Numerical Analysis Qualifying Exam Fall 2022

September 7, 2022

Instructions:

- There are 8 problems, worth a total of 200 points;
- You must work by yourself on these problems and without help from books or notes or calculators or computers.
- Show the details of your work, such as your scratch work, on each problem to receive credit.

Problems:

1. (25 pts) Suppose $A \in \mathbf{R}^{n \times n}$, for $n \geq 2$, is strictly column diagonally dominant by columns, meaning:

$$
\left|a_{j j}\right|>\sum_{i=1, i \neq j}^{n}\left|a_{i j}\right|,
$$

for all $1 \leq j \leq n$. Suppose one step of Gaussian elimination without pivoting is performed on A to arrive at the matrix B (which satisfies $b_{i 1}=0$, for all $2 \leq i \leq n$). Prove $B(2: n, 2: n)$ is also strictly diagonally dominant by columns.
2. (25 pts) Let

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \in \mathbf{R}^{2 \times 2}
$$

where $a_{11}, a_{22} \neq 0$, and $b \in \mathbf{R}^{2}$. Consider the following iterative method for solving $A x=b$ with a sequence of approximations, $x^{(k)}, k \geq 0$, when given an initial guess $x^{(0)}$: let $x^{(k+1)}$, for each $k \geq 0$, be iteratively generated by the two substeps

- One step of Gauss-Seidel iterations applied to $x^{(k)}$, giving x^{*} :

$$
x^{*}=(D-E)^{-1}\left(F x^{(k)}+b\right),
$$

where $A=D-E-F$, for D diagonal, E strictly lower triangular, and F strictly upper triangular;

- One step of Richardson iterations, with parameter ω, applied to x^{*}, giving $x^{(k+1)}$:

$$
x^{(k+1)}=(I-\omega A) x^{*}+\omega b .
$$

Find conditions on the entries of A and on $\omega \in \mathbf{R}$ that are both necessary and sufficient for the iterative method to converge.
3. (25 pts) For $n \geq 1$, fix $A \in \mathbf{R}^{n \times n}$, a nonsingular matrix, and fix $Q \in \mathbf{R}^{n \times n}$ orthogonal and $R \in \mathbf{R}^{n \times n}$ upper triangular such that $A=R Q$.
Find all combinations of $B, C_{\tilde{\sim}} \in \mathbf{R}^{n \times n}$ such that $\tilde{Q}=B Q$ is orthogonal, $\tilde{R}=R C$ is upper triangular, and $A=\tilde{R} \tilde{Q}$.
4. (25 pts) Suppose $a<b$ and $f \in C^{2}([a, b])$. Furthermore, suppose b is a root of f and $f^{\prime}(x)<0, f^{\prime \prime}(x)>0$ for all $x \in[a, b]$. Prove Newton's method, applied to f and for all initial guesses in $[a, b]$, will produce a sequence of approximations that converges to b.
5. (25 pts) Remember, the Chebyshev polynomials are $T_{n}(x)$, for $n \geq 0$, satisfying:

$$
T_{n}(x)=2 x T_{n-1}(x)-T_{n-2}(x),
$$

with $T_{0}(x)=1$ and $T_{1}(x)=x$.
Consider the polynomial

$$
p(x)=3 x^{3}+3 x^{2}-2 x+4 .
$$

Among polynomials q of degree 2 , find the one that minimizes:

$$
\max _{x \in[-1,1]}|p(x)-q(x)| .
$$

6. (25 pts) Given $a<b$ and $f \in C^{\infty}([2 a-b, b])$, suppose we are interested in approximating the value of:

$$
\int_{a}^{b} f(x) d x
$$

Given the equally-spaced nodes with stepsize h,

$$
x_{-1}<x_{0}<x_{1}<\cdots<x_{n}
$$

for $n \geq 1$, with $x_{0}=a$ and $x_{n}=b$, consider the approximation

$$
\int_{a}^{b} p_{n}(x) d x
$$

where, in the interval $\left[x_{i}, x_{i+1}\right]$, for each $0 \leq i \leq n-1, p_{n}(x)$ is the quadratic interpolating polynomial for the data points:

$$
\left(x_{i-1}, f\left(x_{i-1}\right)\right),\left(x_{i}, f\left(x_{i}\right)\right),\left(x_{i+1}, f\left(x_{i+1}\right)\right) .
$$

Find $\alpha \in \mathbf{R}$ and $j, k \in \mathbf{Z}$ such that

$$
\int_{a}^{b} f(x) d x-\int_{a}^{b} p_{n}(x) d x=\alpha h^{j} f^{(k)}(\xi)
$$

for some $\xi \in[2 a-b, b]$.
7. (25 pts) Fix $h>0$ and consider the approximation of the integral of a function g given by

$$
\int_{t+\alpha h}^{t+\beta h} g(\tau) d \tau \approx \sum_{j=0}^{s} c_{j} g\left(t+\gamma_{j} h\right)
$$

where:

- For all $0 \leq j \leq s, c_{j} \in \mathbf{R}$ and $c_{j} \neq 0$;
- $\alpha, \beta \in \mathbf{Z}$ and, for all $0 \leq j \leq s, \gamma_{j} \in \mathbf{Z}$;
- $\alpha<\beta$ and, for all $0 \leq j<\ell \leq s, \gamma_{j}<\gamma_{\ell} \leq \beta$.

Explain how you can use this approximation to derive a difference equation for a linear multistep method with equal-stepsize h for the $\operatorname{ODE} y^{\prime}=f(t, y)$. Additionally:

- Write down the resulting difference equation;
- Determine how many starting values need to be given to use it;
- Determine when it is implicit.

8. (25 pts) Consider the initial value problem with:

- ODE:

$$
y^{\prime}=f(t, y)
$$

for $t \in\left[t_{0}, T\right]$ with $t_{0}<T$, where f is continuous in

$$
D=\left\{(t, y) \mid t \in\left[t_{0}, T\right], y \in(-\infty, \infty)\right\}
$$

and Lipschitz continuous in variable y in D;

- Initial value $y\left(t_{0}\right)=y_{0}$.

Now consider methods applied to this problem of the form

$$
y_{i+1}=\alpha y_{i}+\beta y_{i-1}+h(1+\beta) f_{i},
$$

with equal stepsizes $h>0$ and the additional given exact initial value of $y_{1}=y\left(t_{1}\right)$. Find all $\alpha, \beta \in \mathbf{R}$ such that the method is convergent, and plot these as points (α, β) in a graph.

