ALGEBRA QUALIFYING EXAM, SPRING 2020

All problems are worth 15 points.

1. (a) Prove that $\langle a, b | a^2, b^2 \rangle$ is isomorphic to the group of Euclidean symmetries of \mathbb{Z} . (You can use without proof that the group of Euclidean symmetries of \mathbb{Z} is

$$\{f: \mathbb{Z} \to \mathbb{Z} | f(x) = ax + b, a = \pm 1, b \in \mathbb{Z}\}$$

and it is generated by the reflection $f_0(x) := -x$ and the translation $g_0(x) := x + 1$.)

(b) Prove that any group generated by two elements of order 2 is solvable.

2. Suppose that G is a finite group and P is a p-subgroup of G for some prime p. Prove that

$$\left| \{ Q \in \operatorname{Syl}_p(G) | P \subseteq Q \} \right| \equiv 1 \pmod{p},$$

where $\operatorname{Syl}_p(G)$ is the set of Sylow *p*-subgroups of *G*.

3. Let R be a noetherian integral domain. Show that the following conditions are equivalent:

(1) Every finitely generated *R*-module is a direct sum of cyclic *R*-modules.

(2) R is a PID.

4. Suppose that A is a unital commutative ring without any non-zero nilpotent elements. Let $N \in Mat_n(A)$ be a nilpotent element. Prove that $N^n = 0$. (Hint: Prove that $N^n \in Mat_n(\mathfrak{p})$ for all prime ideals \mathfrak{p} in A).

5. Suppose A is a unital commutative ring.

(a) Let M and N be two submodules of an A-module K. Suppose M + N and $M \cap N$ are finitely generated A-modules. Prove that M is a finitely generated A-module.

(b) Let $\Sigma := \{ \mathfrak{a} \leq A | \mathfrak{a} \text{ is not a finitely generated ideal} \}$. Suppose Σ is not empty. Prove that Σ has a maximal element.

(c) Let \mathfrak{p} be a maximal element of Σ . Prove that \mathfrak{p} is a prime ideal. (Hint: Suppose to the contrary that $ab \in \mathfrak{p}$ and $a, b \notin \mathfrak{p}$ for some $a, b \in A$; consider $\mathfrak{p} + \langle a \rangle$ and $\mathfrak{p} \cap \langle a \rangle$.)

6. Let F be a field with algebraic closure \overline{F} . Let $F \subseteq K \subseteq \overline{F}$ and $F \subseteq L \subseteq \overline{F}$, where K and L are fields with $[K:F] < \infty$ and $[L:F] < \infty$. Prove that the following conditions are equivalent:

- (1) $K \otimes_F L$ is a field.
- (2) Given any *F*-linearly independent elements $\alpha_1, \ldots, \alpha_m \in K$, then $\alpha_1, \ldots, \alpha_m$ are linearly independent over *L*.

7. Let p be a fixed prime. Suppose that F is a field with the following property: given any field extension $F \subseteq K$ with $[K:F] < \infty$, then [K:F] is divisible by p.

(a) Suppose that $F \subseteq K$ is a separable field extension with $[K : F] < \infty$. Show that [K : F] is a power of p.

(b) Show that either F is a perfect field or else Char(F) = p.