Let 2 < � < 3

and let R = Ffx; yg. For each j, let Sj(�) denote the set of all ordered pairs (i; k)

such that 0 � i; k � j
��1
2 . Notice that Sj(�) has cardinality (bj ��1

2 c + 1)2. We

therefore obtain the estimates

nX
j=1

Card(Sj(�)) �
nX
j=1

j��1 = n�=�+O(n��1) (1.1.7)

and

nX
j=1

Card(Sj(�)) �
nX
j=1

(j
��1
2 + 1)2

=

nX
j=1

�
j��1 + 2j

��1
2 + 1

�

= n�=� +O(n��1) + O(n
�+1
2 ): (1.1.8)
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Consider the ideal

I� := (y)3 +
X

(i;k)62Sj(�)

RxiyxjyxkR:

Notice I� is an ideal generated by monomials and A� := R=I� has a basis as an

F -vector space given by�
xiyxjyxk

�� (i; k) 2 Sj(�)	 [ �xiyxj	 [ �xi	:
Let V be the F -vector space spanned by f1; x; yg. Notice that

V 5n � Span
�
xiyxjyxk

�� j � n; (i; k) 2 Sj(�)
	
:

Hence the dimension of V 5n is at least
nX
j=1

Card(Sj(�)) = n� +O(n��1):

Hence A� has GK dimension at least �. On the other hand,

V n �
X

j�n;(i;k)2Sj(�)

Fxiyxjyxk +
X
i;j�n

Fxiyxj +

nX
i=0

Fxi:

Thus the dimension of V n is at most
nX
j=0

Card(Sj(�)) + (n + 1)2 + (n+ 1) = n� +O(n2):

Hence the GK dimension of A� is at most �. The result follows.

We have now seen that for any

� 2 f0g [ f1g [ [2;1] (1.1.9)

there exists an algebra having GK dimension �.

Thus we have almost completely determined the set of possible values which

can occur as the GK dimension of an algebra. In fact, the set given in item (1.1.9)

is the complete set of values. To deduce this we must show that there cannot be

an aÆne algebra with GK dimension strictly between 1 and 2. This fact was �rst

proved by Bergman [7] in 1978. To prove this we will need to prove some facts

about words occurring in semigroups. This is the topic of the next section.
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1.2 Words and semigroups

We use the approach of [19] in giving a proof of Bergman's gap theorem.

Throughout this section R will denote an aÆne F -algebra generated by 1 =

r1; : : : ; rm and V will denote the generating subspace

Fr1 + � � �+ Frm:

For the remainder of this section, we shall use the notation

f(n) = dim V n=V n�1 and F (n) = dim V n: (1.2.10)

Notice that

F (n) = f(0) + � � �+ f(n): (1.2.11)

Let Y denote the free semigroup on y1; : : : ; ym; that is

Y = hy1; : : : ; ymi: (1.2.12)

We put a degree lexicographical order on the words in Y by declaring

y1 < y2 < � � � < ym:

We have a semigroup homomorphism� fromY intoR given by naturally extending

the map which sends yi to ri for 1 � i � m. We recursively construct a subset of

elements of Y. Let

M1 = fy1; : : : ; ymg:

Now assume that Mn has been constructed and consists of words of length n. List

all words of length n + 1 in lexicographical order. Starting form the beginning,

remove each word w for which �(w) is an F -linear combination of words �(w0)

with w0 < w. We de�ne Mn+1 to be the collection of words remaining at the end

of this procedure. De�ne

M =

1[
n=1

Mn: (1.2.13)

We have the following easy lemma.
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Lemma 1.2.1 The following are true:

1. �(M) = f�(w) j w 2Mg is an F -basis for R.

2. Any subword of a word in M is again in M.

Proof. See Lemma 2.2 page 15 of [19].

From this lemma it follows that f(n) =
��Mn

��.
De�nition 1.2.2 We say that a word w = x1 � � �x` 2 Y is n-periodic if xi = xi+n

for 1 � i � `� n.

Lemma 1.2.3 Suppose that a word w = x1 : : : xn 2 Y is periodic with minimal

period m. Suppose also that there exist i and j with 0 � i < j � n �m + 1 such

that

xi+1xi+2 � � �xi+m�1 = xj+1xj+2 � � �xj+m�1:

Then m j (i� j).

Proof. See Lemma 2.3 of [19].

The next lemma is the key result that Bergman needed to estimate the growth

of f(n).

Lemma 1.2.4 Suppose that f(d) � d for some natural number d, then for n � 2d

any w 2Mn has the form

w = w1w2w3;

where w2 is m-periodic for some m � d and length(w2) � d+m and both w1 and

w3 have length at most d�m.

Proof. We prove this claim by induction on n. Suppose �rst that n = 2d. Write

w = x1x2 � � �x2d. Notice that w has d + 1 subwords of length d and hence two of

them must be equal, say

xixi+1 � � �xi+d�1 = xjxj+1 � � �xj+d�1;
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with 1 � i < j � d+ 1. Let

w2 = xixi+1 � � �xj+d�1

and let m = j � i. Note that m � d. Notice also that for k � d, the kth position of

w2 is xi+k�1 = xj+k�1. But xj+k�1 is the (m + k)th position of w2 and hence w2 is

m-periodic. Taking

w1 = x1 � � �xi�1 and w3 = xj+d � � �x2d

we see that w = w1w2w3 and the conditions on the lengths of w1 and w3 are

satis�ed. Hence the conclusion of the statement of the lemma is true when n = 2d.

Now suppose that the claim is true for all n � N and consider the case n = N +1.

Let w 2 MN+1. We write w = x1w
0, with w0 2 MN . By the inductive hypothesis,

we see

w0 = u1u2u3;

where u2 is m-periodic for some m � d and has length at least d+m and u1 and

u3 both have length at most d �m. Without loss of generality m is the minimal

period of u2. If length(u1) < d�m, then the claim follows by taking

w1 = x1u1; w2 = u2; w2 = u3:

Hence we may assume that u1 has length d�m. Our goal is to show that the last

letter of u1 is the m
th letter of u2. By using the same reasoning as employed when

proving the base case, x1x2 � � �x2d has two identical subwords of length d, say

xi � � �xi+d�1 = xj � � �xj+d�1;

with 1 � i < j � d+1. Since m � d, Lemma 1.2.3 gives that m j (j� i). The word

v := xixi+1 � � �xj+d�1

is periodic with period j � i. Moreover, since u2 begins at position d�m+ 2 and

hence the last m+j�2 terms of v overlap with u2. Let v
0 denote the last m+j�2
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letters of v. Then v0 is m-periodic. Since i < j and m j (j � i) and j � d + 1, we

have i � d+ 1�m. From the above remarks,

w2 := xi � � �xd�m+1u2

is m-periodic. Taking

w1 = x1 � � �xi�1 and w3 = u3;

we see the decomposition

w = w1w2w3

satis�es the conditions in the statement of the theorem. The conclusion follows by

induction.

Proposition 1.2.5 If f(d) � d for some d then f(n) � (2d + 1)F (d)3 for all

n > 2d.

Proof. Notice that if f(d) � d, then by Lemma 1.2.4 any word of length n � 2d

can be expressed in the form w1w2w3, where w2 is periodic of length m � d and

w1 and w2 have length at most d �m. Since, w1 and w3 have length less than d,

we conclude that there are at most F (d)2 possible choices of (w1; w3). Now let u

denote the �rst m letters of w2. Notice that w2 is completely determined by its

length and the word u. Since there are at most d possible values for m, we have

that there are at most F (d) possible values of u. Also,

n � length(w2) = n� length(w1)� length(w3) � n� 2d;

so there are at most 2d + 1 possible lengths of w2. Hence there are at most

(2d + 1)F (d) possible choices of w2. Combining these facts, there are at most

(2d+ 1)F (d)3 choices for w. This completes the proof.

In fact, it is possible to prove that if f(d) � d for some d, then f(n) � d3 for

all n � d, but we do not need such a strong estimate.
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Theorem 1.2.6 (Bergman [7]) GKdim(R) 62 (1; 2); moreover if R has GK dimen-

sion 1, then R has linear growth and if R has GK dimension 2, then dim V n � n2=2

for any generating subspace V .

Proof. If f(d) � d for some d, then by Proposition 1.2.5

f(n) � (2d+ 1)F (d)3

for all n � 2d. Let

C = maxff(0); : : : ; f(2d� 1); (2d+ 1)F (d)3g:

Then f(n) � C for all n. Hence

dim V n = f(0) + � � �+ f(n) � C(n+ 1):

Thus R has linear growth. If, on the other hand, f(n) > n for all n, then

dim V n = f(0) + � � �+ f(n) � 1 + 2 + � � �+ (n+ 1)

= (n + 1)(n+ 2)=2:

Hence dim V n � n2=2 and so we see R has GK dimension 2.

Corollary 1.2.7 Let R be an F -algebra. Then

GKdim(R) 2 f0; 1g [ [2;1];

moreover, for every � 2 f0; 1g [ [2;1] there exists an F -algebra with

GKdim(R) = �:

Proof. By Theorem 1.2.6 and Proposition 1.1.9 any aÆne algebra has GK dimen-

sion lying in the set f0; 1g [ [2;1]. Since

GKdim(R) = supfGKdim(S) j S � R is aÆneg
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and f0; 1g [ [2;1] is a closed set, we conclude that

GKdim(R) 2 f0; 1g [ [2;1]:

By Proposition 1.1.18, for any � with 2 < � < 1 there exists an F -algebra R

with GK dim(R) = �. By Proposition 1.1.10 the F -algebras F , F [t], F [t1; t2], and

F [t1; t2; : : :] have GK dimensions zero, 1, 2, and in�nity respectively. This completes

the proof.

Bergman's work also gives us the following result.

Theorem 1.2.8 Let R be an F -algebra of GK dimension 1. Then there exists

r 2 R that is not algebraic over F .

Proof. Suppose that R is algebraic over F . Since R has GK dimension 1, we have

that f(d) � d for some d. Hence every element of V n can be expressed as a linear

combination of words in r1; : : : ; rm of length at most 2d and words of the form

w1w2w3, where w1 and w3 have length at most d and w2 is periodic with minimal

period at most d. Since the set of all words of length at most d is a �nite set, there

exists an integerM such that every word of length at most d satis�es a polynomial

over F of degree M . We claim that any element of R can be expressed as a linear

combination of words of length at most (M + 3)d. To see this, it suÆces to show

that if w1w2w3 has length greater than (M + 3)d, then it is reducible. Suppose

there exists a word w = w1w2w3 of length at least (M + 3)d that is irreducible.

We choose such a w with minimal length greater than (M + 3)d. Since w1 and w3

have length at most d, we see that w2 has length at least (M + 1)d. Since w2 has

period at most d, we see that w2 = uMu0, where u is an initial subword of w2. By

assumption

uM =

M�1X
j=0

cju
j

and so

w1w2w3 =

M�1X
j=0

w1u
ju0w3:
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Thus w is reducible, a contradiction. It follows that every element of R can be

expressed as a linear combination of words of length at most (M + 3)d, and so

R = V (M+3)d, which gives that R is �nite dimensional.

Theorem 1.2.9 (Pappacena [24]) Suppose f(d) � d=C for some positive integer d

and positive constant C. Then for any w 2Mn, n � d can be expressed as w1w2w3

for some w1; w2; w3 with w2 periodic with period at most length(w2)=(C + 1).

Proof. Let ui denote the subword of w of length d beginning at position i for

1 � i � (d+C)=C. Since f(d) � d=C, we conclude that uj = uk for some j and k

with 1 � j < k � (d+ C)=C. We have

uj = xjxj+1 � � �xkxk+1 � � �xj+d�1

and

uk = xkxk+1 � � �xj+d�1xj+M � � �xk+d�1:

Let

w2 = xjxj+1 � � �xk+M�1:

Comparing the ith position of uj and uk we conclude that

xj+i�1 = xk+i�1

for 1 � i � d. Hence w2 is periodic with period k � j; moreover, since 1 � j <

k � (d + C)=C, we conclude that 1 � k � j � d=C. Notice that length(w2) =

(k + d� 1)� j + 1 = d+ (k � j) � (C + 1)(k � j). This completes the proof.

Theorem 1.2.10 Let V be a subspace of Mm(F ) containing the identity matrix.

Then V n+1 = V n for all natural numbers n � N = b2n3=2c.

Proof. If f(d) > d=m for all d < 2m3=2, then we have that

dim V N = f(0) + � � �+ f(N) � (0 + 1 � � �+N)=n � N2=2m � m2:
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But Mm(F ) has dimension m2 and thus we conclude that V N is the full matrix

ring and hence V n+1 = V n for all n � N . If, on the other hand, f(d) � d=m for

some d < N , then by Theorem 1.2.9 any element of V N can be expressed as a

linear combination of elements of the form w1w
m
2 w3 with length(w1w

m
2 w3) � N .

By the Cayley-Hamilton theorem wm
2 can be expressed as an F -linear combination

of smaller powers of w2 and hence w1w
n
2w3 is in fact in V N�1. It follows that

V N = V N�1, and so V n+1 = V n for all n � N .



Chapter 2

Structure theory

2.1 Structure theory for Artinian rings

To understand aÆne algebras of GK dimension zero, it is necessary to introduce

the concept of an Artinian ring.

De�nition 2.1.1 A ring R is said to be left Artinian (respectively right Artinian),

if R satis�es the descending chain condition on left (resp. right) ideals; that is, for

any chain of left (resp. right) ideals

I1 � I2 � I3 � � � �

there is some n such that

In = In+1 = In+2 = � � � :

A ring that is both left and right Artinian is said to be Artinian.

A related concept is that of a Noetherian ring.

De�nition 2.1.2 A ring R is said to be left Noetherian (respectively right Noethe-

rian) if R satis�es the ascending chain condition on left (resp. right) ideals. Just

as in the Artinian case, we declare a ring to be Noetherian if it is both left and

right Noetherian.

20
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An equivalent de�nition for a left Artinian ring is that every non-empty collection

of left ideals has a minimal element (when ordered under inclusion). Similarly, a left

Noetherian ring can be de�ned as a ring in which every non-empty collection of left

ideals has a maximal element. A left Noetherian ring has the property that every

left ideal is generated by a �nite number of elements as a left R-module. In the

commutative case the relation between the Artinian property and the Noetherian

property is the following.

Theorem 2.1.3 A commutative ring R is Artinian if and only if it is Noetherian

and has Krull dimension zero.

Proof. See [12] page 75 Theorem 2.14.

In the noncommutative case, the relationship is not so simple. A theorem of

Hopkins (see [16]) shows that Artinian rings are Noetherian just as in the com-

mutative case; however, the relationship one might expect, namely that the GK

dimension of an Artinian ring should be zero when considered an algebra over

its center, does not hold. (See for example 6.6.18 on page 205 of [22].) It is an

open problem whether an aÆne Artinian ring is necessarily �nite dimensional and

whether an Artinian ring can have GK dimension lying strictly between zero and

in�nity when considered as an algebra over its center.

It is clear that any �nite dimensional F -algebra is Artinian, since a descending

chain of left (or right) ideals is a descending chain of F -vector spaces. Thus an

aÆne algebra of GK dimension zero is Artinian.

We shall now develop the Artin-Wedderburn theory of Artinian rings. To do

this we must �rst introduce the concept of a primitive ring. Given a ring R, we

say that a left R-module M is faithful if

r �M = 0 implies r = 0:

We say that M is simple if it is nonzero and has no proper nonzero submodules.

If R has no nonzero proper ideals, then we say R is a simple ring.
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De�nition 2.1.4 A ring R is said to be (left) primitive if it has a faithful, simple

left R-module. An ideal P of R is primitive, if R=P is a primitive ring and a ring

R is said to be semiprimitive if (0) is the intersection of primitive ideals of R.

One can also de�ne the idea of right primitivity. Bergman [8] has constructed

examples of rings that are left primitive but not right primitive. We give some

examples of primitive rings.

Example 2.1.5 A simple ring is primitive.

Proof. Notice if R is a simple ring and M is a maximal left ideal of R, then

M := R=M is simple as a left R-module. If r �M = 0, then (RrR) �M = 0. Since

R has no nonzero proper ideals and 1 �M 6= 0, we conclude that r = 0. Thus M is

also faithful as a left R-module. Hence R is primitive.

Example 2.1.6 Let D be a division ring. Then Mn(D) is simple and hence prim-

itive.

Notice that n� 1 vectors with entries in D is a left Mn(D) module that is faithful

and simple.

Example 2.1.7 A commutative ring R is primitive if and only if it is a �eld.

Proof. If R is a �eld, then it is primitive by Example 2.1.5. If R is primitive, then

it has a faithful simple module M . Notice that since M is simple,

M �= R=M

for some maximal ideal M of R. But M � M = 0 and since M is faithful, we

conclude that M = (0). Thus R is a �eld.

Example 2.1.8 Let F be a �eld of characteristic zero. Then the Weyl algebra,

W (F ), is simple and hence primitive.



23

Proof. Let

Tx(r) = xr � rx and Ty(r) = yr � ry for r 2 W (F ): (2.1.1)

By induction we have

yjx = xyj � jyj�1

for all j � 0 and hence

Tx(x
iyj) = xi(jyj�1): (2.1.2)

Similarly

Ty(x
iyj) = �(ixi�1)yj: (2.1.3)

Let I be a nonzero ideal in W (F ). Let a 2 I be nonzero. We can write

a =
X
i;j

�i;jx
iyj

for some constants �i;j 2 F with only �nitely many of the �i;j nonzero. Let

N = max
�
i j �i;j 6= 0 for some j

	
:

Notice that

TN
y (a) = (�1)N

X
j

�N;jN !yj 2 I:

Let ~N denote the largest value of j such that �N;j 6= 0. Then T
~N
x (TN

y (a)) =

(�1)N�N; ~NN ! ~N ! 6= 0 is an element of I and hence I =W (F ).

