Complex Analysis Qualifying Exam - Fall 2022

Name: \qquad

Student ID: \qquad

Instructions: 3 hours. Open book: Conway and personal notes from lectures may be used. You may use without proof results proved in Conway I-VIII, X-XI. When using a result from the text, be sure to explicitly verify all hypotheses in it. Present your solutions clearly, with appropriate detail.

Notation and terminology: A region is an open and connected subset of \mathbb{C}. The space of analytic functions in G is denoted by $H(G)$.

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
6		60
Total		

Problem 1. [10 points.]
Let $G \subset \mathbb{C}$ be a bounded, simply connected region and let f be an analytic self-map of G (i.e., $f(G) \subset G)$. Assume that f has two fixed points. Show that $f(z)=z$.

Problem 2. [10 points.]
Let $t<1$. Show that $f(z)=e^{t z}+z+1$ has exactly one zero (counting multiplicities) in the left halfplane $\{z: \operatorname{Re} z<0\}$.

Hint: Consider first $\operatorname{Re} z<\varepsilon$ for $\varepsilon>0$.

Problem 3. [10 points.]
Show that the punctured unit disk $\mathbb{D}^{*}=\mathbb{D} \backslash\{0\}$ and the annulus $A=\{z: 1<|z|<2\}$ are not conformally equivalent.

Problem 4. [10 points; 4, 6.]
Let $G \subset \mathbb{C}$ be a bounded region.
(i) Show that if $f \in H(G)$ and $B=B(a, r) \subset G$, then

$$
|f(a)| \leq \frac{1}{|B|} \int_{B}|f(z)| d x d y
$$

where $|B|$ denotes the area of B.
(ii) Show that the space

$$
A^{1}(G)=\left\{f \in H(G):\|f\|_{1}:=\int_{G}|f(z)| d x d y<\infty\right\}
$$

endowed with the metric $d(f, g)=\|f-g\|_{1}$ is complete.
Note: You may use the result in part (i) even if you did not prove this.

Problem 5. [10 points; 4, 6.]
Let $G=\mathbb{C} \backslash\{0\}$, and let $h: G \rightarrow \mathbb{R}$ be harmonic.
(i) Show that $g=h_{x}-i h_{y}$ is a holomorphic function in G, and that its residue at 0 is a real number.
(ii) Show that there exist a constant c and a holomorphic function $f: G \rightarrow \mathbb{C}$ such that

$$
h(z)=c \log |z|+\operatorname{Re} f(z) \quad \forall z \in G .
$$

Problem 6. [10 points.]
If $p \neq 0$ is a polynomial and $a \neq 0$ is a complex number, show that $p(z)-e^{a z}$ has infinitely many zeros.

