\qquad S.I.D.: \qquad

Qualifier Exam in Applied Algebra

September 5, 2018

	Full	Real
$\# 1$	25	
$\# 2$	25	
$\# 3$	25	
$\# 4$	25	
$\# 5$	25	
$\# 6$	25	
$\# 7$	25	
$\# 8$	25	
Total	200	

Notes: 1) For computational questions, no credit will be given for unsupported answers gotten directly from a calculator. 2) For proof question, no credit will be given for no reasons or wrong reasons.

1. (25 points) For the following matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

determine its Jordan's canonical form (JCF) and find a nonsingular matrix P such that $P^{-1} A P$ gives the JCF.
2. (25 points) Let $A \in \mathbb{C}^{n \times n}$ be a matrix such that $\left|\lambda_{i}\right|<1$ for all its eigenvalues λ_{i}. Let $B_{k}=A^{k}$. Do we necessarily have

$$
\lim _{k \rightarrow \infty}\left(\sum_{i, j=1}^{n}\left|\left(B_{k}\right)_{i j}\right|^{3}\right)=0 ?
$$

If yes, give a proof; if no, give a counterexample.
3. (25 points) Let $A, B \in \mathbb{R}^{n \times n}$ be two symmetric positive definite matrices. If $A-B$ is positive definite, is $B^{-1}-A^{-1}$ necessarily positive definite? If yes, give a proof; if no, give a counterexample.
4. $\left(10+15\right.$ points) Let D_{n} be the dihedral group of symmetries of a regular n-gon, let C_{n} be the cyclic group of order n, and let S_{n} be the symmetric group on n letters.
(a) Explain why we have the group isomorphism $D_{6} \cong D_{3} \times C_{2}$.
(b) Write down the character table of D_{6}.
5. (25 points) Let G be a finite group, let V be a finite-dimensional complex representation of G, and let $\chi: G \rightarrow \mathbb{C}$ be the character of V. Let $g \in G$ be a group element such that g is conjugate to g^{-1}. Prove that $\chi(g)$ is a real number.
6. ($15+10$ points) For a partition $\lambda \vdash n$, let S^{λ} be the corresponding irreducible S_{n}-module. Let $H=S_{3} \times S_{3} \times S_{1}$, so that H is a subgroup of S_{7}. Let V be the induced representation

$$
V=\left(S^{(3)} \otimes S^{(1,1,1)} \otimes S^{(1)}\right) \uparrow_{H}^{S_{7}}
$$

(a) Find the decomposition of V into irreducible S_{7}-modules.
(b) What is the dimension of the endomorphism ring $\operatorname{End}_{S_{7}}(V)$?
7. ($10+15$ points) Let k be a field and let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Fix a monomial order $<$ and let $G=\left\{g_{1}, \ldots, g_{s}\right\}$ be a Gröbner basis for I with respect to $<$.
(a) Explain why the collection of cosets

$$
\left\{m+I: m \text { a monomial in } x_{1}, \ldots, x_{n} \text { and } \mathrm{LM}\left(g_{i}\right) \nmid m \text { for } 1 \leq i \leq s\right\}
$$

is linearly independent in the quotient $k\left[x_{1}, \ldots, x_{n}\right] / I$.
(b) Is the conclusion of (a) still true if G is a basis for I which is not necessarily Gröbner? Prove or give a counterexample.
8. $\left(15+10\right.$ points) (a) Let $I \subseteq \mathbb{C}[x, y]$ be an ideal such that $\mathbf{V}(I)=\{(0,0),(1,1)\} \subset \mathbb{C}^{2}$. Prove that the quotient ring $\mathbb{C}[x, y] / I$ is a finite-dimensional \mathbb{C}-vector space.
(b) Is the conclusion to (a) still true if we replace \mathbb{C} by \mathbb{R} ? Justify your answer.

