Name: ______
PID: _____

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	20	
Total:	80	

- 1. Write your Name and PID, on the front page of your exam.
- 2. Read each question carefully, and answer each question completely.
- 3. Write your solutions clearly in the exam sheet.
- 4. Show all of your work; no credit will be given for unsupported answers.
- 5. You may use the result of one part of the problem in the proof of a later part, even if you do not complete the earlier part.
- 6. You may use major theorems *proved* in class, but not if the whole point of the problem is reproduce the proof of a theorem proved in class or the textbook. Similarly, quote the result of a homework exercise only if the result of the exercise is a fundamental fact and reproducing the result of the exercise is not the main point of the problem.

1. (10 points) Suppose p < q are two odd primes. Prove that a group of order $p^2 q$ is solvable.

2. (10 points) Suppose G is a finite group, $N \trianglelefteq G$ and P is a Sylow p-subgroup of N. Prove that $N_G(P) \cdot N = G$.

- 3. Suppose p is a prime number and the minimal polynomial of $g \in \operatorname{GL}_p(F)$ is $t^p 1$.
 - (a) (5 points) Find the Jordan form of g if $F = \mathbb{C}$.

(b) (5 points) Find the Jordan form of g if $F = \overline{\mathbb{F}}_p$ is an algebraic closure of the finite field \mathbb{F}_p .

4. (10 points) Suppose A is a PID, and M is a finitely generated A-module. Prove that M is projective if and only if M is free.

5. (10 points) Suppose A is a unital commutative ring and $\langle f_1, \ldots, f_n \rangle = A$ where $\langle f_1, \ldots, f_n \rangle$ is the ideal generated by f_i 's. Suppose $M \subseteq N$ are two A-modules, and, for any i, we have $S_{f_i}^{-1}M = S_{f_i}^{-1}N$ where $S_{f_i} := \{1, f_i, f_i^2, \ldots\}$. Prove that M = N. (Hint: for $x \in N$ consider $\{a \in A \mid ax \in M\}$.)

6. (10 points) Suppose $f(x) \in \mathbb{F}_p[x]$ is an irreducible factor of $x^{p^n} - x$ where p is a prime number. Prove that deg f divides n.

- 7. Suppose $f(x) \in \mathbb{Q}[x]$ is an irreducible polynomial of degree p + 1 where p is a prime. Let E be a splitting field of f over \mathbb{Q} . Suppose $[E : \mathbb{Q}] = p(p+1)$.
 - (a) (8 points) Prove that for any zero $\alpha \in E$ of $f, E/\mathbb{Q}[\alpha]$ is a Galois extension and $\operatorname{Gal}(E/\mathbb{Q}[\alpha]) \simeq \mathbb{Z}/p\mathbb{Z}$.

(b) (12 points) Prove that there is $\beta \in E$ such that $\mathbb{Q}[\beta]/\mathbb{Q}$ is a Galois extension and $\operatorname{Gal}(\mathbb{Q}[\beta]/\mathbb{Q}) \simeq \mathbb{Z}/p\mathbb{Z}$. (Hint: You can use whatever we have proved about groups of order p(p+1).)

Good Luck!