Name: ______
PID: _____

Question	Points	Score
1	10	
2	15	
3	10	
4	10	
5	15	
6	15	
7	10	
Total:	85	

- 1. Write your Name and PID, on the front page of your exam.
- 2. Read each question carefully, and answer each question completely.
- 3. Write your solutions clearly in the exam sheet.
- 4. Show all of your work; no credit will be given for unsupported answers.
- 5. You may use the result of one part of the problem in the proof of a later part, even if you do not complete the earlier part.
- 6. You may use major theorems *proved* in class, but not if the whole point of the problem is to reproduce the proof of a theorem proved in class or the textbook. Similarly, quote the result of a homework exercise only if the result of the exercise is a fundamental fact and reproducing the result of the exercise is not the main point of the problem.

1. (10 points) Suppose G is a finite group and P is a p-subgroup of G which is not a Sylow p-subgroup. Prove that p divides $|N_G(P)/P|$.

- 2. For any finite group H and prime ℓ , we denote the set of Sylow ℓ -subgroups of H by $\operatorname{Syl}_{\ell}(H)$. Suppose p < q are odd primes, G is a finite group, and $|\operatorname{Syl}_p(G)| = p + 1$ and $|\operatorname{Syl}_q(G)| = q + 1$.
 - (a) (5 points) Suppose $P \in \text{Syl}_p(G)$. Prove that G has a Sylow q-subgroup Q such that $Q \subseteq N_G(P)$.

(b) (5 points) In the setting of part (a), let H = PQ. Argue why H is a subgroup and prove that either $Q \leq H$ or $|Syl_q(H)| = q + 1$.

(c) (5 points) In the setting of part (b), prove that $H \simeq P \times Q$.

3. (10 points) Suppose A is a unital commutative ring. Let A[x] be the ring of polynomials, A^{\times} be the group of units of A, and Nil(A) be the nilradical of A. Prove that

$$A[x]^{\times} = \{a_0 + a_1 x + \dots + a_n x^n | a_0 \in A^{\times}, a_1, \dots, a_n \in Nil(A), n \in \mathbb{Z}^+\},\$$

where $A[x]^{\times}$ is the group of units of A[x]. (**Hint.** Without proof you can use that $\sum_i a_i x^i \mapsto \sum_i (a_i + \mathfrak{a}) x^i$ is a ring homomorphism from A[x] to $(A/\mathfrak{a})[x]$ for any $\mathfrak{a} \leq A$. Show that if u is a unit and n is nilpotent, then $u + n = u(1 + u^{-1}n)$ is a unit.)

- 4. Suppose F is a field, $a = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \in M_3(F)$, and F[a] is the subring generated by F and a. Suppose \overline{F} is an algebraic closure of F.
 - (a) (6 points) Prove that $F[a] \otimes_F \overline{F} \simeq \overline{F} \oplus \overline{F} \oplus \overline{F}$ as \overline{F} -algebras if the characteristic of F is not 3.

(b) (4 points) Prove that $F[a] \otimes_F \overline{F} \simeq \overline{F}[x]/\langle x^3 \rangle$ as \overline{F} -algebras if the characteristic of F is 3.

5. Suppose $D = \mathbb{Z}[\sqrt{-5}]$ and $\mathfrak{a} = \langle 3, 1 + \sqrt{-5} \rangle$.

(a) (5 points) Prove that $\mathfrak a$ is not a principal ideal.

(b) (10 points) Prove that $\mathfrak a$ is a projective D-module.

.

- 6. Suppose ℓ and p are prime and \mathbb{F}_p is a finite field of order p.
 - (a) (5 points) Prove that the degree of an irreducible factor of $x^{p^{\ell}} x$ is either 1 or ℓ .

(b) (5 points) Suppose $f(x) \in \mathbb{F}_p[x]$ is a monic irreducible polynomial of degree ℓ . Prove that $f(x)|(x^{p\ell} - x)$.

(c) (5 points) Prove that there are exactly $\frac{p^{\ell}-p}{\ell}$ many monic irreducible polynomials of degree ℓ in $\mathbb{F}_p[x]$.

7. For a positive integer n, let $\zeta_n = e^{2\pi i/n}$ be a primitive n-th root of unity in \mathbb{C} . (a) (2 points) Prove that $\mathbb{Q}[\sqrt[5]{5}, \zeta_5]$ is a splitting field of $x^5 - 5$ over \mathbb{Q} . (b) (4 points) Prove that $\mathbb{Q}[\sqrt[5]{5}, \zeta_5]/\mathbb{Q}$ is a non-abelian Galois extension; that means it is a Galois extension and $\operatorname{Gal}(\mathbb{Q}[\sqrt[5]{5}, \zeta_5]/\mathbb{Q})$ is not abelian.

(c) (4 points) Prove that $x^5 - 5$ does not have a zero in $\mathbb{Q}[\zeta_{25}]$.

Good Luck!