\qquad S.I.D.: \qquad

Qualifing Exam in Applied Algebra

May 30, 2017

	Full	Real
$\# 1$	25	
$\# 2$	25	
$\# 3$	25	
$\# 4$	25	
$\# 5$	25	
$\# 6$	25	
$\# 7$	25	
$\# 8$	25	
Total	200	

Notes: 1) For computational questions, no credit will be given for unsupported answers gotten directly from a calculator. 2) For proof question, no credit will be given for no reasons or wrong reasons.

1. (25 points) Let $A \in \mathbb{C}^{10 \times 10}$ be a matrix such that

$$
\operatorname{rank} A=7, \quad \operatorname{rank} A^{2}=4, \quad \operatorname{rank} A^{3}=1, \quad \operatorname{rank} A^{4}=0
$$

Determine all possibilities of Jordan's canonical form for A.
2. (25 points) Let $A, B \in \mathbb{R}^{n \times n}$ be two real symmetric matrices. If $A B=B A$, show that there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ such that $Q^{T} A Q, Q^{T} B Q$ are both diagonal.
3. (25 points) Let $A, B \in \mathbb{R}^{n \times n}$ be two real matrices. Denote by $\sigma_{i}(A)$ (resp., $\sigma_{i}(B)$) the i-th largest singular value of A (resp., B). If $\|A x\|_{2}>\|B x\|_{2}$ for all $x \neq 0$, show that $\sigma_{i}(A)>\sigma_{i}(B)$ for all $i=1, \ldots, n$.
4. (25 points) Let Q_{8} denote the quaternion group $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ with the usual multiplication

$$
\begin{gathered}
(-1)^{2}=1,(-1) i=-i=i(-1),(-1) j=-j=j(-1),(-1) k=-k=k(-1), \\
i^{2}=j^{2}=k^{2}=-1, i j=k=-j i, k i=j=-i k, j k=i=-k j .
\end{gathered}
$$

Calculate the character table of Q_{8}.
5. (25 points) Consider the action of the symmetric group \mathfrak{S}_{4} on the vector space $V=\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]_{3}$ of homogeneous cubic polynomials in the variables x_{1}, x_{2}, x_{3}, and x_{4} given by subscript permutation:

$$
\sigma . f\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=f\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)}\right)
$$

for $\sigma \in \mathfrak{S}_{4}$ and $f \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. Calculate the decomposition of V into a direct sum of irreducible \mathfrak{S}_{4}-modules and determine the structure (as a product of matrix rings over \mathbb{C}) of the endomorphism algebra $\operatorname{End}_{\mathfrak{S}_{4}}(V)$.
6. (25 points) Give examples of each of the following objects.
(a) A finite group G, an irreducible G-module V defined over the real numbers \mathbb{R}, and a G-module homomorphism $\varphi: V \rightarrow V$ which is not multiplication by a scalar.
(b) An infinite group G and a G-module V defined over the complex numbers \mathbb{C} which is indecomposable but not irreducible.
7. (25 points) Consider the following five polynomials f_{1}, \ldots, f_{5} in the polynomial ring $\mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ (which are written with respect to the lexicographic term order $<$):

$$
f_{1}=x_{1}^{2}, \quad f_{2}=x_{2}^{2}, \quad f_{3}=x_{3}^{2}, \quad f_{4}=x_{4}^{2}, \quad f_{5}=x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+x_{2} x_{3} x_{4}
$$

Let $I=\left\langle f_{1}, \ldots, f_{5}\right\rangle$ be the ideal generated by these polynomials.
(a) It can be shown that $G=\left\{f_{1}, \ldots, f_{5}\right\}$ is a Gröbner basis for I with respect to $<$. Describe the procedure (Buchberger's Criterion) which verifies this. You do not need to do this procedure.
(b) Describe a vector space basis for the quotient $\mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}\right] / I$ consisting of images $m+I$ of monomials $m \in \mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$.
8. (25 points) Let $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \in G L_{2}(\mathbb{C})$ and let G be the cyclic subgroup of $G L_{2}(\mathbb{C})$ of order 4 generated by A.
(a) Calculate the Hilbert series of the invariant ring $\mathbb{C}[x, y]^{G}$.
(b) Describe a finite set of polynomials which generates $\mathbb{C}[x, y]^{G}$ as a \mathbb{C}-algebra (you need not compute this set explicitly).

