Applied Algebra Qualifying Exam: Part A

5:00pm-8:00pm (PDT), via Zoom. Meeting ID: 91284803260
Tuesday May 11th, 2021

- Write your name and student PID at the top right corner of each page of your submission.
- Do all four problems. Show your work.
- This part of the exam will represent 40% of the total score.
- Your completed examination must be uploaded to Gradescope while you are connected to Zoom. You may leave the meeting once the Proctor has checked that your exam has been uploaded.
- It is your responsibility to check that any uploaded material is both complete and legible.
- By participating in this exam you are agreeing to abide by the UCSD Policy on Academic Integrity. The instructors reserve the right to require a follow-up oral examination.
- This is a closed-book examination. No cell-phone or Internet aids.
- Please keep your camera turned on throughout the exam.
- Notation:
- $\mathcal{M}_{m, n}$ denotes the set of $m \times n$ matrices with complex components.
- \mathcal{M}_{n} denotes the set $\mathcal{M}_{m, n}$ with $m=n$.
- \mathbb{C}^{n} is the set of column vectors with n complex components.
$-x^{H}$ is the Hermitian transpose of a vector or matrix x.
$-\operatorname{eig}(A)$ is the set of eigenvalues of the matrix A (counting multiplicities).

Question 1.

(a) (4 points) State, but do not prove, the Schur decomposition theorem for a matrix $A \in M_{n}$.
(b) (8 points) Let (λ, x) be a simple eigenpair of $A \in M_{n}$ with $x^{H} x=1$. Prove that there exists a nonsingular matrix $(x X)$ with inverse $(y Y)^{H}$ such that

$$
\binom{y^{H}}{Y^{H}} A\left(\begin{array}{ll}
x & X
\end{array}\right)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & M
\end{array}\right) .
$$

(c) (8 points) Hence prove that the angle θ between x and y satisfies $\sec \theta=\|y\|_{2}$.

Question 2.

(a) (8 points.) Consider any Hermitian $A \in \mathcal{M}_{n}$ with eigenvalues ordered so that $\lambda_{n}(A) \leq \cdots \leq \lambda_{2}(A) \leq \lambda_{1}(A)$. Prove that

$$
\lambda_{n}=\min _{x \neq 0} \frac{x^{H} A x}{x^{H} x} .
$$

(b) (12 points) Suppose that $D \in \mathcal{M}_{n}$ with $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. Prove that for all $1 \leq p \leq \infty$ the p-norm of D is given by $\|D\|_{p}=\max _{1 \leq i \leq n}\left|d_{i}\right|$.

Question 3.

(a) (4 points.) State, but do not prove, the singular-value decomposition theorem.
(b) (8 points.) For a given $A \in \mathcal{M}_{m, n}$, prove that

$$
\sigma_{1}(A)=\max _{x, y \neq 0} \frac{\left|y^{H} A x\right|}{\|y\|_{2}\|x\|_{2}},
$$

where $\sigma_{1}(A)$ is the largest singular value of A.
(c) (8 points.) For any $A \in \mathcal{M}_{n}$, define (i) the field of values $\mathcal{F}(A)$; (ii) the spectral radius $\rho(A)$; and the numerical radius $\omega(A)$. Prove that $\rho(A) \leq \omega(A) \leq \sigma_{1}(A)$.

Question 4.

(a) (8 points) Let $C \in \mathcal{M}_{m, n}$ with $\operatorname{rank}(C)=m$. Find orthogonal projections that project $x \in \mathbb{C}^{n}$ onto range $\left(C^{H}\right)$ and null (C). Verify that your projections satisfy the properties of an orthogonal projection.
(b) For a given nonzero $y \in \mathbb{C}^{n}$, let $\mathcal{Y}=\operatorname{span}(y)$.
(i) (6 points) Find an oblique projector A that project vectors onto \mathcal{Y}. Find the complementary projection.
(ii) (6 points) Find the unique orthogonal projector A that projects vectors onto \mathcal{Y}. Find the complementary projection associated with A.

Applied Algebra Qualifying Exam: Part B Spring 2021

Instructions: Do all problems. All problems are weighted equally. You are not allowed to consult any external resource during this exam. Good luck!

Problem 1: Let G be a group (possibly infinite) and let V be a finite-dimensional G-module over \mathbb{C}. Assume that V admits a G-invariant inner product $\langle-,-\rangle$. Prove that V is completely reducible.

Problem 2: Let \mathbb{R}_{+}be the group of positive real numbers under multiplication. Is every indecomposable \mathbb{R}_{+}-module over the complex numbers irreducible?

Problem 3: Let $\lambda, \mu \vdash n$ be partitions and let S^{λ}, S^{μ} be the corresponding irreducible S_{n}-modules. Endow the tensor product $S^{\lambda} \otimes S^{\mu}$ with the structure of an S_{n}-module by the rule

$$
\sigma \cdot(v \otimes w):=(\sigma \cdot v) \otimes(\sigma \cdot w)
$$

for $\sigma \in S_{n}, v \in S^{\lambda}, w \in S^{\mu}$. Find the vector space dimension of the S_{n}-fixed subspace

$$
\left(S^{\lambda} \otimes S^{\mu}\right)^{S_{n}}
$$

of $S^{\lambda} \otimes S^{\mu}$.

Problem 4: Find the character table of the alternating subgroup A_{4} of the symmetric group S_{4}. The group algebra of A_{4} is isomorphic to a direct sum

$$
\mathbb{C}\left[A_{4}\right] \cong \operatorname{Mat}_{n_{1}}(\mathbb{C}) \oplus \cdots \oplus \operatorname{Mat}_{n_{r}}(\mathbb{C})
$$

of matrix algebras over \mathbb{C}. Determine r and the numbers $n_{1}, \ldots, n_{r}>0$.

Applied Algebra Qualifying Exam: Part C

5:00pm-8:00pm (PDT), via Zoom. Meeting ID: 91284803260
Tuesday May 11th, 2021

- Write your name and student PID at the top right corner of each page of your submission.
- Do both problems. Show your work.
- This part of the exam will represent 20% of the total score.
- Your completed examination must be uploaded to Gradescope while you are connected to Zoom. You may leave the meeting once the Proctor has checked that your exam has been uploaded.
- It is your responsibility to check that any uploaded material is both complete and legible.
- By participating in this exam you are agreeing to abide by the UCSD Policy on Academic Integrity. The instructors reserve the right to require a follow-up oral examination.
- This is a closed-book examination. No cell-phone or Internet aids.
- Please keep your camera turned on throughout the exam.

Question 1.

(a) (2 points) Let $\mathrm{B}(n)$ be the permutation group generated by the transpositions $\tau_{i}=(2 i-12 i), 1 \leq i \leq n$. Show that every character χ of $\mathrm{B}(n)$ takes values in $\{-1,1\}$.
(b) (8 points) Explicitly describe the dual group of B(n).

Question 2.

(a) (2 points.) With notation as in the previous problem, give the definition of the Cayley graph of $\mathrm{B}(n)$ as generated by $\tau_{1}, \ldots, \tau_{n}$.
(b) (8 points) Compute the eigenvalues and eigenvectors of the adjacency operator of the graph in part (a).

