ALGEBRA QUALIFYING EXAM THURSDAY SEPTEMBER 14TH

You have three hours.

There are 8 problems, and the total number of points is 80 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature:

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	

1. (10pts) Let G be a group of order $231=(3)(7)(11)$.
(a) Show that G is isomorphic to a semidirect product $\mathbb{Z}_{77} \rtimes \mathbb{Z}_{3}$.
(b) Show that there are precisely two groups G of order 231 up to isomorphism.
2. (10pts) Let G be the following subgroup of 2×2 matrices over the complex numbers:

$$
G=\left\{ \pm\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \pm\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right], \pm\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \pm\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right]\right\}
$$

(You don't have to show this is a group).
Prove that G has the following presentation

$$
\left\langle a, b \mid a^{4}=e, a^{2}=b^{2}, a^{-1} b a=b^{-1}\right\rangle .
$$

3. (10pts) (a) Carefully state Zorn's Lemma.
(b) Let R be a commutative ring and let X be any multiplicatively closed subset of R which does not contain 0 . Show that R has an ideal I which is a maximal element of the collection of those ideals J such that $J \cap X=\emptyset$.
(c) If X is not empty then prove that the ideal I as in (b) must be a prime ideal.
4. (10pts) Let R be a commutative ring with 1 . An R-module M is called flat if whenever $f: N \longrightarrow P$ is an injective R-linear map of R-modules then the induced map

$$
M \underset{R}{\otimes} N \longrightarrow M \underset{R}{\otimes} P
$$

is also injective.
If R is a PID and M is a finitely generated R-module then show that M is flat if and only if it is torsion free.
5. (10pts) Consider the matrix

$$
A=\left(\begin{array}{ccc}
0 & 0 & -y \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

where y is an indeterminate.
(a) Show that the characteristic polynomial $f(x)$ of A is irreducible in $\mathbb{Q}(y)[x]$.
(b) Show that A is diagonalisable over the algebraic closure of $\mathbb{Q}(y)$.
(c) Show that A is not diagonalisable over the algebraic closure of $\mathbb{F}_{3}(y)$.
6. (10pts) Let

$$
\mathbb{Q}=K_{0} \subset K_{1} \subset K_{2} \subset \cdots \subset K_{n},
$$

be a sequence of field extensions such that K_{i+1} / K_{i} is Galois of order 3 for all $0 \leq i<n$. Show that $\mathbb{Q}(\sqrt[3]{2})$ is not contained in K_{n}.
7. (10pts) Let $L / M / K$ be field extensions with $[L: M]<\infty$. Let A be the subfield of L consisting of all elements of L that are algebraic over K. Suppose that $M \cap A=K$.
(a) If $\alpha \in A$ and $f(x) \in M[x]$ is the minimal polynomial of α over M then show that $f(x) \in K[x]$.
(b) Now suppose, for the rest of this question, that the characteristic is zero. If $K \subset B \subset A$ is an intermediary field and $[B: K]<\infty$ then show that

$$
[B: K] \leq[L: M] .
$$

(c) Prove that $[A: K] \leq[L: M]$.
8. (10pts) Let

$$
R=\mathbb{Z}[\sqrt{-10}]=\{a+b \sqrt{-10} \mid a, b \in \mathbb{Z}\}
$$

Let $I=\langle 2, \sqrt{-10}\rangle$ be the ideal of R generated by 2 and $\sqrt{-10}$. (a) Show that I is not a free R-module.
(b) Show that I is a projective R-module.

