## ALGEBRA QUALIFYING EXAM, FALL 2022

All problems are worth 15 points.

1. Let $G$ be a simple group of order $168=\left(2^{3}\right)(3)(7)$. For each $n$ below, calculate the number of subgroups of order $n$ inside $G$. (For some $n$ the answer could be 0 ).
(a) $n=7$.
(b) $n=21$.
(c) $n=42$.
2. Let $p$ and $q$ be distinct primes. For any $r \geq 1$ consider the group $G$ with presentation

$$
\left\langle a, b \mid a^{p}=1, b^{q}=1, b a b^{-1}=a^{r}\right\rangle
$$

For which $r$ is $G$ a group of order $p q$ ? Justify your answer.
3. Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3}, i)$ as a subfield of $\mathbb{C}$, where $i=\sqrt{-1}$ as usual.
(a) Find, with proof, $\operatorname{Gal}(K / Q)$.
(b) Find an element $\beta \in K$ such that $K=\mathbb{Q}(\beta)$.
4. Let $K$ be the splitting field over $\mathbb{Q}$ of an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ of degree 3. Suppose that $f$ has exactly one real root. Prove that $\operatorname{Gal}(K / Q)$ is isomorphic to the symmetric group $S_{3}$.
5. Let $I$ be an ideal of a commutative ring $R$. Suppose that $R / I$ is a flat $R$-module. Show that $I \cap J=I J$ for all ideals $J$ of $R$.
6. Let $A$ be a subring of an integral domain $B$ and let $C$ be the integral closure of $A$ inside of $B$. Let $f$ and $g$ be monic polynomials with coefficients in $B$ such that all of the coefficients of $f g$ lie in $C$. Prove that the coefficients of $f$ and $g$ belong to $C$.