Recall that W (F ) can be thought of as the ring of operators F [t; d=dt]. Let

V = F [t] and turn V into an F [t; d=dt]-module by endowing it with the natural

action; i.e.,

t � p(t) = tp(t); (2.1.4)�
d=dt

� � p(t) = p0(t): (2.1.5)

We claim that V is a faithful, simple module for W (F ) when F has characteristic

zero. To see that it is simple, notice that for any polynomial p(t) = pmt
m+ � � � p0 2
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V of degree m, we have

1

m!pm
tj(dm=dtm) � p(t) = tj

and hence any element of V generates V as a W (F )-module. To see that V is

faithful, note that if a nonzero element r 2 W (F ) annihilates V , then the two-

sided ideal generated by r must also annihilate V . But W (F ) is simple and so 1

must annihilate V implying that V is the zero module. Thus V is indeed a faithful,

simple W (F )-module.

The Jacobson density theorem is one of the most useful results for studying

primitive rings. We give a proof of this result, but �rst we need a result due to

Schur. Given a ring R and a left R-module M , we denote by

EndR(M) (2.1.6)

the ring of all R-module homomorphisms from M to M with multiplication given

by composition of maps. Notice that M is a left EndR(M)-module, with action

given by f � x = f(x).

Lemma 2.1.9 (Schur's lemma) If M is a simple R-module, then EndR(M) is a

division ring.

Proof. Let f : M !M be a nonzero homomorphism. Notice that the kernel of f

is a submodule of M and is hence either (0) or M by the simplicity of M . Since

f is nonzero, we have that the kernel is trivial and so f is injective. Notice that

the image of f is a nonzero submodule of M and hence f is surjective. Thus f is

a bijection. Take g to be the inverse of f . Notice that if x; y 2M and r 2 R, then

f(g(x+ y)� g(x)� g(y)) = f(g(x+ y))� f(g(x))� f(g(y)) = x+ y � x� y = 0:

Since f is injective, we conclude that g(x + y) = g(x) + g(y). Similarly, g(rx) =

rg(x), and so we see that g is an R-module homomorphism.
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Theorem 2.1.10 (Jacobson density theorem) Let R be a primitive ring with a

faithful simple module M . Let D = EndR(M). Then R is dense in EndD(M); that

is, given a D-linearly independent subset of M , fx1; : : : ; xng, and another subset of
M , fy1; : : : ; yng, of the same size there exists an element r 2 R such that rxi = yi

for 1 � i � n.

Proof. We prove this theorem by induction on n. Notice that when n = 1, the

result is true since M is faithful. Suppose the claim is true for n < m and consider

the case n = m. Notice that R(x1; : : : ; xm�1) �= M �M � � � � �M , where there

are m� 1 copies of M appearing on the right hand side. If there exists an r 2 R

such that rxi = 0 for i < m and rxm 6= 0, then we are done, since rxm generates

M as an R-module. Thus we may assume that rxm = 0 whenever rxi = 0 for

i = 1; : : : ; m� 1. It follows that we have a well-de�ned surjective map

� : Mm�1 �= R(x1; : : : ; xm�1)!M;

given by (rx1; : : : ; rxm�1) 7! rxm. Let fj : M !M (m�1) be de�ned by

fj(x) = (0; : : : ; 0; x; 0; : : : ; 0)

for 1 � j < m. We have that � Æ fj : M !M is an element Æj 2 D for 1 � j < m.

Notice that for j < m, � Æ fj(xj) = rjxm, where rj 2 R satis�es

rjxi =

(
xj if i = j

0 otherwise

Thus (r1 + � � �+ rm�1 � 1)xi = 0 for 1 � i � m. It follows that (r1 + � � �+ rm�1 �
1)xm = 0 and so

(r1 + � � �+ rm�1)xm = xm:

Thus

Æ1x1 + � � �+ Æm�1xm�1 = � Æ f1(x1) + � � �+ � Æ fm�1xm�1
= (r1 + � � �+ rm�1)xm

= xm:
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This contradicts the fact that fx1; : : : ; xmg is a D-linearly independent subset of

M . The result follows.

An immediate corollary of this is the following.

Theorem 2.1.11 Let R be a primitive, left Artinian ring. Then

R �= Mn(D)

for some division ring D.

Proof. Let M be a faithful, simple R-module, and let D = EndR(M). Notice that

ifM is in�nite dimensional over D, then we can �nd a countably in�nite D-linearly

independent subset fx1; x2; : : :g �M . Let

In =
�
r 2 R

�� rxi = 0 for 1 � i � n
	
:

Notice that

I1 � I2 � � � �

is a descending chain of left ideals. By the density theorem there exists r 2 R such

that rx1 = � � � = rxn�1 = 0 and rxn 6= 0 and so In�1 6= In for all n � 2. It follows

that ifM is in�nite dimensional over D, then R is not Artinian. Hence we have that

M is �nite dimensional over D, say this dimension is n. ThenM �= D�D�� � ��D,

where there are n copies of D. Hence R is a dense subring of EndD(M) �= Mn(D).

The only dense subring of Mn(D) is the ring itself and so the result follows.

In commutative algebra the concept of a prime ideal plays an important role.

We now give the de�nition of a prime ideal in the noncommutative case. Given a

ring R, we say that an ideal P is a prime ideal if whenever aRb � P we have that

either a or b is an element of P . Equivalently, P is prime if whenever I and J are

ideals such that IJ � P , we necessarily have either I or J is contained in P . Notice

this de�nition coincides with the de�nition of a prime ideal in a commutative ring.

We say that a ring is prime if (0) is a prime ideal. Finally, we say that a ring
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is semiprime if (0) is the intersection of prime ideals in the ring. Equivalently, a

semiprime ring is a ring with no nonzero nilpotent ideals.

Proposition 2.1.12 A primitive ring is prime.

Proof. Let R be a primitive ring and letM be a faithful simpleR-module. Suppose

aRb = 0. Then aRbM = 0. Suppose b 6= 0. Then there exists m 2 M such that

bm 6= 0 since M is faithful. Since M is simple, we have RbM = M . Thus aM = 0

and so a = 0. Hence either a or b is zero and so R is prime.

A prime ring need not be primitive. For example, take R = F [t]. Since R is

a domain, it is prime. By Example 2.1.7, R is not primitive. Nevertheless, in the

Artinian case a prime ring is indeed primitive. We prove this result now.

Proposition 2.1.13 Let R be a prime left Artinian ring. Then R is primitive.

Proof. Let L be a minimal nonzero left ideal in R. Notice L is a simple left R-

module by the minimality of L. We claim also that L is a faithful R-module. To see

this, suppose that there exists some a 2 R such that aL = 0 and choose b 6= 0 2 L.

Then aRb = 0 and since R is prime we conclude that a = 0. Hence L is faithful.

Thus R is primitive.

Combining this result with Theorem 2.1.11 we see that a prime Artinian ring is

isomorphic to matrices over a division ring. Hence every prime ideal in an Artinian

ring is maximal, as the quotient is a simple ring. We now consider semiprime

Artinian rings.

Proposition 2.1.14 A left Artinian ring has only �nitely many prime ideals.

Proof. Suppose that fPi j i � 1g is an in�nite set of distinct prime ideals. Notice

that the descending chain

P1 � P1 \ P2 � � � �
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must eventually terminate and hence there exists an n such that

Pn � P1 \ P2 \ � � � \ Pn�1:

Letting Ij = Pj + Pn for 1 � j � n, we see that

Pn = I1 \ � � � \ In�1

and since Pn is a prime ideal, we conclude that Ij = Pn for some j. Hence Pj � Pn.

Since Pj is maximal, we have that Pj = Pn, which contradicts the assumption that

fPi j i � 1g is a distinct set of primes. The result follows.

We have just seen that an Artinian ring R has only �nitely many primes, say

P1; : : : ; Pn. If R is also semiprime, then

(0) =

n\
i=1

Pi:

Notice that by Theorem 2.1.11 and Proposition 2.1.13, a prime ideal in an Artinian

ring is maximal. Thus Pi and Pj are comaximal for i 6= j; that is, Pi + Pj = R

for i 6= j. We can now employ the Chinese remainder theorem, which we quickly

state.

Theorem 2.1.15 (Chinese remainder theorem) Let I1; : : : ; In be pairwise comax-

imal ideals in a ring R. Then

R

�� n\
i=1

Ii

�
�=

nY
i=1

R=Ii:

Proof. See Proposition 2.2.1 on page 162 of [28]

By this theorem we have

R �= R
. n\

i=1

Pi

!
�=

nY
i=1

R=Pi:

Thus we have the following theorem.
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Theorem 2.1.16 (Artin-Wedderburn) A semiprime left Artinian ring is a �nite

product of matrix rings over division algebras.

We have now completely determined the structure of semiprime Artinian rings. We

continue our study of Artinian rings by introducing the concept of the Jacobson

radical.

De�nition 2.1.17 Given a ring R we de�ne the Jacobson radical, J(R) to be

J(R) =
\
M;

where the intersection is taken over all maximal right ideals M of R.

We now give some equivalent expressions for the Jacobson radical of a ring.

Theorem 2.1.18 The following are equal to J(R):

1: fa 2 R j 1 + ra is invertible for all r 2 Rg;
2: fa 2 R j 1 + ar is invertible for all r 2 Rg;
3:

TfP j P right primitiveg;
4:

TfP j P left primitiveg;
5:

TfM j M right maximalg;
6:

TfM j M left maximalg:

Proof. See Chapter 1 of [15].

The Jacobson radical provides a measure of how \nice" a ring is. Notice that

any nilpotent ideal is contained in the Jacobson radical. To see this, let N be a

nilpotent ideal of a ring R and let a 2 N and r 2 R. We have (ra)n = 0 for some

n and hence

(1+ ra+ � � �+ (ra)n�1)(1� ra) = (1� ra)(1 + ra+ � � �+ (ra)n�1) = 1� (ra)n = 1

and so by the �rst expression for the Jacobson radical given in Theorem 2.1.18

we have a 2 J(R). Generally speaking, rings with nilpotent Jacobson radical tend
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to be better behaved than those without a nilpotent Jacobson radical. A related

idea is that of being Jacobson. We say that a ring R is Jacobson if every prime

homomorphic image has nil Jacobson radical. We now give some examples of rings

and their Jacobson radicals.

Example 2.1.19 Let F be a �eld and let R be a commutative, aÆne F -algebra;

then J(R) is nilpotent and hence R is Jacobson.

Proof. See Theorem 4.19 on page 132 of [12].

Example 2.1.20 A primitive ring has zero Jacobson radical.

Proof. A primitive ring has the property that (0) is a primitive ideal. By the third

condition of Theorem 2.1.18 we have that J(R) = (0).

Notice that we therefore have by Examples 2.1.8 and 2.1.6 that W (F ) and

Mn(D) have zero Jacobson radical for any �eld F of characteristic zero and any

division ring D.

Example 2.1.21 Let R((x)) denote the ring of Laurent power series over R; i.e.,

R((x)) =
n 1X
j=�M

bjx
j
��� bj 2 R for j � �M;M 2 Z

o
:

If R has no nonzero nil ideals, then J
�
R((x))

�
= (0).

Proof. Given a nonzero element

� =
X
j��M

bjx
j 2 R((x))

with b�M 6= 0, we call b�M the initial coeÆcient of �. We de�ne the initial

coeÆcient of the zero Laurent series to be zero. Given an ideal I � R((x)) we

denote by I0 the ideal in R consisting of the initial coeÆcients of elements of I.

Notice that if I � J are ideals in R((x)), then I = J if and only if I0 = J0. Note
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that if M is a maximal right ideal in R, then MR((x)) is a maximal right ideal

in R((x)). Hence we have that

J
�
R((x))

� � J(R)R((x)):

Suppose that � 2 J
�
R((x))

�
is nonzero. By multiplying � by an appropriate power

of x if necessary, we may assume that

� =
X
k�0

akx
k

with ak 2 J(R) for k � 0 and a0 6= 0. Notice that

a0 + x� � = x((1� a1) + a2x + � � � )

is a unit since x and (1� a1) are units. Hence

(a0 + x)R((x)) + �R((x)) = R((x)):

Since � is in the Jacobson radical of R((x)), we conclude that (a0 + x)R((x)) =

R((x)). Thus there exists

� =
X
k��M

bkx
k

such that (a0 + x)� = 1. Since a0 is not a unit, we see that M > 0. Computing

coeÆcients we �nd that a0b�M = 0 and

a0bi + b�i+1 =

(
0 if i > �M and i 6= 0;

1 if i = 0:

From these equations we �nd that a`+10 b�M+` = 0 for 0 � ` � M � 1 and aM0 b0 =

aM�1
0 . Hence aM�1

0 (a0b0 � 1) = 0. But a0 2 J(R) and thus a0b0 � 1 is invertible

and a0 is nilpotent. We have now shown that for any

� =
X
k��M

akx
k 2 J

�
R((x))

�

with a�M 6= 0 we have that a�M is nilpotent. Hence J
�
R((x))

�
0
is a nil ideal in R.

Since R has no nonzero nil ideals we see that that J
�
R((x))

�
= (0).
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Example 2.1.22 Let R = F [t](t). Then J(R) = (t).

Proof. The ideal (t) is the unique maximal ideal.

Notice that F [t](t) has non-nil Jacobson radical. In Chapter 4 we shall see an

example of an aÆne ring with non-nil Jacobson radical. A clever counting argument

due to Amitsur shows that over an uncountable �eld F an aÆne algebra has nil

Jacobson radical.

Theorem 2.1.23 (Amitsur [1]) Let R be a countably in�nite or �nite dimensional

algebra over an uncountable �eld F . If 1 � �r is invertible for uncountably many

values of � 2 F , then r is algebraic over F .

Proof. Let S � F be the set of all nonzero � 2 F such that 1� �r is invertible in

R. If S is uncountable, then

f(1� �r)�1 j � 2 Sg

is a linearly dependent set. Hence there exist �1; : : : ; �k 2 F � f0g and nonzero

constants �1; : : : ; �k 2 F such that

kX
i=1

�i(1� �ir)
�1 = 0:

Let p[x] 2 F [x] be the polynomial 
kY
i=1

(1� �ix)

! 
kX
i=1

�i(1� �ix)
�1

!
:

Notice p(��11 ) = c1
Qk

j=2(1��j=�1) is nonzero and hence p is a nonzero polynomial.

By construction p(r) = 0 and so r is algebraic.

Corollary 2.1.24 Let R be an aÆne algebra over an uncountable �eld F . Then

J(R) is nil.
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Proof. Let a 2 J(R). By Theorem 2.1.18 we have 1 � �a is invertible for all

� 2 F � f0g. Hence a satis�es some polynomial p(x). Write p(x) = xmq(x) with

q(0) 6= 0. Notice q(a) = q(0) + a0 where a0 2 J(R). Hence q(a) is invertible. It

follows that am is zero. Since a is arbitrary, we see J(R) is nil.

In the case that R is Artinian, we show that J(R) is in fact nilpotent.

Theorem 2.1.25 Let R be a left Artinian ring. Then J(R) is nilpotent.

Proof. We �rst show J(R) is nil. Suppose there exists an element a 2 J(R) that

is not nil. Then 0 62 f1; a; a2; � � � g and so by Zorn's lemma we can choose an ideal

P maximal with respect to the property that

P \ f1; a; a2; � � � g = ?:

We claim P is primitive. If P = IJ for some ideals I and J properly containing P ,

then by maximality of P , we conclude that am 2 I and an 2 J and hence

am+n � IJ � P;

a contradiction. Thus P is prime. Proposition 2.1.13 gives that P is primitive and

hence contains J(R) by Theorem 2.1.18. This contradicts the fact that a 62 P .

Thus J(R) is nil. Notice

J(R) � J(R)2 � J(R)3 � � � �

is a descending chain and hence must terminate. Thus there exists some n such that

J(R)n = J(R)2n. Let L = J(R)n and choose a 2 L such that La is minimal. Since

L2 = L, we have L2a = La. Hence there is a b 2 L such that Lba 6= (0). Notice

Lba � La. By minimality of La we conclude that Lba = La. Thus xba = ba for

some x 2 L. It follows that xmba = ba for all positive integersm. But x 2 L � J(R)

and hence x is nilpotent. This is a contradiction, since ba is nonzero. It follows that

J(R) is nilpotent.
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2.2 Rings satisfying a polynomial identity

An important concept in studying rings of low GK dimension is the notion of

a polynomial identity for a ring.

De�nition 2.2.1 We say that an F -algebra A satis�es a polynomial identity (PI)

if there exists a nonzero polynomial p(t1; : : : ; tm) with coeÆcients in F such that

p(a1; : : : ; am) = 0 for all choices a1; : : : ; am 2 A. We say that such a ring is PI.

Example 2.2.2 Any commutative F -algebra satis�es the identity t1t2 � t2t1.

Example 2.2.3 (Wagner's identity) The ring of 2� 2 matrices over a commuta-

tive F -algebra satis�es the identity t3(t1t2 � t2t1)
2 � (t1t2 � t2t1)

2t3.

Proof. Let A and B be 2 � 2 matrices over some commutative ring. Let C =

AB�BA. By the Cayley-Hamilton theorem

C2 = tr(C)C � det(C)I2;

where I2 is the identity matrix. Since C has trace zero, we see that C2 is a scalar

matrix and hence commutes with any other matrix. The result follows.

