Algebra Qualifying Exam Fall 2011

Problem 1. (10 pts)

Consider a simple group G with 60 elements. Show that if G has a subgroup H of order 12 then $G \cong A_{5}$.
(Any simple group of order 60 is isomorphic to A_{5}, but obviously you cannot use this fact, unless you prove it.)

Problem 2. (10 pts)

Let $n \geq 3$ be an integer. Calculate the number of ordered pairs of permutations (σ, τ) in the symmetric group S_{n} such that $\sigma \tau=\tau \sigma$. Your answer should be a simple formula involving known functions of n.

Problem 3. (10 pts)
Let A be a commutative ring with unity, and assume that the elements $f_{1}, \ldots, f_{n} \in A$ generate the unit ideal (1). Show that there exists an injective ring homomorphism

$$
\phi: A \rightarrow \prod_{i=1}^{n} A_{f_{i}} .
$$

As usual, A_{f} denotes the localization of A at the set of powers of f.

Problem 4. (10 pts)

Assume that A is a commutative Noetherian ring, and let $a_{n} \in A$ for $n \geq 0$. Prove that the power series

$$
f=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is nilpotent if and only if each $a_{n} \in A$ is nilpotent.

Problem 5. (10 pts)

Let F be a field and $f(x)=x^{4}+b x^{2}+c \in F[x]$, for some $b, c \in F$.
If K is the splitting field of $f(x)$ over F, prove that the Galois group $\operatorname{Gal}(K / F)$ is isomorphic to a subgroup of the dihedral group D_{4} of order 8 .

Problem 6. (15 pts)
(a). (10 pts) Suppose that $K \subseteq L \subseteq M$ are fields such that L / K and M / L are Galois, and that every automorphism of L / K extends to an automorphism of M. Prove that M / K is Galois.
(b). (5 pts) Give an example of fields $K \subseteq L \subseteq M$ such that L / K and M / L are Galois, but M / K is not Galois.

Problem 7. (15 pts)
(a). (10 pts) Let M be a (left) module over a commutative ring R and let I be an ideal of R. Prove that

$$
(R / I) \otimes_{R} M \cong M / I M
$$

(as R-modules).
(b). (5 pts) Now let R be a PID and let I be a maximal ideal of R. Suppose that M is a finitely generated R-module. Calculate the dimension of $(R / I) \otimes_{R} M$ as a vector space over the field $K=R / I$ in terms of the elementary divisors (or invariant factors) of M.

Problem 8. (10 pts)

Find the Jordan canonical form for the matrix

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

(a). (5 pts) Over the complex numbers.
(b). (5 pts) Over the algebraic closure of the field of three elements.

