Numerical Analysis Qualifying Exam Fall 2022

September 7, 2022

Instructions:

- There are 8 problems, worth a total of 200 points;
- You must work by yourself on these problems and without help from books or notes or calculators or computers.
- Show the details of your work, such as your scratch work, on each problem to receive credit.

Problems:

1. (25 pts) Suppose $A \in \mathbb{R}^{n \times n}$, for $n \ge 2$, is strictly column diagonally dominant by columns, meaning:

$$|a_{jj}| > \sum_{i=1, i \neq j}^{n} |a_{ij}|,$$

for all $1 \leq j \leq n$. Suppose one step of Gaussian elimination without pivoting is performed on A to arrive at the matrix B (which satisfies $b_{i1} = 0$, for all $2 \leq i \leq n$). Prove B(2:n, 2:n) is also strictly diagonally dominant by columns.

2. (25 pts) Let

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in \mathbf{R}^{2 \times 2},$$

where $a_{11}, a_{22} \neq 0$, and $b \in \mathbb{R}^2$. Consider the following iterative method for solving Ax = b with a sequence of approximations, $x^{(k)}, k \geq 0$, when given an initial guess $x^{(0)}$: let $x^{(k+1)}$, for each $k \geq 0$, be iteratively generated by the two substeps

• One step of Gauss-Seidel iterations applied to $x^{(k)}$, giving x^* :

$$x^* = (D - E)^{-1} (Fx^{(k)} + b),$$

where A = D - E - F, for D diagonal, E strictly lower triangular, and F strictly upper triangular;

• One step of Richardson iterations, with parameter ω , applied to x^* , giving $x^{(k+1)}$:

$$x^{(k+1)} = (I - \omega A)x^* + \omega b.$$

Find conditions on the entries of A and on $\omega \in \mathbf{R}$ that are both necessary and sufficient for the iterative method to converge.

- 3. (25 pts) For n ≥ 1, fix A ∈ R^{n×n}, a nonsingular matrix, and fix Q ∈ R^{n×n} orthogonal and R ∈ R^{n×n} upper triangular such that A = RQ.
 Find all combinations of B, C ∈ R^{n×n} such that Q̃ = BQ is orthogonal, R̃ = RC is upper triangular, and A = R̃Q.
- 4. (25 pts) Suppose a < b and $f \in C^2([a, b])$. Furthermore, suppose b is a root of f and f'(x) < 0, f''(x) > 0 for all $x \in [a, b]$. Prove Newton's method, applied to f and for all initial guesses in [a, b], will produce a sequence of approximations that converges to b.
- 5. (25 pts) Remember, the Chebyshev polynomials are $T_n(x)$, for $n \ge 0$, satisfying:

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x),$$

with $T_0(x) = 1$ and $T_1(x) = x$.

Consider the polynomial

$$p(x) = 3x^3 + 3x^2 - 2x + 4$$

Among polynomials q of degree 2, find the one that minimizes:

$$\max_{x \in [-1,1]} |p(x) - q(x)|.$$

6. (25 pts) Given a < b and $f \in C^{\infty}([2a - b, b])$, suppose we are interested in approximating the value of:

$$\int_{a}^{b} f(x) \ dx$$

Given the equally-spaced nodes with stepsize h,

$$x_{-1} < x_0 < x_1 < \dots < x_n,$$

for $n \ge 1$, with $x_0 = a$ and $x_n = b$, consider the approximation

$$\int_{a}^{b} p_n(x) \, dx,$$

where, in the interval $[x_i, x_{i+1}]$, for each $0 \le i \le n-1$, $p_n(x)$ is the quadratic interpolating polynomial for the data points:

$$(x_{i-1}, f(x_{i-1})), (x_i, f(x_i)), (x_{i+1}, f(x_{i+1})).$$

Find $\alpha \in \mathbf{R}$ and $j, k \in \mathbf{Z}$ such that

$$\int_a^b f(x) \, dx - \int_a^b p_n(x) \, dx = \alpha h^j f^{(k)}(\xi),$$

for some $\xi \in [2a - b, b]$.

7. (25 pts) Fix h > 0 and consider the approximation of the integral of a function g given by

$$\int_{t+\alpha h}^{t+\beta h} g(\tau) \ d\tau \approx \sum_{j=0}^{s} c_j g(t+\gamma_j h),$$

where:

- For all $0 \le j \le s, c_j \in \mathbf{R}$ and $c_j \ne 0$;
- $\alpha, \beta \in \mathbf{Z}$ and, for all $0 \leq j \leq s, \gamma_j \in \mathbf{Z}$;
- $\alpha < \beta$ and, for all $0 \le j < \ell \le s, \gamma_j < \gamma_\ell \le \beta$.

Explain how you can use this approximation to derive a difference equation for a linear multistep method with equal-stepsize h for the ODE y' = f(t, y). Additionally:

- Write down the resulting difference equation;
- Determine how many starting values need to be given to use it;
- Determine when it is implicit.
- 8. (25 pts) Consider the initial value problem with:
 - ODE:

$$y' = f(t, y),$$

for $t \in [t_0, T]$ with $t_0 < T$, where f is continuous in

$$D = \{ (t, y) \mid t \in [t_0, T], y \in (-\infty, \infty) \},\$$

and Lipschitz continuous in variable y in D;

• Initial value $y(t_0) = y_0$.

Now consider methods applied to this problem of the form

$$y_{i+1} = \alpha y_i + \beta y_{i-1} + h(1+\beta)f_i$$

with equal stepsizes h > 0 and the additional given exact initial value of $y_1 = y(t_1)$. Find all $\alpha, \beta \in \mathbf{R}$ such that the method is convergent, and plot these as points (α, β) in a graph.