Another example of PI algebras comes from skew polynomial rings. Given a

ring R with an automorphism � : R! R, we construct the ring

R[z; �]: (2.2.7)

This ring consist of all elements of the form

nX
i=0

riz
i

with r1; : : : ; rn 2 R and multiplication given by

(rzi)(r0zj) = r�i(r0)zi+j:

Similarly, we de�ne the skew Laurent polynomial ring R[z; z�1; �].
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Example 2.2.4 Let A be a commutative F -algebra with an automorphism � of

�nite order which �xes F . Let z be an indeterminate. Then A[z; �] and A[z; z�1; �]

are PI.

Proof. Use Proposition 1.6.25 on page 96 of [28].

A useful fact is that a ring satisfying a polynomial identity of degree n satis�es

a multilinear polynomial identity of degree n.

Proposition 2.2.5 If A satis�es a PI of degree n, then A satis�es a multilinear

PI of degree n.

Proof. Given a nonzero polynomial f(x1; : : : ; xd) we de�ne the weight of f to be

the ordered pair (m; k), where

m = maxfdegxi(f) j 1 � i � dg

and

k = Card
�
i j xi has degree m in f

	
:

A lexicographic order is de�ned on the weights of nonzero polynomials.

Suppose that the conclusion of the proposition is not true. Let R be a ring

satisfying a polynomial identity of degree n that does not satisfy a multilinear

identity of degree n. Fix such an n and among all polynomial identities of degree

n satis�ed by R. Choose f(x1; : : : ; xd) of minimal weight. If f has weight (1; d),

then d = n and f is multilinear. Hence we may assume that f has weight larger

than (1; d). Thus there exists i � d such that xi has degree m � 2 in f and f has

weight (m; k) for some k < d. Without loss of generality i = 1. Notice that

f(x1 + xd+1; x2; : : : ; xd)� f(x1; : : : ; xd)� f(xd+1; x2; : : : ; xd)

is nonzero and has degree smaller than m in the variables x1 and xd+1. Hence the

polynomial g(x1; : : : ; xd+1) has smaller weight than f , a contradiction.

This proposition is very useful, because it shows that the property of satisfying

a polynomial identity is preserved under tensor products.
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Corollary 2.2.6 Let F be a �eld and R an F -algebra satisfying a multilinear

identity f . Then R
F A satis�es f for every commutative F -algebra A.

Proof. This follows easily from the basic properties of tensor products.

The Weyl algebra W (F ) for a �eld F of characteristic zero is an example of an

algebra that does not satisfy a polynomial identity. This fact will be proved later

using a theorem of Kaplansky. A direct proof is given now.

Proposition 2.2.7 Let F be a �eld of characteristic zero. Then the Weyl algebra

W (F ) does not satisfy a polynomial identity.

Proof. Recall that W (F ) can be thought of as the ring of operators F [t; d=dt] and

recall that F [t] is a left W (F )-module with action given by equations (2.1.4) and

(2.1.5). Suppose W (F ) satis�es a homogeneous multilinear polynomial

p(t1; : : : ; tn) = tn � � � t1 +
X
�2Sn
� 6=1

��t�(n) � � � t�(1)

of degree n. Take ti = ti
�
di�1=dti�1

�
for 1 � i � m. Notice that

tj � � � t1 � 1 = 1! 2! � � � (j � 1)! tj 6= 0

for 1 � j � n. If � is a non-trivial permutation in Sn, then we can �nd the smallest

index j such that �(j) 6= j. Notice that �(j) > j since �(i) = i for i < j. It follows

that

t�(j) � � � t�(1) � 1 = t�(j)
�
tj�1 � � � t1 � � � 1

�
= t�(j)

�
dt�(j)�1=dt�(j)�1

� � (tj�1)
= 0 since �(j) > j:

Hence

t�(n) � � � t�(1) � 1 =

(
(n� 1)! � � �1!tn if � is trivial;

0 otherwise:

It follows that p(t1; : : : ; tn) � 1 6= 0 and hence W (F ) cannot be PI.
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De�nition 2.2.8 We de�ne the nth standard identity

Sn(t1; : : : ; tn) =
X
�2Sn

sgn(�)t�(1) � � � t�(n):

We show that an aÆne algebra of GK dimension zero satis�es one of the standard

identities.

Theorem 2.2.9 Let A be a �nite dimensional F -algebra. Then A satis�es Sn,

where n = dim A� 1.

Proof. Let a1; : : : ; an 2 A. There is a non-trivial dependence relation among

a1; : : : ; an. If Sn(a1; : : : ; an) = 0, then Sn(a�(1); : : : ; a�(n)) = 0 for all � 2 Sn,
and hence we may assume that an = �1a1 + � � ��n�1an�1. Since Sn is multilinear,

we have

Sn(a1; : : : ; an) =

n�1X
j=1

�jSn(a1; : : : ; an�1; aj):

Notice that Sn is the disjoint union of the alternating group An and An times the

transposition (j; n). Hence we have

Sn(t1; : : : ; tn�1; tn)

=
X
�2An

t�(1) � � � t�(n) � t�(1) � � � t�(j�1)t�(n)t�(j+1) � � � t�(n�1)t�(j):

By setting ti = ai for 1 � i < n and tn = aj, Sn(a1; : : : ; an�1; aj) = 0. The result

follows.

Thus aÆne rings of GK dimension zero satisfy a polynomial identity. In partic-

ular,Mn(F ) satis�es the identity Sn2+1. In fact, a theorem of Amitsur and Levitzki

says that this result can be greatly improved.

Theorem 2.2.10 Let F be a �eld. Then Mn(F ) satis�es the identity Sm for all

m � 2n.

Proof. See Theorem 14 on page 20 of [10].

We show that this is the best possible result.
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Proposition 2.2.11 Mn(F ) does not satisfy a nonzero polynomial identity of de-

gree less than 2n.

Proof. Suppose Mn(F ) satis�es a PI of degree less than 2n. Then we may assume

that Mn(F ) satis�es a PI of degree 2n � 1. Moreover, we may assume that this

PI is homogeneous and multilinear by Proposition 2.2.5. Hence we suppose that

Mn(F ) satis�es

p(t1; : : : ; t2n�1) = t1 � � � t2n�1 +
X

�2S2n�1

��t�(1) � � � t�(2n�1):

Let ei;j denote the matrix with a 1 in the i; j entry and zeros elsewhere. Take

ti = ei;i for odd i between 1 and 2n � 1 and take ti = ei�1;i for even i between 1

and 2n� 1. Notice that t1 � � � t2n�1 = e1;2n�1 6= 0. If � is a non-trivial permutation,

then �(i) > �(i + 1) for some i and so t�(i)t�(i+1) = e�(i);mi
e�(i+1);mi+1

, where

mj = �(j) if j is odd and mj = �(j) + 1 if j is even. mi � �(i) > �(i + 1)

and so e�(i);mi
e�(i+1);mi+1

= 0. It follows that t�(1) � � � t�(2n�1) = 0 for all non-trivial

permutations �. Hence

p(t1; : : : ; t2n�1) = e1;2n�1 6= 0;

contradicting the fact that p is a PI for Mn(F ).

One of the fundamental theorems in PI theory is the characterization of prim-

itive PI rings given by Kaplansky.

Lemma 2.2.12 Let R be a primitive ring with faithful simple module M satisfying

a polynomial identity of degree n. Then

R �= Mm(D)

for some m < bn=2c, where D = EndR(M).

Proof. By the Jacobson density theorem, R is a dense subring of the endomor-

phism ring of someD-vector space V . Suppose V has dimension greater than bn=2c
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over D. Then we can �nd elements x1; : : : ; xk of V that are linearly independent

over D with k > bn=2c. Let

S =
n
r 2 R

��� rxi 2 SpanDfx1; : : : ; xkg for 1 � i � k
o

and

I =
n
r 2 R

��� rxi = 0 for 1 � i � k
o
:

Here, I is an ideal of S and by the density theorem S=I �= Mk(D). Let Z denote

the center of D. Notice Mk(Z) is a subring of a factor ring of a subring of R and

hence must satisfy the same polynomial identity as R. But Mk(Z) does not satisfy

a polynomial of degree less than 2k � n + 1 by Theorem 2.2.10, a contradiction.

It follows that V has dimension at most bn=2c. Hence R is a dense subring of

EndD(V ) �= Mm(D) for some m � bn=2c. It follows that

R �= Mm(D):

Lemma 2.2.13 Let D be a division ring with center Z and maximal sub�eld K.

Then D 
Z K is primitive with simple faithful module D.

Proof. Notice D is a D 
Z K-module via the action

(Æ 
 �) � x = Æx�:

Clearly D is simple. To see that it is also faithful, suppose

r = Æ1 
 �1 + � � �+ Æn 
 �n

annihilates D. Choose r with n minimal. Notice

(Æ�11 
 ��11 )r

is also an annihilator and hence we may assume without loss of generality that

Æ1 = �1 = 1. Notice

(Æ 
 1)r � r(Æ 
 1) =

nX
i=2

(ÆÆi � ÆiÆ)
 �i
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is also an annihilator for all Æ 2 D. By the minimality of n we conclude that

Æ2; : : : ; Æn 2 Z. But then

r =

nX
i=1

Æi 
Z �i

=

nX
i=1

1
 (Æi�i) since Æi 2 Z

= 1

� nX
i=1

Æi�i

�
:

Hence r = 1
 � for some � 2 K. But

(1
 �) � 1 = �

and hence if 1
 � is an annihilator of D, then � = 0. Thus D is a simple module.

Theorem 2.2.14 Let D be a division algebra with center Z and maximal sub�eld

K. Suppose D satis�es a polynomial identity of degree n. Then

D 
Z K �= Mm(K)

for some m � bn=2c. In particular, [D : Z] � bn=2c2.

Proof. Let K be a maximal sub�eld of D. Notice that if an element x 2 D

commutes with every element of K, then by maximality it is an element of K, for

otherwise we could adjoin x to K and get a larger �eld. Next observe that

EndD
ZK(D) �= K;

because if f : D! D is a D 
Z K-module, then

f(Æ) = f((Æ 
 1) � 1) = Æf(1)

and so f is determined by its value at 1. Taking � 2 K, we see

�f(1) = f(�) = f((1
 �) � 1) = (1
 �) � f(1) = f(1)�
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and so �f(1) = f(1)� for all � 2 K. So f(1) 2 K by our earlier remark. Thus

we have a D 
Z K-module homomorphism from EndD
ZK(D) into K; moreover,

this map is non-trivial, since the identity endomorphism gets mapped to 1 2 K.

Since these are simple modules we conclude that this map is an isomorphism. Now

D 
Z K is a primitive ring satisfying a polynomial identity. Hence

D 
Z K �= Mm(K)

where m � bn=2c. But basic properties of tensor products give that

m2 = [D 
Z K : K] = [D : Z]:

The result follows.

Corollary 2.2.15 (Kaplansky [18]) Let R be a primitive ring satisfying a PI of

degree n. Then R �= Mm(D), where m � bn=2c and D has dimension at most

bn=2c2 over its center.

Proof. This follows immediately from Lemma 2.2.12 and Corollary 2.2.15.

This theorem shows that the notions of being primitive and satisfying a poly-

nomial identity are, in some sense, not compatible. This theorem can be applied

to give an easy prove of Proposition 2.2.7. Notice that if

z =
X
i;j

�i;jx
iyj

is central, then

Tx(z) =
X
i;j

�i;jjx
iyj�1 = 0;

where Tx is as in equation (2.1.1). Hence �i;j = 0 if j 6= 0. Similarly, �i;j = 0 if

i 6= 0. Thus z = �0;0 2 F and so W (F ) is in�nite dimensional over its center. By

Kaplansky's theorem a primitive, PI ring is �nite dimensional over its center and

so we conclude that W (F ) is not PI.
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In fact, a theorem of Rowen (see Theorem 6.1.28 on page 99 of [29]) shows that

any ideal of a semiprime PI ring intersects the center of the ring. Primitive rings

on the other hand do not generally have large centers. Theorem 2.1.23 of Amitsur

shows|at least over an uncountable �eld|that aÆne primitive rings have center

equal to a �eld.

Proposition 2.2.16 Let R be a primitive aÆne ring over an uncountable �eld F .

Then the center of R is a �eld.

Proof. Let M be a faithful simple R-module. Let v 2M be nonzero. Observe that

EndR(M) embeds in M via the map

� 7! �(v):

This map is injective since M is simple. Since M is a homomorphic image of R, we

conclude thatM is at most countably in�nite dimensional over F . Hence EndR(M)

is at most countably in�nite dimensional over F . Notice also that the center of R

embeds in EndR(M) by sending each central element z 2 R to the homomorphism

�z de�ned by

�z(v) = z � v:

Since EndR(M) is a division ring �z has an inverse for each central element z 2 R.

Let z 2 R be central and not an element of F . We have that

1� ��z

is invertible for all � 2 F and hence �z is algebraic by Theorem 2.1.23. Since

EndR(M) is a division ring, �z satis�es a polynomial with nonzero constant term,

say

0 = 1 + �1�z + � � ��m(�z)
m:

Hence

0 = 1 + �1z + � � �+ �mz
m:
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Notice that z is therefore invertible with inverse given by �(�1 + � � � + �mz
m�1).

It follows that the center of R is a �eld.

Having described primitive PI rings, the following theorem is useful.

Theorem 2.2.17 Let R be a prime aÆne PI ring. Then J(R) = (0).

Proof. See Theorem 13.10.3 on page 484 of [22].

Hence any prime PI ring has the property that (0) is the intersection of primitive

ideals and we have an embedding

R ,!
Y

P primitive

R=P:

Thus the study of prime PI rings can often be reduced to the study of primitive

PI rings, which are matrix rings over division algebras by Kaplansky's theorem.

2.3 Goldie's Theorem

We now look at the idea of creating the quotient of a ring. In the commutative

case, it is easy to construct the \�eld of fractions" of a given domain. The noncom-

mutative case it is not so easy and, indeed, is sometimes not even possible. The

key notion in constructing the quotient of a ring was given by Ore.

De�nition 2.3.1 Given a ring R and a multiplicatively closed subset S of R con-

taining 1, we say that S is left Ore if given s 2 S and r 2 R there exist s0 2 S and

r0 2 R such that

r0s = s0r or equivalently Rs \ Sr 6= (0): (2.3.8)

Right Ore subsets are de�ned analogously. Intuitively, one thinks of the elements

of S as being invertible and condition (2.3.8) as being

rs�1 = (s0)�1r0:
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Our ultimate goal is to create a quotient ring of R in which every element can

be expressed as s�1r for some r 2 R and s 2 S. In the commutative case, it is

possible to do this as long as S has no zero divisors. The corresponding notion in

noncommutative algebra is that of regularity.

De�nition 2.3.2 We say that an element r 2 R is left regular (resp. right regu-

lar) if r0r 6= 0 (resp. rr0 6= 0) for all 0 6= r0 2 R. An element that is both left and

right regular is said to be regular.

Here are two important examples of regular elements.

Example 2.3.3 Let A be a domain. Then any nonzero element of A is regular.

Example 2.3.4 Let R be a prime ring. Then any nonzero central element z 2 R

is regular.

Proof. Suppose rz = 0 for some nonzero r 2 R. Since z is central, we have rRz = 0,

which contradicts the fact that R is prime. Hence z is left regular. Similarly, z is

right regular.

The notion of regularity is especially important when studying rings of �nite

GK dimension. As the next result shows, it allows one to proceed inductively when

proving statements about rings of �nite GK dimension.

Theorem 2.3.5 Let R be an F -algebra of �nite GK dimension and let I be an

ideal in R which contains a regular element. Then

GKdim(R) � 1 + GKdim(R=I):

Proof. Let r 2 I be regular and let V be a generating subspace for R which

contains r. Notice that V + I is a generating subspace for R=I. Choose a subset
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Wn of V
n such that the image ofWn in R=I is a basis for V

n+I. By the de�nition

of Wn and the regularity of r,n
riw j 0 � i < n; w 2Wn

o
� V 2n

is a linearly independent subset. It follows that

dim V 2n � n dim Span(Wn) = n dim (V
n
):

Using Remark 1.1.3, we deduce that GKdim(R) � 1 + GKdim(R=I).

Regularity is also important in creating noncommutative quotient rings. As it

turns out, if S is left Ore and consists of regular elements, then it is possible to

\localize" at S. We make this more precise.

Theorem 2.3.6 Let R be a ring and let S � R be a left Ore subset of R consisting

of regular elements. Then there exists a ring QS(R) such that:

� every element of s 2 S is invertible in QS(R);

� every element of QS(R) can be expressed as s�1r for some r 2 R and s 2 S.

Proof. See 2.1.3 on page 41 of [22].

We are most interested in the case that S is the set of all regular elements of

R. In this case, we shall let Q(R) denote the ring QS(R).

If an element r 2 R is not left regular, the set

fx 2 R j xr = 0g

is a nonzero left ideal which we call the left annihilator of r. More generally, given

a subset X of R we de�ne the left annihilator of X to be

fx 2 R j xX = 0g

and we denote it by `(X). Right annihilators are de�ned analogously and we denote

the right annihilator of a subset X of R by r(X).
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Goldie's theorem shows that under certain conditions, the regular elements of a

semiprime ring R form a left Ore set and the resulting quotient ring is a semiprime

Artinian ring. Thus by the Artin-Wedderburn theorem it is a �nite product of

matrix rings over division rings. We now give two de�nitions.

