Complex Analysis Qualifying Exam – Fall 2022

Name: _____

Student ID: _____

Instructions: 3 hours. Open book: Conway and personal notes from lectures may be used. You may use without proof results proved in Conway I-VIII, X-XI. When using a result from the text, be sure to explicitly verify all hypotheses in it. Present your solutions clearly, with appropriate detail.

Notation and terminology: A region is an open and connected subset of \mathbb{C} . The space of analytic functions in G is denoted by H(G).

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
6		10
Total		60

Problem 1. [10 points.]

Let $G \subset \mathbb{C}$ be a bounded, simply connected region and let f be an analytic self-map of G (i.e., $f(G) \subset G$). Assume that f has two fixed points. Show that f(z) = z.

Problem 2. [10 points.]

Let t < 1. Show that $f(z) = e^{tz} + z + 1$ has exactly one zero (counting multiplicities) in the left halfplane $\{z : \operatorname{Re} z < 0\}$.

Hint: Consider first $\operatorname{Re} z < \varepsilon$ for $\varepsilon > 0$.

Problem 3. [10 points.]

Show that the punctured unit disk $\mathbb{D}^* = \mathbb{D} \setminus \{0\}$ and the annulus $A = \{z \colon 1 < |z| < 2\}$ are not conformally equivalent.

Problem 4. [10 points; 4, 6.]

Let $G \subset \mathbb{C}$ be a bounded region.

(i) Show that if $f \in H(G)$ and $B = B(a, r) \subset G$, then

$$|f(a)| \le \frac{1}{|B|} \int_B |f(z)| dx dy,$$

where |B| denotes the area of B.

(ii) Show that the space

$$A^{1}(G) = \{ f \in H(G) \colon \|f\|_{1} := \int_{G} |f(z)| dx dy < \infty \}$$

endowed with the metric $d(f,g) = ||f - g||_1$ is complete.

Note: You may use the result in part (i) even if you did not prove this.

Problem 5. [10 points; 4, 6.]

Let $G = \mathbb{C} \setminus \{0\}$, and let $h : G \to \mathbb{R}$ be harmonic.

(i) Show that $g = h_x - ih_y$ is a holomorphic function in G, and that its residue at 0 is a real number.

(ii) Show that there exist a constant c and a holomorphic function $f:G\to \mathbb{C}$ such that

 $h(z) = c \log |z| + \operatorname{Re} f(z) \quad \forall z \in G.$

Problem 6. [10 points.]

If $p \neq 0$ is a polynomial and $a \neq 0$ is a complex number, show that $p(z) - e^{az}$ has infinitely many zeros.