\qquad S.I.D.: \qquad

Qualifier Exam in Applied Algebra

May 24, 2018

	Full	Real
$\# 1$	25	
$\# 2$	25	
$\# 3$	25	
$\# 4$	25	
$\# 5$	25	
$\# 6$	25	
$\# 7$	25	
$\# 8$	25	
Total	200	

Notes: 1) For computational questions, no credit will be given for unsupported answers gotten directly from a calculator. 2) For proof question, no credit will be given for no reasons or wrong reasons.

1. (25 points) Let $A, B \in \mathbb{C}^{8 \times 8}$ be two matrices such that
$\operatorname{rank} A=\operatorname{rank} B=6, \quad \operatorname{rank} A^{2}=\operatorname{rank} B^{2}=4, \quad \operatorname{rank} A^{3}=\operatorname{rank} B^{3}=2, \quad \operatorname{rank} A^{4}=\operatorname{rank} B^{4}=0$.
Determine whether A and B are similar to each other or not. If yes, explain why; if no, give a counterexample.
2. (25 points) Let $A \in \mathbb{C}^{n \times n}$ be a matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ and singular values $\sigma_{1} \geq \cdots \geq$ $\sigma_{n} \geq 0$. Show that

$$
\left|\lambda_{1}\right|^{2}+\cdots+\left|\lambda_{n}\right|^{2} \leq \sigma_{1}^{2}+\cdots+\sigma_{n}^{2}
$$

If the above is an equality, is the matrix A normal (i.e., $A A^{*}=A^{*} A$)? If yes, explain why; if no, give a counterexample.
3. (25 points) Let $P \in \mathbb{C}^{n \times n}$ be a positive definite Hermitian matrix. Show that

$$
\left|x^{*} y\right|^{2} \leq\left(x^{*} P x\right)\left(y^{*} P^{-1} y\right)
$$

for all $x, y \in \mathbb{C}^{n}$.
4. $\left(5+20\right.$ points) Let X be the set of the 20 diagonals in a regular octogon. The dihedral group D_{8} of octogon symmetries acts on X; let $V=\mathbb{C}[X]$ be the associated permutation representation of D_{8}.
(a) How many orbits are there in the action of D_{8} on X ?
(b) The Reynolds operator $R_{D_{8}}: V \rightarrow V$ is given by

$$
R_{D_{8}}(v)=\frac{1}{|G|} \sum_{g \in D_{8}} g \cdot v .
$$

What is the rank of $R_{D_{8}}$?
5. (25 points) Let A_{4} be the index two subgroup of S_{4} consisting of even permutations. Find the character table of A_{4}.
6. ($15+5+5$ points) For a partition $\lambda \vdash n$, let S^{λ} be the corresponding irreducible representation of the symmetric group S_{n} over \mathbb{C}.
(a) Calculate the decomposition of the induced module

$$
V=\left(S^{(1,1)} \otimes S^{(2)} \otimes S^{(1)}\right) \uparrow_{S_{2} \times S_{2} \times S_{1}}^{S_{5}}
$$

into irreducible S_{5}-modules.
(b) What is the dimension of the endomorphism ring $\operatorname{End}_{S_{5}}(V)$ as a \mathbb{C}-vector space?
(c) What is the dimension of the center of the endomorphism ring End ${ }_{S_{5}}(V)$ as a \mathbb{C}-vector space?
7. ($10+15$ points) Let k be a field and let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Fix a monomial order $<$ and let $G=\left\{g_{1}, \ldots, g_{s}\right\}$ be a Gröbner basis for I with respect to $<$.
(a) Explain why the set of cosets

$$
\left\{m+I: m \text { a monomial in } x_{1}, \ldots, x_{n} \text { and } \operatorname{LM}\left(g_{i}\right) \nmid m \text { for } 1 \leq i \leq s\right\}
$$ is linearly independent in the quotient $k\left[x_{1}, \ldots, x_{n}\right] / I$.

(b) Is the conclusion of (a) still true of G is a basis for I which is not necessarily Gröbner? Prove or give a counterexample.
8. $(15+10$ points $)$ Let $G \subseteq G L_{2}(\mathbb{R})$ be the order 4 matrix group generated by

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

(a) What is the Hilbert series of the invariant ring $\mathbb{R}[x, y]^{G}$?
(b) Do there exist algebraically independent homogeneous polynomials $f_{1}, f_{2} \in \mathbb{R}[x, y]^{G}$ such that $\mathbb{R}[x, y]^{G}=\mathbb{R}\left[f_{1}, f_{2}\right] ?$ Why or why not?