De�nition 2.3.7 A ring R is said to be (left) Goldie if:

1. R satis�es the ascending chain condition on left annihilators;

2. R contains no in�nite direct sum of nonzero left ideals.

Remark 2.3.8 If R is a Goldie ring, then R satis�es the descending chain con-

dition on right annihilators.

De�nition 2.3.9 A left ideal I of R is said to be essential if it intersects any

nonzero left ideal non-trivially.

The signi�cance of the second condition in the de�nition of a Goldie ring is

that it shows that for any nonzero left ideal I � R there exists a left ideal J � R

such that I \ J = (0) and I + J is essential. We give some examples of Goldie

rings.

Example 2.3.10 A left Noetherian ring is a Goldie ring.

Example 2.3.11 Let A be a commutative domain. Then A is a Goldie ring.

Proof. Condition 1 of De�nition 2.3.7 is satis�ed. If I and J are nonzero ideals of

A, then IJ � I \ J is a nonzero ideal. Hence every ideal of A is essential and the

second condition of De�nition 2.3.7 is satis�ed.

More generally, we have the following result.

Example 2.3.12 A prime PI ring is a Goldie ring.

Proof. See Corollary 13.6.6 on page 465 of [22].
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A theorem of Jategaonkar shows that under certain growth conditions, non-

commutative domains are also Goldie.

Theorem 2.3.13 (Jategaonkar [17]) Let F be a �eld and let A be an F -domain

of subexponential growth. Then A is Goldie.

Proof. Let a; b be nonzero elements of A. We shall show that Aa \ Ab 6= (0).

Consider the F -subalgebra of A generated by a and b. This algebra cannot be the

free algebra since A has subexponential growth. Hence there is some polynomial

f(a; b) = 0. We can write this as 0 = � + ra + r0b for some r; r0 2 A and � 2 F

with (r; r0) 6= (0; 0). Multiplying on the left by a, we see

0 = (ar + �)a+ ar0b:

It follows that ar0b 2 Ab \ Aa. If ar0b = 0, then we have r0 = 0 and 0 = � + ra.

If � = 0, then ra = 0, which contradicts the fact that (r; r0) 6= (0; 0). Therefore

Aa = A and so Aa \ Ab = Ab 6= (0). Thus every left ideal of A is essential and so

the second condition of De�nition 2.3.7 is satis�ed. Since A is a domain, we have

that the �rst condition is satis�ed, too.

In particular, if A is a domain with �nite GK dimension, then A is Goldie and

has a quotient ring Q(A). By Goldie's theorem, this quotient ring is of the form

Q(A) �= Mn(D);

where D is a division algebra. Since every nonzero element of Q(A) is of the form

b�1a with a and b nonzero elements of A, we see that Q(A) is a domain and

hence Q(A) is a division algebra. The following example shows that a domain with

exponential growth need not be Goldie.

Example 2.3.14 The free algebra Ffx; yg is not a Goldie ring.

Proof. This algebra is a domain and so the �rst condition of De�nition 2.3.7 is

satis�ed. The second condition, however, is not satis�ed. To see this, notice that
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Rx \Ry = (0) and since y is regular, we have the sum of left ideals

Rx+Rxy +Rxy2 + � � �

is direct.

Goldie's theorem is the following:

Theorem 2.3.15 Let S be a semiprime Goldie ring. Then Q(S) exists and is

semiprime and left Artinian; moreover if S is prime, then Q(S) is prime.

We shall prove this theorem in the case that S is prime ring.

Lemma 2.3.16 Let R be a prime Goldie ring and let s be a left regular element

of R. Then Rs is an essential left ideal.

Proof. Let I be a nonzero left ideal. Suppose that I \Rs = (0). We claim the sum

I + Is+ Is2 + � � �

is direct. To see this, suppose that

r0 + r1s+ � � �+ rns
n = 0

with r0; : : : ; rn 2 I, rn 6= 0, and with n minimal. Notice r0 2 I \ Rs and hence

must be zero. Thus

(r1 + r2s+ � � �+ rns
n�1)s = 0:

Since s is left regular, we conclude that

r1 + r2s+ � � �+ rns
n�1 = 0:

This contradicts the minimality of n. Hence I \Rs 6= (0) and so Rs is essential.

Lemma 2.3.17 Let R be a prime Goldie ring and let s be a left regular element

of R. Then s is regular.
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Proof. Suppose s is not right regular. Then r(s) is nonzero and hence we can

�nd a right annihilator ideal L which is minimal among nonzero right annihilators

contained in r(s). Since R is prime, L2 6= 0 and hence we can �nd r 2 L such that

rL 6= (0). Since s is left regular, Rs is essential. Thus there exists x 2 R such that

xr 2 Rs with 0 6= xr. Notice that xrr(s) = 0. Thus

r
�
r(s)

� � L \ r(x): (2.3.9)

Now L \ r(x) is a right annihilator as it is an intersection of two right annihilator

ideals. Moreover,

r
�
r(s)

� � rL 6= (0);

and hence L\r(x) is nonzero by equation (2.3.9). By the minimality of L, L\r(x) =
L. Since r 2 L, it follows that xr = 0, a contradiction. Thus s is right regular and

hence regular.

Lemma 2.3.18 Let R be a semiprime Goldie ring. Then R satis�es the descending

chain condition on left annihilators and the ascending chain condition on right

annihilators.

Proof. See Lemma 7.2.2 of [15] and use Remark 2.3.8.

Proposition 2.3.19 Let R be a prime Goldie ring and let J be an essential left

ideal of R. Then J contains a regular element.

Pick s 2 J such that s has minimal left annihilator. We claim that s is regular. If

it is not regular, there exists a nonzero left ideal I such that Rs\ I = (0). Since J

is essential, we have J \ I is nonzero. Replacing I by I \ J , we may assume that

I is contained in J . Let r 2 I. If a 2 R is a left annihilator of s� r, then as = ar

and hence as 2 Rs \ J = (0). Thus we have that a is a left annihilator of both s

and r 2 I � J . By the minimality of the left annihilator of s, we conclude that

`(r) � `(s) for all r 2 I. Hence

`(s)I = (0):
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Pick nonzero b 2 I. Then Then b0Rb = 0 for all b0 2 `(s). Since R is prime, we

conclude that `(s) = 0 and so s is left regular. It follows from Lemma 2.3.17 that

s is regular.

Theorem 2.3.20 Let R be a prime Goldie ring. Then the set S of regular elements

of R is a left Ore set.

Proof. Let s 2 S and let r be a nonzero element in R. We must show that Rs\Sr
is non-empty. Notice that Rs is essential by Lemma 2.3.16. Let

J =
n
x 2 R

��� xr 2 Rs
o
:

Notice that J is a left ideal. If L is any nonzero left ideal, then either Lr = (0),

in which case L � J ; or, Lr 6= (0), in which case Lr \ sR is nonzero, since sR is

essential. It follows that L\ J is nonzero for any nonzero left ideal L and hence J

is essential. Thus J contains a regular element s0. Hence rs0 = sr0 for some r0 2 R.

This shows that the Ore conditions are satis�ed.

Theorem 2.3.21 (Goldie's theorem) Let R be a prime Goldie ring. Then Q(R)

is a prime left Artinian ring.

Proof. Let I be a left ideal in Q(R). We have that I \ R is a left ideal in R.

Since R is Goldie there exists a left ideal J � R such that J \ (I \ R) = (0) and

(I \ R) + J is essential in R. By Proposition 2.3.19 the left ideal (I \ R) + J has

a regular element s. It follows that

1 = s�1s = e+ e0

for some e 2 I and e0 2 JQ(R). Hence e = e2 + ee0, or equivalently

e� e2 = ee0:

Notice that I\Q(R)J = (0) and e�e2 2 I and ee0 2 Q(R)J . It follows that e2 = e

and ee0 = 0. Any r 2 I can be expressed as r = re+ r(1� e). Since r� re 2 I and
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R(1� e) 2 JQ(R), we conclude that r = re. Thus I = Q(R)e. Notice that

`
�
r(e)

�
= `

�
(1� e)Q(R)

�
= Q(R)e

and hence every left ideal of Q(R) is the left annihilator of a right annihilator of

an idempotent. Suppose

I1 � I2 � � � � (2.3.10)

is a descending chain of left ideals in Q(R). Then there exist e1; e2; : : : 2 Q(R)

such that

In = `
�
r(en)

�
for all n � 1. Let Jn = r(en). Then we have an ascending chain of right ideals

J1 � J2 � � � � :

Write en = s�1n rn with rn; sn 2 R and sn regular. Then

r(en) = r(rn):

Observe that

r(rn) = fx 2 R j rnx = 0gQ(R)

and hence by Lemma 2.3.18 the descending chain appearing in item (2.3.10) must

eventually terminate. It follows that Q(R) is left Artinian. To see that Q(R) is

prime, suppose that aQ(R)b = 0 for some nonzero a; b 2 Q(R). Write a = s�11 a0

and b = s�12 b0 with a0; b0 2 R and s1; s2 2 S. Let r 2 R be arbitrary. Then

0 = a(rs2)b

= (s�11 a0)(rs2)(s
�1
2 b0)

= s�11 a0rb0:

Hence a0Rb0 = 0, which contradicts the fact that a and b are nonzero. It follows

that Q(R) is a prime left Artinian ring.
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We conclude this section on Goldie's theorem by giving an application of the

ideas which have appeared in this chapter.

Given a ring R, we can form the polynomial ring R[x]. By the Hilbert basis

theorem, R[x] is left Noetherian whenever R is left Noetherian. Suppose R is left

Noetherian and consider the set S � R[x] consisting of monic polynomials in R.

We have the following fact.

Proposition 2.3.22 (Resco, Small, Sta�ord [27]) The set S consists of regular

elements of R[x] and has the property that for any ideal I � R, r(x) 2 R[x]I, and

s(x) 2 S, there exist r1(x) 2 R[x]I and s1(x) 2 S such that

r1(x)s(x) = s1(x)r(x):

Proof. Let s(x) = xn+sn�1x
n�1+ � � �+s0 2 S. Suppose s(x)(qmxm+ � � �+q0) = 0,

with qm 6= 0. Looking at the leading coeÆcient of xn+m in the product, we see

that qn = 0, a contradiction. Hence s(x) is regular. Now let I be an ideal in R, let

s(x) 2 S and let r(x) 2 R[x]I. Consider the left ideal

J = fa(x) 2 R[x] j a(x)r(x) 2 R[x]Is(x)g:

We have an injection

� : R[x]=J ! R[x]I
Æ�
R[x]Is(x)

�
given by a(x) + J 7! a(x)r(x) + R[x]s(x). Since s(x) is a monic polynomial,

R[x]I=
�
R[x]Is(x)

�
is a �nitely generated left R-module. Since R is left Noethe-

rian and R[x]=J is a submodule of R[x]=R[x]s(x), R[x]=J is also �nitely generated

as a left R-module. Let p1(x); : : : ; pn(x) span R[x]=J as a left R-module. Choose a

monic polynomial q(x) of degree greater than the degrees of p1(x); : : : ; pn(x). Then

there is a polynomial s1(x) 2 J and r1; : : : ; rn 2 R such that

q(x) = s1(x) + r1p1(x) + � � �+ rnpn(x):
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Since q(x) � s1(x) has degree strictly smaller than the degree of q(x), we see

s1(x) has the same degree and same leading coeÆcient as q(x). Thus s1(x) is a

monic polynomial in J . We see that s1(x)r(x) = r1(x)s(x) for some polynomial

r1(x) 2 R[x]I. The claim follows.

The following corollary is immediate.

Corollary 2.3.23 S is left Ore and for any ideal I � R, QS(R[x])I is an ideal in

QS(R[x]).

It follows that we can form the quotient ring QS(R[x]). We denote this ring by

Rhxi. We shall show that Rhxi is a Jacobson ring. To do this, we require a few

simple facts about Noetherian rings. The theorem we now give is due to Noether.

Theorem 2.3.24 Let R be a left Noetherian ring. Then there exist prime ideals

P1; : : : ; Pn of R such that P1P2 � � �Pn = (0).

Proof. Suppose not. Then we can choose an ideal I of R maximal with respect to

the property that it does not contain a �nite product of prime ideals. Evidently, I

is not prime and hence there exist ideals J1 and J2 properly containing I such that

J1J2 � I. By maximality, J1 � P1P2 � � �Pm for some prime ideals P1; : : : ; Pm and

J2 � Q1Q2 � � �Q` for some prime ideals Q1; : : : ; Q`. Then I � P1P2 � � �PmQ1 � � �Q`,

a contradiction. The result follows.

Corollary 2.3.25 Let R be a left Noetherian ring and let I be an ideal of R. Then

there are �nitely many prime ideals minimal above I.

Proof. By Theorem 2.3.24 there exist prime ideals P1; : : : ; Pn of R containing I

such that I � P1 � � �Pn. Let Q be a prime ideal minimal above I. Then

(P1 +Q) � � � (Pn +Q) � Q:

Since Q is prime, we see that Pi + Q = Q for some i. Since Pi and Q are primes

containing I and Q is a prime minimal above I, we see that Q = Pi. It follows that

there are only �nitely many primes minimal above I.
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Proposition 2.3.26 (Levitzki [21]) Let R be a left Noetherian ring and let

P1; : : : ; Pn be the minimal primes. Then P1 \ P2 � � � \ Pn is nilpotent.

Proof. Let

J =

n\
i=1

Pi:

Let x 2 J . Observe that if x is not nil, then by either the Noetherian hypothesis

or Zorn's lemma we can �nd an ideal P maximal with respect to the property

that it does not intersect the set f1; x; x2; � � � g. It is easy to check that P must be

prime. By assumption, P � Pi for some i and hence x 2 J � P , contradicting the

fact that P \ f1; x; x2; � � � g = ?. Hence J is a nil ideal. We now show that J is

nilpotent. Let I be the largest nilpotent ideal in R. Passing to R=I, we can assume

that R has no nonzero nilpotent ideals. Choose nonzero a 2 J with maximal right

annihilator. Then r(xa) = r(a) for all x 2 R with xa 6= 0 by maximality. Since xa

is nil, we have (xa)n = 0 for some n. Choose n minimal. Then r
�
(xa)n�1

�
= r(a).

Since xa is in the right annihilator of (xa)n�1, we see axa = 0 for all x 2 R. Thus

RaR is a nilpotent, contradicting the fact that R has no nonzero nilpotent ideals.

We shall now answer a question of Resco, Small, Sta�ord (see [27]) by showing

that when R is left Noetherian, Rhxi is Jacobson.

Lemma 2.3.27 Let J be an ideal in Rhxi. Then there exists an ideal I in R and

n � 1 such that

RhxiIn � J � RhxiI:

Proof. Let Id be the ideal consisting of 0 and all leading coeÆcients of polynomials

of degree d in J \R[x]. Notice that

I0 � I1 � I2 � � � �

is an ascending chain of ideals in R and hence becomes stable as some point, say n.

Let I = In. We have J � RhxiI. Notice that any polynomial in R[x]I is congruent
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to a polynomial of degree less than n mod J \R[x]. Since R is left Noetherian, we

in fact have that R[x]I=(J \R[x]) is a �nitely generated R-module. Let Q1; : : : ; Qk

denote the primes of R[x] minimal above J \R[x]. Suppose R[x]I is not contained
in Qi. Since R[x]=Qi is prime and Goldie, we have that R[x]I=Qi contains a regular

element, a(x). Hence

R[x]=Qi
�= R[x]a(x)=Qi ,! R[x]I=Qi:

It follows that R[x]=Qi is �nitely generated as an R-module as it is a submodule

of a �nitely generated R-module. Hence Qi contains a monic polynomial. Thus

I is either contained in Qi, or Qi contains a monic polynomial. By relabeling

if necessary, we may assume that R[x]I 6� Qi for 1 � i � ` and R[x]I � Qi

for ` < i � k. Choose monic polynomials si(x) 2 Qi for 1 � i � ` and let

s(x) =
Q`

i=1 si(x). Then

s(x)R[x]I �
\

Qi:

Since
T
Qi is nilpotent mod J \ R[x], we have

s(x)nR[x]In � (Q1 � � �Qk)
n � I \ R[x]

for some n. Since s(x)n is monic, it follows that RhxiIn � J . This completes the

proof.

Theorem 2.3.28 Suppose R is a left Noetherian ring. Then Rhxi is Jacobson.

Proof. It suÆces to prove that Rhxi=P has trivial Jacobson radical for every prime

ideal P of R. By Lemma 2.3.27 there exists an ideal I in R such that RhxiIn � P �
RhxiI. Let Q1; : : : ; Qk be the primes of R minimal above I. We claim Rhxi=RhxiQi

has Jacobson radical zero. To see this we argue by contradiction. Suppose we can

�nd � = a0 + a1x + � � �amxm with am 62 Qi and m � 1 with nonzero image in

J
�
Rhxi=RhxiQi

�
. Since Qi is prime and R=Qi is Goldie, we may assume that the

image of am is regular in R=Qi. There exists � = p(x)�1(
Pn

j=1 bjx
j) 2 Rhxi such

that �(1 + �) � 1 mod RhxiQi. The leading coeÆcient of p(x)�(1 + �) = ambn
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cannot be in Qi since am is regular mod Qi and bn is not in Qi. Hence ambn �
1 mod Qi. This says that bn� is a unit mod Qi, contradicting the fact that � is

in the Jacobson radical of Rhxi=RhxiQi. Thus the Jacobson radical of Rhxi=P is

contained in RhxiQi=P for all i. Since
T
Qi is nilpotent mod I, using Proposition

2.3.22 we see

J(Rhxi=P )m � RhxiI=P
for some m. We also have that RhxiIn � P and hence J

�
Rhxi

.
P
�nm

= (0). Since

P is prime, we conclude that Rhxi=P has Jacobson radical (0).

