\qquad S.I.D.: \qquad

Qualifier Exam in Applied Algebra

May 13, 2019

	Full	Real
$\# 1$	10	
$\# 2$	10	
$\# 3$	10	
$\# 4$	10	
$\# 5$	10	
$\# 6$	10	
$\# 7$	10	
$\# 8$	10	
$\# 9$	10	
$\# 10$	10	
Total	100	

Notes: 1) For computational questions, no credit will be given for unsupported answers gotten directly from a calculator. 2) For proof question, no credit will be given for no reasons or wrong reasons.
4.
5. (10 points) Let $G=G L_{2}(\mathbb{R})$ be the group of invertible 2×2 real matrices and let $X, Y: G \rightarrow G L_{d}(\mathbb{C})$ be two complex matrix representations of G with the same degree d. If X and Y have the same character, are X and Y necessarily isomorphic? Justify your answer.
6. ($5+5$ points) Let $D_{4}=\left\langle r, s \mid r^{4}=s^{2}=1, s r s=r^{-1}\right\rangle$ be the dihedral group of symmetries of the square.
(a) Write down the character table of D_{4}.
(b) Let V be the 2-dimensional 'defining' D_{4}-module obtained by centering the square at the origin in the plane and extending symmetries of the square to linear transformations of the plane. Give the tensor product $V \otimes V$ the structure of a D_{4}-module by setting

$$
g \cdot\left(v \otimes v^{\prime}\right):=(g \cdot v) \otimes\left(g \cdot v^{\prime}\right)
$$

for all $g \in D_{4}$ and $v, v^{\prime} \in V$. Calculate the decomposition of $V \otimes V$ into irreducible D_{4}-modules.
7. ($5+5$ points) Let G be a finite group and let $X: G \rightarrow G L_{d}(\mathbb{R})$ be an irreducible matrix representation of G over the field of real numbers. Let $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be an endomorphism of X.
(a) Give an example to show that T is not necessarily a scalar transformation.
(b) Suppose that T is not a scalar transformation. Consider the representation $X^{\prime}: G \rightarrow G L_{d}(\mathbb{C})$ given by viewing real matrices as complex matrices:

$$
X^{\prime}(g):=X(g) \quad \text { for all } g \in G
$$

Is it possible for X^{\prime} to be irreducible (as a complex matrix representation)? Justify your answer.
8. ($5+5$ points) Let S_{n} be the symmetric group on n letters.
(a) Calculate the character table of the product group $S_{3} \times S_{2}$.
(b) Let $\lambda=(3,2) \vdash 5$ and let S^{λ} be the associated irreducible representation of S_{5}. Calculate the decomposition of the restricted module $S^{\lambda} \downarrow_{S_{3} \times S_{2}}^{S_{5}}$ into irreducibles.
9. (10 points) Let \mathbb{A} be a finite-dimensional algebra over \mathbb{C} with center $\mathcal{Z}(\mathbb{A})$, and let (V, ρ) be an irreducible representation of \mathbb{A}. Show that $\rho(z)=\chi(z) I_{V}$ for each $z \in \mathcal{Z}(\mathbb{A})$, where $\chi(z)$ is a scalar. Show that the map $\chi: \mathcal{Z}(\mathbb{A}) \rightarrow \mathbb{C}$ defined by $z \mapsto \chi(z)$ is an algebra homomorphism.
10. (10 points) Let \mathbb{A} be a finite-dimensional algebra over \mathbb{C} and let (V, ρ) be a finite-dimensional representation of \mathbb{A}. Show that the isotypic decomposition of (V, ρ) is multiplicity free if and only if $\operatorname{End}_{\mathbb{A}} V$ is commutative.

