Applied Algebra Qualifying Exam: Part A

5:00pm-8:00pm (PDT), via Zoom. Meeting ID: 912 8480 3260 Tuesday May 11th, 2021

- Write your name and student PID at the top right corner of each page of your submission.
- Do all four problems. Show your work.
- This part of the exam will represent 40% of the total score.
- Your completed examination must be uploaded to Gradescope while you are connected to Zoom. You may leave the meeting once the Proctor has checked that your exam has been uploaded.
- It is your responsibility to check that any uploaded material is both complete and legible.
- By participating in this exam you are agreeing to abide by the UCSD Policy on Academic Integrity. The instructors reserve the right to require a follow-up oral examination.
- This is a closed-book examination. No cell-phone or Internet aids.
- Please keep your camera turned on throughout the exam.
- Notation:
 - $-\mathcal{M}_{m,n}$ denotes the set of $m \times n$ matrices with complex components.
 - \mathcal{M}_n denotes the set $\mathcal{M}_{m,n}$ with m = n.
 - $-\mathbb{C}^n$ is the set of column vectors with *n* complex components.
 - $-x^H$ is the Hermitian transpose of a vector or matrix x.
 - $\operatorname{eig}(A)$ is the set of eigenvalues of the matrix A (counting multiplicities).

Question 1.

- (a) (4 points) State, but do not prove, the Schur decomposition theorem for a matrix $A \in M_n$.
- (b) (8 points) Let (λ, x) be a simple eigenpair of $A \in M_n$ with $x^H x = 1$. Prove that there exists a nonsingular matrix $\begin{pmatrix} x & X \end{pmatrix}$ with inverse $\begin{pmatrix} y & Y \end{pmatrix}^H$ such that

$$\begin{pmatrix} y^H \\ Y^H \end{pmatrix} A \begin{pmatrix} x & X \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & M \end{pmatrix}.$$

(c) (8 points) Hence prove that the angle θ between x and y satisfies sec $\theta = ||y||_2$.

Question 2.

(a) (8 points.) Consider any Hermitian $A \in \mathcal{M}_n$ with eigenvalues ordered so that $\lambda_n(A) \leq \cdots \leq \lambda_2(A) \leq \lambda_1(A)$. Prove that

$$\lambda_n = \min_{x \neq 0} \frac{x^H A x}{x^H x}.$$

(b) (12 points) Suppose that $D \in \mathcal{M}_n$ with $D = \text{diag}(d_1, d_2, \dots, d_n)$. Prove that for all $1 \leq p \leq \infty$ the *p*-norm of *D* is given by $||D||_p = \max_{1 \leq i \leq n} |d_i|$.

Question 3.

- (a) (4 points.) State, but do not prove, the singular-value decomposition theorem.
- (b) (8 points.) For a given $A \in \mathcal{M}_{m,n}$, prove that

$$\sigma_1(A) = \max_{x,y \neq 0} \frac{|y^H A x|}{\|y\|_2 \|x\|_2},$$

where $\sigma_1(A)$ is the largest singular value of A.

(c) (8 points.) For any $A \in \mathcal{M}_n$, define (i) the field of values $\mathcal{F}(A)$; (ii) the spectral radius $\rho(A)$; and the numerical radius $\omega(A)$. Prove that $\rho(A) \leq \omega(A) \leq \sigma_1(A)$.

Question 4.

- (a) (8 points) Let $C \in \mathcal{M}_{m,n}$ with rank(C) = m. Find orthogonal projections that project $x \in \mathbb{C}^n$ onto range (C^H) and null(C). Verify that your projections satisfy the properties of an orthogonal projection.
- (b) For a given nonzero $y \in \mathbb{C}^n$, let $\mathcal{Y} = \operatorname{span}(y)$.
 - (i) (6 points) Find an *oblique* projector A that project vectors onto \mathcal{Y} . Find the complementary projection.
 - (ii) (6 points) Find the unique orthogonal projector A that projects vectors onto \mathcal{Y} . Find the complementary projection associated with A.

Applied Algebra Qualifying Exam: Part B Spring 2021

Instructions: Do all problems. All problems are weighted equally. You are not allowed to consult any external resource during this exam. Good luck!

Problem 1: Let G be a group (possibly infinite) and let V be a finite-dimensional G-module over \mathbb{C} . Assume that V admits a G-invariant inner product $\langle -, - \rangle$. Prove that V is completely reducible.

Problem 2: Let \mathbb{R}_+ be the group of positive real numbers under multiplication. Is every indecomposable \mathbb{R}_+ -module over the complex numbers irreducible?

Problem 3: Let $\lambda, \mu \vdash n$ be partitions and let S^{λ}, S^{μ} be the corresponding irreducible S_n -modules. Endow the tensor product $S^{\lambda} \otimes S^{\mu}$ with the structure of an S_n -module by the rule

$$\sigma \cdot (v \otimes w) := (\sigma \cdot v) \otimes (\sigma \cdot w)$$

for $\sigma \in S_n, v \in S^{\lambda}, w \in S^{\mu}$. Find the vector space dimension of the S_n -fixed subspace

$$(S^\lambda\otimes S^\mu)^{S_n}$$

of $S^{\lambda} \otimes S^{\mu}$.

Problem 4: Find the character table of the alternating subgroup A_4 of the symmetric group S_4 . The group algebra of A_4 is isomorphic to a direct sum

$$\mathbb{C}[A_4] \cong \operatorname{Mat}_{n_1}(\mathbb{C}) \oplus \cdots \oplus \operatorname{Mat}_{n_r}(\mathbb{C})$$

of matrix algebras over \mathbb{C} . Determine r and the numbers $n_1, \ldots, n_r > 0$.

Applied Algebra Qualifying Exam: Part C

5:00pm–8:00pm (PDT), via Zoom. Meeting ID: 912 8480 3260 Tuesday May 11th, 2021

- Write your name and student PID at the top right corner of each page of your submission.
- Do both problems. Show your work.
- This part of the exam will represent 20% of the total score.
- Your completed examination must be uploaded to Gradescope while you are connected to Zoom. You may leave the meeting once the Proctor has checked that your exam has been uploaded.
- It is your responsibility to check that any uploaded material is both complete and legible.
- By participating in this exam you are agreeing to abide by the UCSD Policy on Academic Integrity. The instructors reserve the right to require a follow-up oral examination.
- This is a closed-book examination. No cell-phone or Internet aids.
- Please keep your camera turned on throughout the exam.

Question 1.

(a) (2 points) Let B(n) be the permutation group generated by the transpositions $\tau_i = (2i - 1 \ 2i), \ 1 \le i \le n$. Show that every character χ of B(n) takes values in $\{-1, 1\}$.

(b) (8 points) Explicitly describe the dual group of B(n).

Question 2.

(a) (2 points.) With notation as in the previous problem, give the definition of the Cayley graph of B(n) as generated by τ_1, \ldots, τ_n .

(b) (8 points) Compute the eigenvalues and eigenvectors of the adjacency operator of the graph in part (a).