2.4 Rings of GK dimension one

We now look at the work of Small and War�eld who proved that aÆne prime

rings of GK dimension 1 satisfy a polynomial identity. Later, along with Sta�ord,

they proved that semi-prime aÆne rings of GK dimension 1 satisfy a polynomial

identity. We shall give a combinatorial proof of the Small-War�eld theorem for

domains of GK dimension 1. We begin with a theorem of Borho and Kraft [11]

which is especially useful when studying domains of �nite GK dimension.

Theorem 2.4.1 Let B be a subdomain of an aÆne F -domain A and suppose that

GKdim(A) < GKdim(B) + 1 <1. Then B� = B n f0g is a left Ore set in A and

Q(A) is a �nite dimensional right vector space over Q(B).

Proof. Let W be a generating subspace for B. Let b 2 B and a 2 A be nonzero.

To show that B� is left Ore, we must show that Ab\Ba 6= f0g. If the intersection
is zero, we claim that

Ba+Bab +Bab2 + � � �

is direct. Suppose b0a+b1ab+� � � bnabn = 0, with bn 6= 0 and n minimal. Then b0a 2
Ba\Ab = f0g. Hence b0 = 0. Since b is regular, we have b1a+b2ab+� � � bnabn�1 = 0,

contradicting the minimality of n. Letting V = W +Fa+Fb, we see that the sum

V 2n � W na +W nab + � � �+W nbn�1a
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is direct. We conclude that

dim V 2n � n dim W n:

It follows from Remark 1.1.3 that A has GK dimension at least one greater than

the GK dimension of B, a contradiction. Thus we see that B� is indeed left Ore in

A. Let U be a generating subspace for A. Notice that if Q(B)A � Q(A) is in�nite

dimensional as a left Q(B)-vector space, then Q(B)Un, when considered as a left

Q(B)-vector space, must have dimension at least n. We have

(W + U)2n � W nUn � W nu1 + � � �+W nun:

Moreover, since u1; : : : ; un are B-linearly independent, we see that

dim (W + U)2n � n dim W n:

Using Remark 1.1.3 once again, we have that A has GK dimension at least one

greater than the GK dimension of B, a contradiction. Hence Q(B)A is a �nite

dimensional left Q(B)-vector space. To �nish the proof we only need to show that

Q(B)A = Q(A). Let a 2 A. Right multiplication by a gives a Q(B)-linear map

from Q(B)A to itself. Since a is regular, the map is injective. Since Q(B)A is �nite

dimensional over Q(B) we conclude that the map is a vector space isomorphism.

Thus there exists a0 2 AQ(A) such that a0a = aa0 = 1 and so a is invertible in

Q(B)A. It follows that Q(B)A = Q(A).

Theorem 2.4.2 Let A be an aÆne F -domain of GK dimension 1. Then A is PI.

Proof. By Theorem 1.2.8 A is not algebraic. Hence there exists an element r 2 R

such that F [r] has GK dimension 1. By Proposition 1.1.12 the quotient division

ring of A, Q(A) is a �nite dimensional over F (r) as a left F (r)-vector space. Let

m denote the dimension of Q(A) as a left F (R)-vector space. Notice that Q(A)

embeds in Mm(F (r)) by sending an element a 2 Q(A) to the map corresponding

to right multiplication by a. Regarding Mm(F (r)) as an F (r)-algebra, we see that
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it satis�es the identity S2m by the Amitsur-Levitzki theorem. Hence Q(A) also

satis�es S2m as it is a subring of Mm(F (r)).

To completely understand domains of GK dimension 1 it is necessary to use

Tsen's theorem. This theorem states that if F is an algebraically closed �eld; Z is

a �eld extension of F of transcendence degree 1; and D is a division algebra that

is �nite dimensional over its center Z, then D = Z. We give a short proof of this

theorem.

De�nition 2.4.3 We say that a �eld F is C1 if for all n > 1, any homogeneous

polynomial f(t1; : : : ; tn) of degree 0 < d < n has a non-trivial solution in F n.

The following theorem shows the signi�cance of C1 �elds.

Theorem 2.4.4 Let D be a �nite dimensional division algebra over its center Z.

If Z is C1, then D = Z.

Proof. See Theorem 19.2 on page 370 of [25].

We give some examples of C1 �elds.

Example 2.4.5 An algebraically closed �eld is C1

Proof. Let F be an algebraically closed �eld and let f(t1; : : : ; tn) be a homogeneous

polynomial of degree d < n. The polynomial f(1; 1; : : : ; 1; xn) is a polynomial in one

variable and hence has a root � 2 F . We have (1; 1; : : : ; 1; �) 2 F n is a non-trivial

solution.

Example 2.4.6 Any sub�eld of R is not C1.

Proof. The polynomial t21 + t22 + t23 has only the trivial solution.

Example 2.4.7 A �nite �eld is C1.
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Proof. (Chevalley-Warning) Let F be a �nite �eld of size q = pk where p is prime.

To prove this we need the following claim.

Claim: For 0 � j < q � 1 we have

X
�2F

�j = 0;

where 00 is de�ned to be one.

Proof. The claim is easily seen to be true when j = 0, so we may suppose that

0 < j < q � 1. Notice that the polynomial tj � 1 has at most j < q � 1 roots in F

and hence there exists nonzero � 2 F such that �j 6= 1. Multiplication by � is an

isomorphism from F to F and hence

X
�2F

�j =
X
�2F

(��)j = �j
X
�2F

�j:

The claim follows, since �j 6= 1.

Let f(t1; : : : ; tn) be a homogeneous polynomial of degree d < n. Notice that

(1� f q�1)(�1; : : : ; �n) is equal to 1 if (�1; : : : ; �n) is a zero of f and is equal to 0

otherwise. Let V denote the set of zeros of f . We have

X
(�1;:::;�n)2Fn

(1� f q�1)(�1; : : : ; �n) � Card(V) mod p:

But f q�1 is a linear combination of monomials of the form t
j1
1 � � � tjnn , where j1 +

� � �+ jn = d(q � 1). Since d < n, we have j` < q � 1 for some ` and hence

X
�2F

�j` = 0: (2.4.11)

Thus we see

X
(�1;:::;�n)2Fn

�
j1
1 � � ��jnn =

nY
k=1

�X
�2F

�jk
�

= 0 by equation (2:4:11):
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It follows that X
�2Fn

(1� f q�1)(�1; : : : ; �n) = 0

and hence Card(V) � 0 mod p. But the trivial solution to f gives that V has size

at least one. Hence there is a non-trivial solution to f and so F is C1.

We obtain a famous theorem of Wedderburn.

Corollary 2.4.8 Let D be a �nite division ring. Then D is commutative.

Proof. Let Z denote the center of D. Since Z is �nite, it is C1 by Example 2.4.7.

Hence D = Z.

Lemma 2.4.9 If F is C1 then any �nite extension of F is also C1.

Proof. Let L be a �nite extension of F and let K be the separable closure of F

in L and let �1; : : : ; �m be a basis for K over F . Let f(x1; : : : ; xn) 2 K[x1; : : : ; xn]

be a homogeneous polynomial of degree d < n. We make the substitution xi =Pm
j=1 yi;j�j and let g((yi;j)) denote the resulting polynomial. Let S denote the set

of all �eld homomorphisms from K into the algebraic closure of K which �x F .

We can extend � 2 S to a map on K[yi;j] by declaring that �(yi;j) = yi;j for all i; j.

De�ne

h((yi;j)) :=
Y
�2S

�(g):

Basic Galois theory gives that h is a homogeneous polynomial in F of degree

dm and has mn variables. Hence it has a non-trivial solution. This gives a non-

trivial solution to f in Kn. Thus K is C1. Now, L is purely inseparable over

K and therefore we have reduced to the case of showing that a �nite purely in-

separable extension of a C1 �eld is C1. We may, of course, assume that L 6= K

and therefore we have that F has characteristic p for some prime p. Induction

shows that it is suÆcient to prove the case that K 0 = K(�) with �p 2 K. Let

f(x1; : : : ; xn) 2 K 0[x1; : : : ; xn] be a homogeneous polynomial of degree d < n.

Making the substitution, xi = yi;0 + yi;1� + � � � + yi;p�1�
p�1 for i = 1; : : : ; n, we
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have f p is a homogeneous polynomial in fyi;j j 1 � i � n; 0 � j < pg of degree dp
and with coeÆcients of K. It follows that f has a non-trivial solution in (K 0)n.

Lemma 2.4.10 Let F be an algebraically closed �eld. Suppose that �1; : : : ;�d are

non-constant homogeneous polynomials in F [x1; : : : ; xn] with d < n. Then there is

a non-trivial solution a 2 F n such that

�1(a) = � � � = �d(a):

Proof. This proof relies on results from commutative algebra; namely, the gen-

eralized Principal ideal theorem and the Nullstellensatz. A proof can be found in

Proposition 19.3 on page 372 of [25].

Theorem 2.4.11 Let F be an algebraically closed �eld and let K be a �nitely

generated �eld extension of F of transcendence degree 1. Then K is C1.

Proof. By Lemma 2.4.9, we may assume that K = F (x). Let f(t1; : : : ; tn) be a

homogeneous form in K[t1; : : : ; tn] of degree d < n. By multiplying f by a suitable

polynomial in F [x] we may assume that the coeÆcients of f are polynomials in

F [x]. Let m denote the maximum of the degrees of the polynomials which occur

as coeÆcients of f . Let ` be a positive integer and let

ai = yi;0 + xyi;1 + � � �+ x`yi;`

for 1 � i � n. Notice that

g
�
(yi;j)

�
:= f(a1; : : : ; an)

has degree at most d`+m in x. Hence we can write

g
�
(yi;j)

�
=

d`+mX
k=0

�k

�
(yi;j)

�
xk;
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where �k 2 F [fyi;jg] is homogeneous for 1 � k � d` + m. By Lemma 2.4.10 we

have that �0; : : : ;�d`+m have a common non-trivial zero whenever the number of

variables exceeds d` +m. We have n(` + 1) variables and since n > d, n(` + 1) >

d` +m for all ` suÆciently large. Hence there exists a non-trivial solution to g in

F n(`+1). From this, we obtain a non-trivial solution to f in Kn.

Corollary 2.4.12 (Tsen's theorem) Let F be an algebraically closed �eld and let

K be a �nitely generated extension of F of transcendence degree 1. Then if D is a

�nite dimensional division algebra over K, then D is commutative.

Proof. Use Theorem 2.4.4 and Theorem 2.4.11.

This result allows us to describe domains of GK dimension 1 over algebraically

closed �elds.

Theorem 2.4.13 (Small-War�eld [31]) An aÆne prime ring of GK dimension 1

is a �nite module over its center and satis�es a PI.

In fact, this theorem can be extended to semiprime aÆne rings [30]. A result of

Artin and Tate shows that the center of an aÆne domain of GK dimension 1 is

aÆne.

Theorem 2.4.14 (Artin-Tate [3]) Let R be an aÆne F -algebra which is a �nite

module over its center Z. Then Z is an aÆne F -algebra.

Proof. See Proposition 6.2.5 on page 115 of [29].

Theorem 2.4.15 Let A be an aÆne F -domain of GK dimension 1 over an alge-

braically closed �eld F . Then A is commutative.

Proof. Let Z denote the center of A. By the Small-War�eld theorem, A is a �nite

Z-module. Theorem 2.3.13 and Theorem 2.4.1 A has a ring of quotients Q(A)

that is �nite dimensional over Q(Z); moreover, Q(Z) is a �eld extension of F of

transcendence degree 1. Notice Z is a �nite F -extension by Theorem 2.4.14 It
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follows that Q(Z) is C1 from Lemma 2.4.9. The center of Q(A) contains Q(Z) and

is therefore a �nite extension of Q(Z). Since Q(Z) is C1 we see that the center

of Q(A) is C1. Since Q(A) is �nite dimensional over its center, we conclude that

Q(A) is commutative by Tsen's theorem. Since A is a subring of the commutative

ring Q(A), we see that A is commutative.

Thus we have seen that any aÆne domain of GK dimension 1 over an al-

gebraically closed �eld F is in fact commutative. This is a special case of the

following theorem of Small and War�eld

The estimates of Pappacena given in Theorem 1.2.9 give more information

about rings of GK dimension 1. Notice that if R is an aÆne F -algebra and R=P

is a �nite-dimensional primitive homomorphic image of F , then

R=P �= Mm(D)

for some m and some division ring D, by Kaplansky's theorem. Also, D is �nite

dimensional over F and hence D = F if F is algebraically closed. In the case that

F is algebraically closed, we call

R=P �= Mm(F )

a matrix image of R of degree m. We now use Pappacena's estimates to �nd an

upper bound for the degrees of the matrix images of an aÆne prime ring of GK

dimension 1.

Theorem 2.4.16 Let F be an algebraically closed �eld, let R be an F -algebra of

GK dimension 1, and let V be a generating subspace for R. Then the degrees of

the matrix images of R are bounded above by 4C2, where

C = sup
n�

dim V n
�Æ
n
o
:
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Proof. Notice that C is �nite by Theorem 1.2.6. Let

R=P �= Mm(F )

be a matrix image of R of degree m. Notice that �V , the image of V in R=P is a

generating set for R=P . By Theorem 1.2.10 we have

dim V b2m3=2c � m2:

Thus

m2=2m3=2 � m2
Æ�b2m3=2c� � C:

It follows that m � 4C2.

Corollary 2.4.17 Let F be an algebraically closed �eld; let R be a prime F -algebra

of GK dimension 1; and let V be a generating subspace for R. Then R satis�es a

PI of degree at most 8C2, where

C = sup
n�

dim V n
�Æ
n
o
:

Proof. Notice that if S is an aÆne primitive ring of GK dimension less than or

equal to 1, then it is PI and hence by Kaplansky's theorem

S �= Mm(D)

for some division ring D which is �nite dimensional over its center Z. By Theorem

2.4.14 Z is an aÆne F -algebra. But a �eld that is a �nite F -algebra is necessarily

a �nite extension of F . Since F is algebraically closed we see that

S �= Mm(F ):

Thus

R=P �= Mm(P )(F )
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for some positive integer m(P ) which depends of P . By Theorem 2.4.16, m(P ) �
4C2 for all primitive ideals P . The Jacobson radical of R is (0) by Theorem 2.2.17

and hence (0) is an intersection of primitive ideals. We thus have an embedding

R ,!
Y

P primitive

R=P �=
Y

P primitive

Mm(P )(F ):

Notice that Mm(P )(F ) is a subring of Mb4C2c(F ) for all primitive ideals P . By the

Amitsur-Levitzki theorem, Y
P primitive

R=P

satis�es the identity Sb8C2c. Since R is a subring of this product, it must also satisfy

this identity. The result follows.



Chapter 3

Graded rings of low GK

dimension

3.1 Goldie's theorem for graded rings

In this chapter we study graded rings, following the approach of [23]. A ring

R is said to be graded if for each n 2 Z there exist subspaces Rn � R with the

properties:

1. R =
L

n2ZRn;

2. Rn �Rm � Rn+m.

Given a decomposition satisfying properties 1. and 2. above we say that an

element r 2 Rn is homogeneous of degree n. We say that a left (resp. right) ideal

of a graded ring R is a graded left ideal (resp. graded right ideal) if it is generated

by homogeneous elements.

De�nition 3.1.1 Let R =
L

Rn be a graded ring. We say that M is a graded

left R-module if there exist linear spaces Mn for n 2 Z such that

M =
M
n2Z

Mn

66
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and Ri � Mj � Mi+j for all i; j 2 Z. We say that a nonzero element of Mn is

homogeneous of degree n.

Example 3.1.2 Let F be a �eld. Then R = F [t1; : : : ; td] is a graded ring.

Proof. Take Rn = (0) for n < 0 and take Rn to be the space of all homogeneous

polynomials of degree n for n � 0. Then R is seen to be graded.

Example 3.1.3 Let F be a �eld and let R = F [x; y; z; t]=(x+x2y+ z2+ t3). Then

R is a graded ring in which x; y; z and t are homogeneous of degrees 6, �6, 3, and
2 respectively.

It is non-trivial to show that the ring given in the preceding example is not isomor-

phic to a polynomial ring in three variables. Here is a noncommutative example of

a graded algebra of GK dimension two.

Example 3.1.4 Let F be a �eld and let R = Ffx; yg=(xy � yx� x2). Then R is

a graded ring with x and y homogeneous elements of degree one.

Many of the results from the second chapter have graded analogues. We �rst in-

troduce the notion of a graded division ring.

De�nition 3.1.5 A ring � is said to be a graded division ring if every nonzero

homogeneous element is invertible.

The homogeneous elements of degree zero in a graded division ring form a division

ring.

Proposition 3.1.6 Let � be a graded division ring. Then

� �= D[z; z�1; �];

where D is the division ring consisting of homogeneous elements of degree zero; z

is a homogeneous element of minimum positive degree; and � is an automorphism

of D.
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Proof. Pick a homogeneous z 2 � of minimum positive degree. For Æ 2 D, we

have zÆz�1 2 D. Conjugation by z is thus an automorphism of D. It follows that

D[z; z�1; �] is a subring of �. Let a 2 � be homogeneous. By the minimality of

the degree of z, we see that the degree of z must divide the degree of a. Hence

there is an integer k such that Æ := az�k is homogeneous of degree zero. Hence a =

Æzk 2 D[z; z�1; �]. Since every element of � is a linear combination of homogeneous

elements, we conclude that

� � D[z; z�1; �]:

The result follows.

