Algebra Qualifying Exam - Spring 2011

Problem 1. (15 pts)

Let G be a group with 117 elements which contains an element of order exactly 9. Classify all such groups G up to isomorphism.

Problem 2. (10 pts)

Let G be a finite group and let p be the smallest prime dividing $|G|$. Assume that G has a unique subgroup H of order p. Show that H is contained in the center of G.

Hint: For each $g \in G$, prove that the permutation $\sigma_{g}(h)=g h g^{-1}$ of the set $H \backslash\{e\}$ is trivial by investigating its order.

Problem 3. (10 pts)

Consider a commutative ring A with unity and let \mathfrak{n} be its nilradical. Show that the following statements are equivalent:
(i) A has only one prime ideal
(ii) every element in A is either a unit or nilpotent
(iii) A / \mathfrak{n} is a field.

Problem 4. (15 pts)

Let K denote a splitting field of $x^{7}-1$ over \mathbb{Q} inside \mathbb{C}. Determine all subfields of K. Express each subfield in the form $\mathbb{Q}(\alpha)$ for some $\alpha \in \mathbb{C}$, where you must justify that α is a primitive element for the subfield if it is not obvious.

Problem 5. (15 pts)

Let k be an algebraically closed field of characteristic $p>0$ and let $K=k(t)$ be a purely transcendental extension in one indeterminate t. Let $n \geq 1$ be any integer, and let L be the splitting field of the polynomial $x^{n}-t$ over K. It may be helpful in this problem to write $n=p^{i} m$ where $\operatorname{gcd}(m, p)=1$.
(i) (7 pts) Show that $L=K(\alpha)$ where α is any root of $x^{n}-t$ in L.
(ii) (8 pts) Let $G=\operatorname{Aut}(L / K)$ be the group of all automorphisms of L fixing K pointwise, and let $F=\operatorname{Fix}(G)$ be the subfield of L of elements fixed by G. Calculate $[F: K]$.

Problem 6. (15 pts)

Given vector spaces V and W over the complex numbers, suppose that $\phi: V \rightarrow V$ and $\psi: W \rightarrow W$ are \mathbb{C}-linear transformations.
(i) (6 pts) Show that there is a unique linear transformation

$$
\phi \otimes \psi: V \otimes_{\mathbb{C}} W \rightarrow V \otimes_{\mathbb{C}} W
$$

with the property that

$$
(\phi \otimes \psi)(v \otimes w)=\phi(v) \otimes \psi(w)
$$

for all $v \in V, w \in W$.
(ii) (9 pts) Let V and W be finite-dimensional of complex dimensions m and n respectively. Prove that

$$
\operatorname{det}(\phi \otimes \psi)=\operatorname{det}(\phi)^{n} \operatorname{det}(\psi)^{m}
$$

Hint: Choose \mathbb{C}-bases for V and W such that the matrices representing ϕ and ψ have a special form.

Problem 7. (10 pts)

Let R be an integral domain. Prove or give an example to disprove (with justification):
(i) (3 pts) If M is a torsion R-module, then $\operatorname{Ann}_{R}(M) \neq 0$.
(ii) (3 pts) If M is a free R-module, then M is torsionfree.
(iii) (4 pts) If M is a torsionfree R-module, then M is free.

Problem 8. (15 pts)
Assume A is a commutative ring with unity, and let $f_{1}, \ldots, f_{n} \in A$ generate the unit ideal (1). Assume that the rings of fractions $A_{f_{1}}, \ldots, A_{f_{n}}$ are Noetherian. Prove that A is Noetherian.