Graded division rings are like ordinary division rings in many ways. For in-

stance, given a graded division ring � and a left graded-�-module V , there exists

a graded-basis for V ; that is, there exists a subset X consisting of homogeneous

elements of V such that any homogeneous element v 2 V has a unique expression

v =

nX
i=1

Æixi

for some subset fx1; : : : ; xng of X and homogeneous elements Æ1; : : : ; Æn 2 �. This

shows graded-modules over graded-division rings behave much like vector spaces

over ordinary division rings.

De�nition 3.1.7 We say a ring R is a graded matrix ring over a graded ring S.

If

R �= Mm(S)

for some m. Given integers d1; : : : ; dm, we can grade R by declaring (ai;j)1�i;j�m to

be homogeneous of degree d if ai;j is homogeneous element of S of degree d�dj+di

for 1 � i; j � m.

De�nition 3.1.8 A graded ring R is said to be left graded-Artinian (respectively

right graded-Artinian) if R satis�es the descending chain condition on graded left
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(resp. right) ideals; that is, any chain

I1 � I2 � � � �

of graded left (resp. right) ideals must eventually be constant. A graded ring that

is both left and right graded-Artinian is said to be graded-Artinian.

As one might expect, a prime graded-Artinian ring is a graded matrix ring over

a graded division ring. To show this, a graded analogue of the Jacobson density

theorem is needed.

Given a graded ring R, we say that a left R-module is graded-simple if it is a

graded module with no proper nonzero graded submodules. We say that a graded

ring is (left) graded-primitive if it has a faithful graded-simple module. There is a

graded analogue of Schur's lemma. If R is a graded ring and M is a graded-simple

left R-module, then EndR(M) is graded with the homogeneous elements of degree

n consisting of all homomorphisms f : M !M which map homogeneous elements

of M of degree i to homogeneous elements of M of degree i+n for all i 2 Z. With

this grading, we have the following theorem.

Lemma 3.1.9 (graded Schur's lemma) Let R be a graded ring with a graded-simple

module M . Then EndR(M) is a graded division ring.

Proof. Let f be a nonzero homogeneous element of EndR(M). Since f is ho-

mogeneous, both the image and kernel of f are graded R-modules. Since M is

graded-simple, we conclude that f is both injective and surjective. Just as in the

proof of Lemma 2.1.9 we see that f has an inverse in EndR(M).

If R is a graded ring and M is a graded-simple left R-module, then, just as in

the non-graded case, we can turn M into a left module over � := EndR(M) via

the action

f � v = f(v):

Theorem 3.1.10 (graded Jacobson density theorem) Let R be a graded-primitive

ring, let M be a faithful graded-simple R-module, and let � = EndR(M). Then
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given a �nite �-linearly independent subset fx1; : : : ; xng of M consisting of ho-

mogeneous elements and a subset fy1; : : : ; yng of M of the same size consisting

of homogeneous elements, there exists a homogeneous element r 2 R such that

rxi = yi for 1 � i � n.

Proof. The proof is similar to the proof of the Jacobson density theorem given in

Theorem 2.1.10.

We obtain the graded analogue of Proposition 2.1.13 as a corollary.

Corollary 3.1.11 Let R be a prime left graded-Artinian ring. Then R is a matrix

ring over a graded division ring.

Proof. Just as in the ungraded case, we have that a prime left graded-Artinian

ring is graded-primitive. Let M be a faithful graded-simple left R-module and let

� = EndR(M):

Just as in the proof of Theorem 2.1.11, there is a �nite �-graded-basis fx1; : : : ; xng
of M consisting of homogeneous elements. Thus

M �= �x1 � � � � ��xn:

Let di denote the degree of xi for 1 � i � n. Notice that

EndR(M) �= Mn(�)

in which (ai;j) is homogeneous element of degree d if ai;j is homogeneous of degree

d� dj + di for all i and j. By the graded density theorem, we see that

R �= Mn(�):

The result follows.

Having established the graded analogue of the Artin-Wedderburn theorem, we

can now work toward obtaining a graded version of Goldie's theorem. We introduce

some notation.
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Notation 3.1.12 Let R be a graded prime ring. If the set S of homogeneous regular

elements of R is left Ore, we denote by Qgr(R) the ring QS(R).

Lemma 3.1.13 Let R be a prime graded Goldie ring. Then any nonzero, graded

left ideal I of R contains a non-nilpotent homogeneous element.

Proof. Choose nonzero homogeneous x 2 I with maximal left annihilator. By

maximality, `(xrx) = `(x) for all homogeneous r 2 R such that xrx 6= 0. If

rx is a nonzero homogeneous nilpotent element, then there is some n > 1 such

that (rx)n = 0 and (rx)n�1 6= 0. It follows that x(rx)n�2 is nonzero and rxr 2
`
�
x(rx)n�2

�
. Thus rxr 2 `(x). It follows that (rx)2 = 0 for all homogeneous r 2 R.

Now suppose that xrx 6= 0 for some homogeneous r 2 R. Then

r 2 `(xrx) = `(x);

a contradiction. It follows that xRx = 0. Since R is prime, we conclude that x = 0,

a contradiction.

Theorem 3.1.14 Let R be a graded ring. Then any essential graded left ideal has

a homogeneous regular element.

Proof. Let I be an essential left graded-ideal. We claim that there exists homoge-

neous elements s1; : : : ; sn of I such that

n\
i=1

`(si) = (0): (3.1.1)

We can �nd a homogeneous element s1 2 I that is not nilpotent. Choose a homo-

geneous element s1 2 I with maximal left annihilator. By maximality, we have

`(sm1 ) = `(s1)

for all m � 1. If s1 is left regular, we are done. If not

`(s1) \ I 6= (0)
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and so we can �nd a non-nilpotent homogeneous element in the intersection. As

before, we pick a non-nilpotent element s2 in the intersection with maximal left

annihilator. We have

`(sm2 ) = `(s2)

for allm � 1. Observe that Rs1+Rs2 is direct. To see this, suppose that as1+bs2 =

0. Since s2 is a left annihilator of s1, right multiplying by s1 gives as21 = 0 and

hence as1 = 0. It follows that bs2 = 0. If `(s1)\`(s2) = (0) we are done. If not, then

we can �nd an element s3 2 I \ `(s1)\ `(s2) such that the sum Rs1+Rs2+Rs3 is

direct. Continuing in this manner and using the fact that R is Goldie we see that

there exists homogeneous non-nilpotent elements s1; : : : ; sn 2 I such that the sum

nX
i=1

Rsi

is direct and equation (3.1.1) is satis�ed. Since R is prime,

w = Rs21Rs
2
2 � � �Rs2n 6= (0):

Thus we can �nd homogeneous elements r2; : : : ; rn 2 R such that s21r2s
2
2r2 � � � rns2n

is nonzero. Moreover, since every nonzero graded left ideal has a non-nilpotent

homogeneous element, there is a homogeneous element r1 such that

r1s
2
1r2s

2
2r3 � � � rns2n

is not nilpotent. Let

ai := (siri+1 � � � rns2n)(r1s21r2 � � � s2i�1risi):

Since aki is a subword of wk+1 and w is not nilpotent, ai is non-nilpotent. Moreover,

ai 2 Rsi. By the maximality condition imposed upon the left annihilator of si, we

conclude that `(ai) = `(si) for 1 � i � n. Moreover, Rai � Rsi and thus

Ra1 + � � �+ Ran
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is direct. Hence

`(a1 + � � �+ an) =

n\
i=1

`(ai) =

n\
i=1

`(si) = (0):

It follows that a1+ � � �+an is homogeneous and left regular. It follows from Lemma

2.3.17 that it is regular.

Theorem 3.1.15 Let R be a graded Goldie ring. Then the set S of regular homo-

geneous elements of R is left Ore.

Proof. The argument is just as in Theorem 2.3.20.

Theorem 3.1.16 (Goodearl-Sta�ord [14]) Let R be a prime, graded-Goldie ring.

Then the set S of regular homogeneous elements is non-empty and left Ore and

Qgr(R) is a prime left graded-Artinian ring.

Proof. The proof is just as in Theorem 2.3.21.

We have now seen that a prime graded Goldie ring R has a graded quotient

ring,

Qgr(R) �= Mm(�);

for some graded matrix ring over a graded division ring. For the remainder of the

chapter, we shall use this fact to analyze sub�elds in the quotient rings of graded

domains of �nite GK dimension.

3.2 Graded Goldie rings of low GK dimension

We now look at �nitely graded Goldie algebras of GK dimension 1. These are

aÆne graded algebras in which, for each n � 0, the vector space consisting of

homogenous elements of degree n is �nite dimensional. We have seen that such an

algebra is PI, but we can in fact show much more about the structure of such a

ring.
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Proposition 3.2.1 Let R =
L1

n=0Rn be a �nitely graded prime Goldie algebra of

GK dimension 1 over an algebraically closed �eld F . Then Qgr(R) is isomorphic

to a graded matrix ring over F [t; t�1].

Proof. We need the following claim.

Claim: There exists a constant C > 0 such that dim Rn � C for all n.

Proof. Let r be a regular homogeneous element of R. Let d denote the degree of

r and let V be a generating subspace for R. Recall that there exists a constant C0

such that

dim V n � dim V n�1 � C0

for all n. Let V n denote the image of V n in R=Rr. We have r 2 V m for some m.

Hence for n large,

dim
�
V n
� � dim

�
V n
Æ
V n�mr

�
� dim V n � dim V n�m � C0m:

Since R =
S
n V

n, we see R=Rr has dimension at most C0m over F . Thus Rn =

Rn�dr for all n suÆciently large. Hence dim Rn = dim Rn�d for all n suÆciently

large. The claim now follows.

By the graded version of Goldie's theorem, Qgr(R) is a graded matrix ring over

a graded division ring D[t; t�1; �]. Let x and y be homogeneous elements of R

of the same degree with y regular. Let s1 = y. Notice that s1(y
�1x) 2 R. By

the Ore condition, there exists a regular homogeneous element r2 2 R such that

r2(xy
�1x) 2 R. We de�ne s2 = r2s1. In general, we can �nd a homogeneous regular

element rn such that rn
�
sn�1(y

�1x)n�1
�
y�1x 2 R. We de�ne sn = rnsn�1. By

construction, sn(y
�1x)j 2 R for 0 � j � n; moreover, since y�1x is homogeneous

of degree 0,

F + Fy�1x + � � �+ F (y�1x)n � s�1n Rmn ;

where mn is the degree of sn. It follows that

dim
�
F + Fy�1x+ � � � � � C;
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where

C = sup
n

dim Rn:

Thus the ring of homogeneous elements of degree zero is algebraic over F . Since D

is a subring of this algebra, we see that D is algebraic over F and hence D = F .

Since � �xes F , we see that D[t; t�1; �] = F [t; t�1]. The result follows.

We now look at the work of Artin and Sta�ord. We have seen that aÆne algebras

of GK dimension less than or equal to 1 are PI. Recall from Proposition 2.2.7 that

a prime algebra of GK dimension 2 need not be PI. Artin and Sta�ord have shown

that for graded prime rings of GK dimension 2, the ring is either primitive or

PI. With the existence of a faithful simple module and results such as Jacobson's

density theorem, primitive rings are much easier to study than general prime rings.

This dichotomy theorem of Artin and Sta�ord is therefore quite useful. In fact, up

to a �nite dimensional vector space, Artin and Sta�ord completely describe graded

domains of GK dimension 2. Recall from Theorem 2.3.13 that a graded domain of

GK dimension 2 is necessarily Goldie. It follows that we can invert the homogeneous

elements to obtain a quotient of the form

D[z; z�1; �];

where D is a division algebra over F and � is an automorphism of D. Artin and

Sta�ord discovered the following remarkable result about this division ring D.

Theorem 3.2.2 Let A be a �nitely graded F -domain with 2 � GKdim(A) � 11=5

and

Qgr(A) �= D[z; z�1; �]:

Then D is a �nite module over its center Z and Z is a �nitely generated extension

of F of transcendence degree 1 and A must have quadratic growth; moreover � has

�nite order if and only if A is PI.

Proof. See Theorem 0.1 and Corollary 1.3 of [4].
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By Tsen's theorem we see that the division algebra D occurring in Theorem

3.2.2 must be a �eld when F is algebraically closed.

3.3 Krull dimension

We have discussed the relationship between the Krull dimension from classical

algebraic geometry and GK dimension. The obvious generalization of Krull dimen-

sion would be to look at the lengths of ascending chains of prime ideals. There is,

however, a more useful analogue of Krull dimension which we now describe. This

analogue relies on the notion of a derivation of a poset.

De�nition 3.3.1 Given a non-trivial poset (P;�), we de�ne the derivation of

P to be 0 if P satis�es the descending chain condition. If P does not satisfy the

descending chain condition, we de�ne its derivation to be the ordinal � where � is

the smallest ordinal satisfying:

For any descending chain p1 � p2 � p3 � � � � in P, the poset

Pi := fp 2 P j pi � p � pi+1g

has derivation strictly less than � for all but �nitely many i.

Example 3.3.2 The poset (Z;�) has derivation 1.

Proof. Let

a1 � a2 � a3 � � � �

be a descending chain of integers. Then for each i � 1, the poset consisting of all

integers between ai+1 and ai satis�es the descending chain condition and therefore

has derivation 0. Since Z does not satisfy the descending chain condition, we see

that (Z;�) has derivation 1.

Example 3.3.3 The poset ([0; 1];�) does not have a derivation.
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Proof. Suppose that ([0; 1];�) has derivation � for some ordinal �. Let

x1 > x2 > x3 > � � �

be a strictly descending chain in [0; 1]. Observe that for each i � 1 the poset

([xi+1; xi];�) is isomorphic to ([0; 1];�) as a poset and hence must have derivation

�. We conclude that ([0; 1];�) must have derivation at least �+1, a contradiction.

Proposition 3.3.4 Let (P;�) be a poset. If P satis�es the ascending chain con-

dition then (P;�) has a derivation.

Proof. Given p � q in P, let Pp;q denote the subposet of P consisting of all x 2 P
with p � x � q. We �rst claim that Pp;q has a derivation for all p; q 2 P. Suppose
this is not the case. Then choose p maximal with respect to the property that Pp;q

does not have a derivation for some q � p. Now let

a1 > a2 > a3 > � � �

be a descending chain in Pp;q. Then ai = p for at most one value of i and hence Pp;q

must have derivation at most 1 greater than the supremum of the derivations of

Pp0;q0 in which p < p0 < q0 � q, a contradiction. It follows that Pp;q has a derivation

for all p; q 2 P with p � q. Using the same reasoning as before, we see that P has

a derivation that is at most 1 greater than the supremum of the derivations of Pp;q

in which p < q, p; q 2 P.

De�nition 3.3.5 Let R be a left Noetherian ring and let M be a left R-module

M . We de�ne the (left) Krull dimension of M to be the derivation of the poset

consisting of R-submodules of M under inclusion and denote it by K(M). We

de�ne the Krull dimension of R to be the Krull dimension of R considered as a

left R-module and denote it by K(R).
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Theorem 3.3.6 Let R be a commutative Noetherian ring. Then

K(R) = Kdim(R):

Proof. See Corollary 6.4.8 of [22].

We now give some results which show how Krull dimension behaves under

taking twisted polynomial extension of rings, taking tensor products of rings, and

inverting an Ore set in a ring R. We �rst need a few remarks about Noetherian

rings.

Remark 3.3.7 Let R be a left Noetherian F -algebra. Then the following rings are

left Noetherian:

� R[x; �], where � : R! R is an automorphism;

� R
F K, where K is a �nitely generated �eld extension of F ;

� QS(R), where S is an Ore set in R consisting of regular elements.

Proof. See Theorem 1.2.9, Proposition 6.6.16, and Proposition 2.1.16 (iii) of [22].

We �rst analyze the behavior of Krull dimension when an Ore set is inverted.

Proposition 3.3.8 Let R be a left Noetherian ring and let S be an Ore set in R

consisting of regular elements. Then K(QS(R)) � K(R).

Proof. Let I ( J be left ideals in QS(R). Then I \ R � J \ R are left ideals in

R. Let a 2 J n I. Then a = s�1r for some s 2 S and some r 2 R. Observe that

sa 2 J \ R. If sa 2 I \ R, then a = s�1(sa) 2 I, contradicting our assumption.

It follows that we have an embedding of the poset of left ideals of QS(R) into the

poset of left ideals of R. The result follows easily.

We make the following conjecture about the behavior of Krull dimension.



79

Conjecture 3.3.1 Let R be a left Noetherian ring that is not primitive and sup-

pose S is an Ore set consisting of regular elements such that QS(R) is primitive.

Then

K�QS(R)
�
< K(R):

Proposition 3.3.9 Let R and S be left Noetherian rings. Suppose that S is a

�nite left R-module. Then K(S) � K(R).

Proof. See Lemma 6.5.3 of [22].

Proposition 3.3.10 Let R � S be left Noetherian rings. Suppose S is free as a

right R-module. Then K(S) � K(R). If, in addition, S is a �nite left R-module,

then K(S) = K(R).

Proof. Let I ( J be left ideals in R. Then SI � SJ are left ideals in S. We claim

that SI 6= SJ . Let a 2 J n I. Suppose a 2 SI. Let fs� j � 2 Ig be a basis for S as

a right R-module. Observe that S =
L

�2I s�R and therefore SI =
L

�2I s�I.

Write 1 =
Pm

j=1 s�jrj, where r1; : : : ; rm 2 R and �1; : : : ; �m 2 I. By assumption

a 2 SI and hence we can write

a =

mX
j=1

s�jrja =

nX
i=1

s�ibi;

with b1; : : : ; bn 2 I and �1; : : : ; �n 2 I. Since fs�g is a basis for S as a right R-

module and a 62 I, we get a contradiction. Thus we may embed the poset of left

ideals of R into the poset of left ideals of S. It follows that R � S. In the case

that S is a �nite left R-module, we have that K(S) � K(R) by the preceding

proposition.

We now look at how Krull dimension behaves under taking skew Laurent ex-

tensions of a left Noetherian ring R. We �rst give a de�nition.

De�nition 3.3.11 Let R be a ring and let M be a left R-module. We say that M

has �nite length if there exist submodules

M = M0 � M1 � M2 � � � � � Mn = (0)
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such that Mi=Mi+1 is simple as a left R-module for 0 � i < n. If M does not have

�nite length, we say that M has in�nite length.

Theorem 3.3.12 Let R be a left Noetherian ring that is not Artinian and let � be

an automorphism of R. Suppose that every nonzero simple left R[x; x�1; �]-module

has in�nite length as an R-module. Then

K(R[x; x�1; �]) = K(R):

Proof. See Theorem 6.6.10 of [22].

Corollary 3.3.13 Let R be a prime left Noetherian ring that is not Artinian and

is not primitive. Suppose that � is an automorphism of R such that R has no

nonzero proper ideals �xed by �. Then

K(R) = K(R[x; x�1; �]):

Proof. It suÆces to show that R[x; x�1; �] has no simple left modules of �nite

length over R. Suppose M is a simple left R[x; x�1; �]-module with �nite length as

a left R-module. Then there exist submodules

M =M0 ) M1 ) M2 ) � � � ) Mn = (0)

with Mi=Mi+1 a simple R-module for 0 � i < n. Since R is not primitive, there

exists a nonzero ideal Pi which annihilates Mi=Mi+1 for 0 � i < n. Observe

that (Pn�1 � � �P0)M = (0). Since R is prime, Pn�1 � � �P0 6= (0). Thus M , when

considered as an R-module, has some nonzero annihilator ideal I. Then

�(I)M = (x�1Ix)M = x�1I(xM) � x�1IM = x�1(0) = (0):

Hence �(I) � I. Similarly, ��1(I) � I. Hence �(I) = I.
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Theorem 3.3.14 Let K and L be �nitely generated �eld extensions of a �eld

F . Then K 
F L has Krull dimension equal to the minimum of trdegF (K) and

trdegF (L).

Proof. Notice that K 
F L is a �nite free module over K 0 
F L0 for some purely

transcendental extensions K 0 � K and L0 � L. Thus by Proposition 3.3.10, we

may assume that K and L are purely transcendental extensions of F . Let K =

F (x1; : : : ; xn) and L = F (y1; : : : ; ym). Without loss of generality n < m. Observe

that K 
F L is obtained by inverting an Ore set in

F [x1; : : : ; xn]
F F (y1; : : : ; ym) �= F (y1; : : : ; ym)[x1; : : : ; xn]

and hence has Krull dimension at most the Krull dimension of

S := F (y1; : : : ; ym)[x1; : : : ; xn]:

Since this is a Noetherian commutative ring, we have that the Krull dimension

of this ring is the same as Kdim(S) which is equal to n. Thus K 
F L has Krull

dimension at most n. Observe that Pi = (x1 � y1; : : : ; xi � yi) is a prime ideal of

K 
F L for 1 � i � n. Thus Kdim(F 
F L) � n. It follows that K(K 
F L) � n.

We therefore obtain the desired result.

Let A be a �nitely graded Goldie algebra of GK dimension 2 over a �eld F . We

can form the quotient ring Q(A). Our main theorem of this section is the following.

Theorem 3.3.15 Let A be a non-PI �nitely graded domain of GK dimension 2

over a �eld F . Let K be a maximal sub�eld of Q(A). Then K has transcendence

degree at most 1 over F .

We require a few simple lemmas.

Lemma 3.3.16 Let D be a division algebra which is a �nite module over its center

Z. Suppose that Z is a �nitely generated �eld extension of transcendence degree

at least 1 over some �eld F . Let K be a �nitely generated purely transcendental
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extension of F of transcendence degree at least 1. Then Mn(D)
F K is prime and

not primitive.

Proof. Let K = F (x1; : : : ; xn). Then Mn(D)
F K can be obtained by inverting

an Ore set of regular elements in the ring

Mn(D)
F F [x1; : : : ; xn] �= Mn(D[x1; : : : ; xn]):

It follows thatMn(D)
F K is prime as it is of the form QS(S) for some prime ring

S and some Ore set of regular elements S. Note thatMn(D)
FK is PI by Corollary

2.2.6. Let z 2 Z be transcendental over F . Notice that zIn�x1 generates a proper

nonzero ideal inMn(D)
FK. Kaplansky's theorem states that a primitive PI ring

is simple. Using this result, we obtain the desired result.

Lemma 3.3.17 Let A be a �nitely graded non-PI domain of GK dimension 2 over

a �eld F . Write

Qgr(A) = D[x; x�1; �]:

if � 2Mn(D) is central, then � is algebraic over F .

Proof. Suppose � = s�1r 2 D is �xed by � and is not algebraic. Then D is a �nite

module over F (�) by Theorem 3.2.2. It follows that D[x; x�1; �] is a �nite module

over F (�)[x; x�1]. Thus F (�)[x; x�1] and D[x; x�1; �] have the same GK dimension

by Proposition 1.1.12. It follows from Theorem 2.4.1 that Q(A) = Q(D[x; x�1; �])

is a �nite dimensional vector space over Q(F (�)[x; x�1]) = F (�; x). Hence Q(A)

is isomorphic to a subring of a matrix ring over F (�; x). Thus Q(A) is PI, a

contradiction.

Lemma 3.3.18 Let A be a �nitely graded non-PI domain of GK dimension 2 over

a �eld F . Let

L := Z
�
Qgr(A)

� \D

and let K be a �nitely generated extension of L. Then D 
L K has no non-trivial

ideals �xed by �.
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Proof. Suppose 0 6= I is an ideal �xed by �. Choose

a =

nX
i=1

�i 
 �i 2 I

with �i 2 D and �i 2 K for 1 � i � n and choose a such that n is minimal.

Since D is a division algebra, we may assume that �1 = 1 and that �1; : : : ; �n are

linearly independent over L. Observe that

(d
 1)a� a(d
 1) =

nX
i=2

(d�i � �id)
 �i 2 I

By the minimality of n, we see that �i is in the center of D for 1 � i � n. Further,

a� �(a) =

nX
i=2

�
�i � �(�i)

�
 �i 2 I:

Thus �i is in L for 1 � i � n. It follows that

a = 1

� nX

i=1

�i�i

�
:

Thus a is a unit and so I = Qgr(A). The result follows.

Theorem 3.3.19 Let A be a �nitely graded non-PI domain of GK dimension 2

over a �eld F . Let K be a sub�eld of A. Then K has transcendence degree at most

1 over F .

Proof. By Theorem 3.2.2, we can write

Qgr(A) = D[x; x�1; �];

where D is a �nite module over its center and its center is a �nitely generated

extension of transcendence degree 1 over F . Let K be a maximal sub�eld of Q(A).

By Lemma 3.3.17,

Z
�
D[x; x�1; �]

� \Mn(D)

is an algebraic extension of F , call it L. Then K � L. It suÆces to prove that K

has transcendence degree 1 over L. Suppose this is not the case. Then there exists a
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purely transcendental extension E of L such that E � K and E has transcendence

degree 2 over L. We have E 
L D[x; x�1; �] is prime and primitive by Lemma

3.3.16. Further, E
LD has no nonzero proper ideals �xed by � by Lemma 3.3.18.

Thus E 
L Qgr(A) has the same Krull dimension as E 
L D by Corollary 3.3.13.

Now Q(A)
LE is a localization of Qgr(A)
LE and hence we have the inequalities

K(Q(A)
L E) � K(Qgr 
L E) � K(D 
L E): (3.3.2)

Let Z denote the center ofD. Observe that K(Z
LE) = K(D
LE) by Proposition

3.3.10. Finally, note that Z 
L E is a subring of Q(A)
L E and since Q(A)
L E

is free as a Z 
L E-module, we see that the Krull dimension of Z 
L E is at most

the Krull dimension of Q(A)
LE by Proposition 3.3.10. Putting these inequalities

together, we see

K(E 
L E) � K(Q(A)
L E) � K(Qgr(A)
L E) = K(Z 
L E): (3.3.3)

Using Theorem 3.3.14, we see that

trdegL(E) � min
�
trdegL(Z); trdegL(E)

�
:

Since Z has transcendence degree 1 over L, we have that the transcendence degree

of E over L is at most 1, a contradiction. Thus K has transcendence degree at most

1 over L. Since L is an algebraic extension of F , we see that K has transcendence

degree at most 1 over F .



Chapter 4

Examples in �nite GK dimension

4.1 AÆnization theorems

We now give some examples of aÆne rings with low GK dimension that are

poorly behaved. In 1981 Be��dar [6] gave a construction of an aÆne, prime algebra

with non-nil Jacobson radical, answering an old question of Amitsur. Be��dar's

construction was subsequently modi�ed by Small. The key idea was to show that

a countably-generated algebra that is not necessarily aÆne could appear as the

corner of an aÆne algebra. We briey describe Small's construction and then show

how it can be modi�ed to construct algebras of �nite GK dimension.

Let C be a commutative ring. Given a prime, countably generated C-algebra

T , we construct the aÆnization of R as follows. Let R = Cfx; yg and let

S =

 
C +Ry R

Ry R

!
:

S is generated as a C-algebra by 
1 0

0 0

!
;

 
0 1

0 0

!
;

 
0 0

y 0

!
; and

 
0 0

0 a

!
; where a 2 f1; x; yg: (4.1.1)

Hence S is an aÆne C-algebra. C +Ry is a free C-algebra on the in�nitely many

85
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generators fxiyji � 0g. It follows that we have a surjective ring homomorphism

� : C +Ry ! T: (4.1.2)

Let

P = ker(�) (4.1.3)

and let ei;j denote the matrix with a 1 in the (i; j) entry and zeros everywhere else.

Notice P is a prime ideal. Observe that Q0 := S(e1;1Pe1;1)S satis�es e1;1Q
0e1;1 =

Pe1;1. Using Zorn's lemma we can choose an ideal Q in S maximal with respect to

the property that

e1;1Qe1;1 =

 
P 0

0 0

!
: (4.1.4)

By maximality, we have that Q is prime, since P is a prime ideal. We note that

Q �
 

0 0

Ry 0

! 
P 0

0 0

! 
0 R

0 0

!
=

 
0 0

0 RyPR

!
: (4.1.5)

Similarly,

Q � PRe1;2; (4.1.6)

and

Q � RyPe2;1: (4.1.7)

Given an element x 2 S, we denote by x the image of x in S=Q. The algebra S=Q

has the property that

e1;1(S=Q)e1;1 �= T: (4.1.8)

We call S=Q the aÆnization of T with respect to � and denote it by A(T; C; �).
We now state the main theorem of this chapter.

Theorem 4.1.1 Let C be a commutative, aÆne F -domain and T a prime, count-

ably generated prime C-algebra of GK dimension � < 1. Then there exists a

homomorphism � : C + Cfx; ygy ! T such that A(T; C; �) has GK dimension

between � and � + 2 + Kdim(C). If C = F then A(T; F ; �) has GK dimension

precisely equal to � + 2.
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Using this theorem we are able to give the following examples.

� An aÆne prime algebra of GK dimension 2 that is neither primitive nor PI.

� An aÆne algebra of GK dimension 3 whose Jacobson radical is not nil.

� A primitive aÆne algebra of GK dimension � 4 that has center not equal to

a �eld.

We �rst prove a lemma that will be necessary to obtain the upper bounds for our

GK dimension estimates.

Lemma 4.1.2 Let T be a countably generated C-algebra and let �, P , and Q be

as in equations (4.1.2), (4.1.3), and (4.1.4). Suppose � : C + Cfx; ygy ! T has

the property that �
�
xiy
�
= 0 if i 62 M for some set M = fm1; m2; : : :g � N with

the property that mi+1 � 3mi; also, suppose that for any m, the set

�
�
�
xiy
� �� i � m

	
spans T as a C-module. Then

e2;2Qe2;2 = RyPRe2;2;

where R = Cfx; yg.

Proof. Suppose that

ue2;2 2 e2;2Qe2;2; u 2 R: (4.1.9)

We have

u = p(x) +
X
i;j

xiwi;jx
j;

where p(x) 2 C[x] is a polynomial of degree, say d, and wi;j 2 yR\Ry = yRy+Cy

and at most �nitely many of the wi;j are nonzero. Notice that

(xke1;2)(ue2;2)(x
`ye2;1) = xkux`ye1;1 2 e1;1Qe1;1 = Pe1;1: (4.1.10)
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Hence

�
�
xk+`p(x)y

�
+
X
i;j

�
�
xk+iwi;jx

j+`y
�
= 0:

Since mi+1�mi !1 and wi;j is zero for all but �nitely many pairs (i; j), we have

that for (i0; j0) there exists some index N such that for any `1; `2 � N we have

�
�
xm`1

�i0+iy
�
= 0 for i 6= i0; and (4.1.11)

�
�
xm`2

�j0+jy
�
= 0 for j 6= j0: (4.1.12)

Using these equations and the fact that wi;j 2 yR \ Ry, we see that for any

`1; `2 � N , (xm`1
�i0+i)wi;j(x

m`2
�j0+jy) 2 P whenever (i; j) 6= (i0; j0). Hence

xm`1
+m`2

�i0�j0p(x)y + xm`1wi0;j0x
m`2y 2 P;

whenever `1; `2 � N . It follows that if `1 and `2 are suÆciently large, then

mmax(`1;`2) < m`1 +m`2 � i0 � j0

� m`1 +m`2 � i0 � j0 + d

� 2mmax(`1;`2) + d

< 3mmax(`1;`2) � mmax(`1;`2)+1:

Hence

�
�
xm`1

+m`2
�i0�j0p(x)y

�
= 0

for all `1; `2 suÆciently large. Thus we have that

xm`1wi0;j0x
m`2y 2 P

for all `1; `2 suÆciently large. Since wi0;j0 2 yR\Ry we can write wi0;j0 = yv with

v 2 C +Ry. Then there exists a positive integer N 0 such that

0 = �
�
xm`1wi0;j0x

m`2y
�
= �

�
xm`1y

�
�
�
v
�
�
�
xm`2y

�
for all `1; `2 > N 0. Since �

�
�
xm`1y

� j ` � N 0
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spans T as a C-module, letting `1 and `2 range independently over all natural

numbers greater than N 0, we �nd that T�
�
v
�
T = 0 and hence v 2 P . It fol-

lows that xi0wi0;j0x
j0 2 RyPR for all i0; j0. Hence u � p(x) mod RyPR. It

follows from equation (4.1.5) that p(x)e2;2 2 Q, and so from equation (4.1.10),

with p(x) replacing u, we have p(x)xiy 2 P for all i. We claim that this implies

that p(x) = 0. Suppose that p(x) 6= 0 and write p(x) = p0 + � � � + pdx
d with

pd 6= 0. Using the fact that mi+1 � mi ! 1, we see that for j suÆciently large

0 = �
�
p(x)xmj�dy

�
= pd�

�
xmjy

�
. Since the set f�(xmjg, with j running over

all positive integers greater than some given number, spans T as a C-module,

we see that 0 = pd, a contradiction. Hence p(x) = 0 and so u 2 RyPR. Thus

e2;2Qe2;2 � RyPRe2;2. From equation (4.1.5) we have that e2;2Qe2;2 = RyPRe2;2.

Theorem 4.1.3 Let T be a prime, countably generated F -algebra of GK dimen-

sion � < 1 and given �, let P , and Q be as in equations (4.1.3), and (4.1.4).

Then there exists a homomorphism � : F + Ffx; ygy ! T such that A(T; F ; �)
has GK dimension � + 2.

Proof. Let R = Ffx; yg, let V � S be the vector space spanned by the generating

set given in item (4.1.1), and let

W = F + Fx + Fy � R: (4.1.13)

One has

V n �
 

F +W ny W n

W ny W n

!
:

We shall construct a homomorphism that will give an aÆnization of �nite GK

dimension. Let B = f1; u1; u2 : : :g � T have the property that fui j i � mg spans
T as a F -vector space for any m. For example, if fv1; v2; : : :g is a basis for T as a

F -vector space, we can take

B = f1; v1; v1; v2; v1; v2; v3; : : : ; v1; v2; : : : ; vn; v1; v2; : : : ; vn+1; : : :g:
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De�ne Uj to be the vector space spanned by the �rst j + 1 elements of B; that is,

Uj = F + Fu1 + � � �+ Fuj: (4.1.14)

Let " > 0. Since T has GK dimension �, we have

lim sup
n!1

log
�
dim (Uj)

n
�.

logn � �:

Hence there exists a positive integer mj such that

dim (Uj)
n < n�+" for all n � mj:

By increasing mj if necessary, we may assume that mj � 3mj�1 for all j � 2. We

de�ne

� : F + Ffx; ygy ! T

by

�
�
xiy
�
=

(
uj if i = mj for some j � 0;

0 if i 6= mj for all j � 0:

Consider

dim

 
F +W ny 0

0 0

!
:

Suppose mj � n < mj+1. Then since Pe1;1 = e1;1Qe1;1, a word in W nye1;1 is

determined by its behavior modulo P . Since n < mj+1, we have

�
�
W ny

� � (Uj)
n:

Hence

dim W nye1;1 � dim (Uj)
n � n�+":

We now compute the dimension of W ne2;2. Notice anything in e2;2A(T; F ; �)e2;2

can be expressed as a linear combination of powers of x, elements of the form xiyxj,

and elements of the form xiywyxj, where w is a word in x and y. Hence anything

in W n is contained in the span of

f1; x; x2; : : : ; xng [ fxiyxj j 0 � i; j � ng [ fxiyW nyxj j 0 � i; j � ng:
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The dimensions of Spanf1; x; x2; : : : ; xng and Spanfxiyxj j 0 � i; j � ng are

bounded above by (n + 1) and (n + 1)2 respectively. Now RyPRe2;2 � Q and

hence the image in A(T; F ; �) of an element of the form xiywyxj is completely

determined by the behavior of wy mod P . As �
�
W ny

� � (Uj)
n, we have

dim xiyW nyxje2;2 � dim (Uj)
n � n�+":

Since i; j can assume any value between 0 and n, we have for n � mj,

dim W ne1;2 � (n+ 1) + (n+ 1)2 + (n + 1)2n�+" = O(n2+�+"):

Let A denote the \diagonal" of A(T; F ; �) and let B denote the \upper-triangular

part" of A(T; F ; �). We have just shown that

A �=
�
(F +Ry)=P

�� �R=RyPR�
has GK dimension at most � + 2 + ". Observe that B = A + e1;2A and hence B

has GK dimension at most � + 2 + " by Proposition 1.1.12. Finally, note that

A(T; F ; �) = B +B(ye2;1)

and thus

A(T; F ; �)

has GK dimension at most � + 2 + ", again using Proposition 1.1.12. Since " > 0

is arbitrary, we conclude that A(T; F ; �) has GK dimension at most �+2. On the

other hand, since T has GK dimension � and B spans T , there exists j such that

lim sup
n!1

�
dim (Uj)

n
�Æ
n��" =1:

We have V mjn+3n+2 � Wmjn+3n+2e2;2. Note

Wmjn+3n+2

� fxkywyx` j 0 � k; ` � n and w is a word of length � mjn+ ng:
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By Lemma 4.1.2 e2;2Qe2;2 = RyPR. Hence the dimension of

SpanfxkyWmjn+nyx` j 0 � k; ` � ng

is just (n + 1)2 times the dimension of Wmjn+ny modulo the ideal P . Since

�
�
Wmjy

� � Uj and Wmjn+ny � �Wmjy
�n
, we have

�
�
Wmjn+ny

� � �
�
Wmjy

�n � (Uj)
n:

Hence the dimension of Wmjn+ny mod P is at least dim (Uj)
n. But

lim sup
n!1

�
dim (Uj)

n
�Æ
n��" = 1;

and so

lim sup
n!1

�
dim V mjn+3n+2

�Æ�
mjn+ 3n+ 2

���"
= 1:

Hence the GK dimension of A(T; F ; �) � 2+�� ". It follows that A(T; F ; �) has
GK dimension precisely equal to 2 + �.

Corollary 4.1.4 Suppose T is a countably generated prime C-algebra, where C is

an aÆne F -algebra. Then there exists � : C + Cfx; ygy! T such that

2 + � � GKdim
�A(T; C; �)� � 2 + � +Kdim(C):

Proof. Let f1; c1; : : : ; cmg be a generating set for C as an F -algebra. By Theorem

4.1.1 there exists � : F + Ffx; ygy ! T such that A(T; F ; �) has GK dimension

�+2. We can extend � to a homomorphism from C+Cfx; yg onto T by declaring

that �(c) = c for all c 2 C. Since e1;1A(T; C; �)e1;1 �= T , we deduce that

GKdim
�A(T; C; �)� � GKdim(T ) = �:

If V is the vector space spanned by the generating set given in item (4.1.1), then

lim sup
n!1

log
�
dim V n

�Æ
logn = � + 2: (4.1.15)
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Let I2 2 A(T; C; �) denote the identity matrix. We have

Y :=

mX
i=1

FciI2 + V

generates A(T; C;�) as an F -algebra. Notice

V n � Y n �
� mX

i=1

FciI2

�n
V n: (4.1.16)

Equation (4.1.15) tells us that the GK dimension of A(T; C;�) is at least � + 2.

Also,

dim
� mX

i=1

FciI2

�n
V n (4.1.17)

�
 
dim

� mX
i=1

FciI2

�n!�
dim V n

�
:

Since the GK dimension of C is the same as the Krull dimension of C, we have

that for any " > 0

dim
� mX

i=1

FciI2

�n
� nKdim(C)+"

for all n suÆciently large. Combining this fact with equations (4.1.15), (4.1.16),

and (4.1.17) we see that A(T; C; �) has GK dimension at most � + 2 +Kdim C.

We now compute the center of A(T; C; �).

Proposition 4.1.5 Let � be as in Corollary 4.1.4. Then the center of A(T; C; �)
is fcI2 j c 2 Cg.

Proof. Let R = Cfx; yg and let

z =

 
z1;1 z1;2

z2;1 z2;2

!
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be a central element of A(T; C; �). Then
 

0 z1;1

0 z2;1

!
= ze1;2 = e1;2z =

 
z2;1 z2;2

0 0

!
:

Hence

z2;1e2;2 = e2;2(ze1;2)e2;2 = e2;2(e1;2z)e2;2 = 0:

It follows that z2;1e1;2 = e1;2(z2;1e2;2) = 0. Thus

z =

 
z1;1 z1;2

0 z2;2

!
:

We also have

z1;2e1;2 + z2;2e2;2 = ze2;2 = e2;2z = z2;2e2;2:

Thus z1;2e1;2 = 0 and so

z =

 
z1;1 0

0 z2;2

!
:

Write

z2;2 = p(x) +
X
i;j

xiwi;jx
j mod RyPR;

with p(x) 2 C[x] and wi;j 2 Ry \ yR and only �nitely many of the wi;j nonzero.

We have

z2;2x
me2;2 = z(xme2;2) = (xme2;2)z = xmz2;2e2;2:

By Lemma 4.1.2, z2;2x
m � xmz2;2 2 RyPR and so

z2;2x
mxny � xmz2;2x

ny 2 P

for all m;n � 0. By assumption, there exists a set M = fm1; m2; : : :g with mi+1 �
mi ! 1 and �

�
xiy
�
= 0 if i 62 M. Just as in the proof of Lemma 4.1.2, we can

take n = m`1 � i0 and n0 = m`2 � j0; for `1; `2 suÆciently large, we have

z2;2x
n0xny � xn

0

z2;2x
ny � xm`2wi0;j0x

m`1y mod P:
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Since wi0;j0 2 Ry \ yR, there exists v 2 C + Ry such that wi0;j0 = yv. It follows

that there exists a positive integer N 0 such that

0 = �
�
xm`2y

�
�
�
v
�
�
�
xm`1y

�
for all `1; `2 > N 0. By letting `1 and `2 range independently over all natural numbers

greater thanN 0 we see thatR�
�
v
�
R = 0. Hence v 2 P . It follows that xi0wi0;j0x

j0 2
RyPR. Thus z2;2 � p(x) mod RyPR. We may therefore assume that z2;2 = p(x)

by item (4.1.5). Write p(x) = p0 + � � �+ pdx
d. We have

xnyp(x)xn
0

y � p(x)xnyxn
0

y 2 P for all n; n0 � 0: (4.1.18)

Fix i > 0. We take n = m`1 � i and n0 = m`2 . Since mi+1 �mi !1, we have

�
�
xm`�jy

�
= �

�
xm`�i+jy

�
= 0

for 0 � j � d, j 6= i, for all ` suÆciently large. Hence

�
�
xm`1

�iyp(x)xm`2y � p(x)xm`1
�iyxm`2y

�
= �pi�

�
xm`1y

�
�
�
xm`2y

�
:

By allowing `1 and `2 to range independently over all suÆciently large numbers,

we see that pi = 0 for all i > 0. Hence z2;2 = c 2 C. Now cI2 is central and hence

z� cI2 = (z1;1 � c)e1;1

is central. But the nonzero elements of a prime ring are regular and (z1;1 � c)e1;1

is annihilated by e2;2. We conclude that z1;1 = c and so z = cI2.

An important fact about the aÆnization of a C-algebra T is that T is primitive

if and only if A(T; C; �) is primitive. In fact, T �= e1;1A(T; C; �)e1;1, and so this

fact is just a consequence of the following proposition.

Proposition 4.1.6 (Lanski, Resco, Small [20]) Let R be a prime ring with a

nonzero idempotent e. Then R is primitive if and only if eRe is primitive.
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Proof. Suppose R is primitive. Let M be a faithful simple R-module. Notice that

eM is an eRe-module. Note that if ere 2 eRe annihilates eM , then 0 = (ere)eM =

(ere)M and so ere = 0. Hence eM is a faithful eRe-module. Suppose ev 2 eM is

nonzero. Then since ev 2M and M is simple as an R-module, we have Rev =M .

Thus (eRe)ev = eM and so we see that eM is a simple eRe-module. Hence eRe is

primitive.

Suppose eRe is primitive. Then there is a maximal left ideal M � eRe that

does not contain a nonzero two-sided eRe-ideal. Notice I := RM + R(1� e) has

the property that eIe =M. By Zorn's lemma we can �nd a left R-ideal M0 that

contains I and is maximal with respect to the property that eM0e =M. The ideal

M0 is necessarily a maximal left-ideal, because ifM0 +Rx properly contains M0,

then eRe =M+ eRxe; hence

e = v + erxe (4.1.19)

for some v 2 M and some r 2 R. Since v 2 M � eRe, we have that v = ve and

so equation (4.1.19) gives that (1 � v � erx)e = 0. Thus 1 � v � erx 2 R(1� e).

It follows that

1 2 RM+R(1� e) +Rx � M0 +Rx

and so M0 is a maximal left ideal. Suppose M0 contains a nonzero two-sided ideal

J . Then eJe is a two-sided eRe-ideal contained in M. Hence eJe = 0. But this is

impossible because R is prime, J is nonzero, and e is nonzero. Thus M0 cannot

contain a nonzero two-sided ideal. Hence R is primitive.

4.2 Applications of AÆnization

We now give some applications of Theorem 4.1.1.

Example 4.2.1 An aÆne prime F -algebra of GK dimension 3 with non-nil Ja-

cobson radical for �elds F with jF j � @0.
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Suppose jF j � @0. Be��dar [6] �rst constructed an aÆne prime ring with non-

nil Jacobson Radical; this example was subsequently modi�ed by Small. We show

that Small's construction can be further modi�ed to give such an example with GK

dimension 3. Note that F [t](t) is countably in�nite dimensional over F and has GK

dimension 1 as an F -algebra. Hence there is a homomorphism � : F +Ffx; ygy!
F [t](t) such that A = A(F [t](t); F ; �) is an aÆne algebra with GK dimension 3. We

have that

e1;1J(A)e1;1 � J(e1;1Ae1;1) �= J(F [t](t)) = tF [t](t):

Hence A has non-nil Jacobson radical. This is much di�erent from the situation

when F is uncountable. In this case Corollary 2.1.24 shows that the Jacobson

radical of any aÆne F -algebra is nil. Also, a prime aÆne ring of GK dimension

less than or equal to 1 is PI by a Theorem 2.4.13 and hence has Jacobson radical

(0) by Theorem 2.2.17. It is unknown whether the Jacobson radical of a prime,

aÆne ring of GK dimension 2 is necessarily nil. We make the following conjecture.

Conjecture 4.2.1 Suppose R is an aÆne F -algebra of GK dimension less than

3. Then J(R) is nil. In particular, if R is also right Goldie then R is Jacobson.

The aÆnization technique will probably not yield a counter-example to this con-

jecture, because it will only produce a ring of GK dimension less than 3 if the

aÆnization is performed upon a ring of GK dimension zero; if R has GK dimen-

sion 0 then R is algebraic over F and hence J(R) is nil.

Example 4.2.2 A primitive F -algebra with GK dimension 3 and center equal to

a polynomial ring for �elds F with jF j � @0.

We saw in Proposition 2.2.16 that over an uncountable �eld F , the center of an

aÆne primitive F -algebra is a �eld. We show that this is not the case when F is

not uncountable. Let F be a �eld with jF j � @0. Consider the �eld F (t). This

is a primitive countably generated F [t]-algebra. By Theorem 4.1.1 there exists a

homomorphism � : F [t] + F [t]fx; yg ! F (t) such that A(F (t); F [t]; �) has GK
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dimension between 3 and 4. (In fact by carefully choosing � we can ensure that

it has GK dimension precisely 3.) By Proposition 4.1.5 we see that the center of

this ring is the polynomial ring F [t]I2. Thus A(F (t); F [t]; �) is a primitive aÆne

F -algebra of GK dimension 3 with center equal to a polynomial ring.

Example 4.2.3 An aÆne prime ring of GK dimension 2 that is neither PI nor

primitive.

Artin and Sta�ord [4] proved that an aÆne prime graded Goldie algebra of GK

dimension 2 over an algebraically closed �eld is either primitive or PI. We show

that this is not the case in general for prime rings of GK dimension 2.

We shall begin by giving a construction of a prime F -algebra of GK dimension

0 that is not primitive, and then we shall use aÆnization on this example. Let us

create a free F -algebra on in�nitely many generators ft1; t2; : : : g. We let Wn be

the collection of all words of length n on t1; : : : ; tn and let

I =

*
1[
i=1

Wi

+
:

Remark 4.2.4 Note that I is a monomial ideal and hence if c1; : : : ; cm are nonzero

and w1; : : : ; wm are distinct words in t1; t2; : : :, then

mX
i=1

ciwi 2 I

only if w1; : : : ; wm 2 I.

Let

R = Fft1; t2; : : : g=I:
We prove two lemmas to establish the facts that we shall need.

Lemma 4.2.5 R is not PI and has GK dimension 0.

Proof. To see that R is not PI, suppose that R satis�es a multilinear identity

p(x1; x2; : : : ; xn) = x1x2 � � �xn +
X
�2Sn
� 6=1

c�x�(1) � � �x�(n):
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Consider p(t2; t3; : : : ; tn+1). By Remark 4.2.4 we have that t2t3 � � � tn+1 2 I. Since

t1t2 � � � tn is a word in I, we have that there is a word w 2Wi for some i � n and

words v and v0 such that

t1 � � � tn = vwv0:

Thus w = titi+1 � � � ti+j for some i and j with 2 � i � i + j � n + 1. Since w has

length j+1, we conclude that w 2Wj+1. This is a contradiction, since ti+j appears

in Wj+1 and i + j � j + 2. Hence R does not satisfy a polynomial identity.

To see that R has GK dimension 0, note that if p1; : : : ; pm 2 Fft1; t2; : : : g,
then there exists some k such that

p1; : : : ; pm 2 Fft1; : : : ; tkg � Fft1; t2; : : : g:

Since

I \ Fft1; : : : ; tkg

contains all words in t1; : : : ; tk of length at least k, we conclude that

Fft1; : : : ; tkg
Æ�
I \ Fft1; : : : ; tkg

�
has dimension at most 1 + k + k2 + � � �+ kk�1. Hence R has GK dimension 0.

Lemma 4.2.6 R is prime and J(R) = ht1; t2; : : :i. In particular, R is not primi-

tive.

Proof. Suppose a; b 2 Fft1; t2; : : : g are such that

a
�
Fft1; t2; : : : g

�
b � I

and a; b 62 I. It is no loss of generality to assume that a and b are words, by Remark

4.2.4. We then have atmb 2 I for all m. Let length(u) denote the length of a word

u and choose

m > 1 + length(a) + length(b):
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Since atmb is a word that is in I, there exists

w 2
[
i�1

Wi

and words v; v0 such that atmb = vwv0. If tm does not occur in w, then w is a

subword of either a or b, contradicting the fact that a; b 62 I. Hence tm appears in

the word w. It follows that

length(w) � m > 1 + length(a) + length(b) = length(atmb):

This is a contradiction, and so R is prime. Let

r 2 ht1; t2; : : :i � Fft1; t2; : : :g:

Then there exists a k such that

r 2 Fft1; : : : tkg � Fft1; t2; : : :g:

We have that rk is a linear combination of words in t1; : : : ; tk, all of which have

length at least k. Hence rk 2 I. It follows that the Jacobson radical of R is the

ideal generated by the images of fti j i � 1g.

From these lemmas we see that R is a prime ring of GK dimension zero and

is neither PI nor primitive; moreover, R is countable dimensional as an F -algebra.

Hence by Theorem 4.1.1 there exists a homomorphism � : F + Ffx; ygy ! R

such that A(R;F ; �) is a prime ring of GK dimension 2. Since R is not primitive,

A(R;F ; �) is not primitive by Proposition 4.1.6. Also A(R;F ; �) is not PI, as R
does not satisfy a polynomial identity.

Fisher and Snider (see Example 2.8 of [13]) give an example of a prime F -

algebra of GK dimension 0 that has nonzero Jacobson radical. It can be shown

that their example is not PI and hence we obtain via aÆnization another example

of a prime aÆne ring of GK dimension 2 that is neither primitive nor PI. In both

the example given here and the example that arises from [13], the degrees of the

matrix images are bounded. We therefore repeat the following questions of Small.
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Question 4.2.7 Are the degrees of the matrix images of a prime, aÆne ring of

GK dimension 2 necessarily bounded?

Question 4.2.8 Must an aÆne algebra with quadratic growth necessarily be either

primitive or PI?

We have seen that aÆnization gives a way of constructing examples in �nite GK

dimension. We note that using aÆnization one can also answer in the aÆrmative

the following question of Kaplansky: does there exists an aÆne primitive algebraic

algebra which is not of GK dimension 0. This example can be found in [5].
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