\qquad S.I.D.: \qquad

Qualifier Exam in Applied Algebra

September 5, 2017

	Full	Real
$\# 1$	25	
$\# 2$	25	
$\# 3$	25	
$\# 4$	25	
$\# 5$	25	
$\# 6$	25	
$\# 7$	25	
$\# 8$	25	
Total	200	

Notes: 1) For computational questions, no credit will be given for unsupported answers gotten directly from a calculator. 2) For proof question, no credit will be given for no reasons or wrong reasons.

1. (25 points) Let $A \in \mathbb{R}^{n \times n}$ be a matrix such that rank $A^{2} \leq \operatorname{rank} A^{3}$. Show that

$$
\operatorname{rank} A^{k} \leq \operatorname{rank} A^{k+1}
$$

for all integers $k \geq 3$.
2. (25 points) Let $A \in \mathbb{C}^{n \times n}$ be a matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$. If

$$
\|A\|_{F}^{2} \leq\left|\lambda_{1}\right|^{2}+\cdots+\left|\lambda_{n}\right|^{2}
$$

show that A is normal, i.e., $A A^{*}=A^{*} A$.
3. (25 points) Let $A, B \in \mathbb{R}^{n \times n}$ be two real symmetric positive definite matrices. If $A-B$ is positive definite, is $B^{-1}-A^{-1}$ also positive definite? If yes, give a proof; if not, give a counterexample.
4. $\left(5+20\right.$ points) Let G be a finite group and let $X: G \rightarrow G L_{3}(\mathbb{C})$ be an irreducible 3-dimensional complex matrix representation of G. Let A be the matrix

$$
A=\left(\begin{array}{ccc}
1 & -12 & 4 \\
0 & 5 & 3 \\
-2 & 1 & 3
\end{array}\right)
$$

and let $B=\frac{1}{|G|} \sum_{g \in G} X(g) A X(g)^{-1}$.
(a) Determine the trace of the matrix B.
(b) Determine the matrix B.
5. (25 points) Let $D_{6}=\left\langle r, s \mid r^{6}=s^{2}=1, s r s=r^{-1}\right\rangle$ be the dihedral group of symmetries of a regular pentagon. Calculate the character table of D_{6}.
6. ($8+8+9$ points) For a partition $\lambda \vdash n$, let S^{λ} be the corresponding irreducible representation of the symmetric group S_{n} over \mathbb{C}.
(a) Calculate the decomposition of the induced module

$$
V=\left(S^{(2)} \otimes S^{(2)} \otimes S^{(1)}\right) \uparrow_{S_{2} \times S_{2} \times S_{1}}^{S_{5}}
$$

into irreducible S_{5}-modules.
(b) What is the dimension over \mathbb{C} of the endomorphism algebra $\operatorname{End}_{S_{5}}(V)$?
(c) For any permutation $\sigma \in S_{5}$, let $\operatorname{sign}(\sigma)$ be the sign of σ. Define a linear operator $\varphi: V \rightarrow V$ by

$$
\varphi(v)=\frac{1}{5!} \sum_{\sigma \in S_{5}} \operatorname{sign}(\sigma) v
$$

What is the rank of the operator φ ?
7. $(15+10$ points) Let $I \subseteq \mathbb{C}[x, y]$ be an ideal with vanishing locus

$$
\mathbf{V}(I)=\{(2,3)\} \subset \mathbb{C}^{2}
$$

(a) Prove that the quotient $\mathbb{C}[x, y] / I$ is finite-dimensional as a \mathbb{C}-vector space.
(b) Is the result of the last part still true if we replace \mathbb{C} by \mathbb{R} ?
8. (25 points) Prove or give a counterexample: Let G and H be two subgroups of the matrix group $G L_{2}(\mathbb{C})$ which satisfy $G \cong H$ (group isomorphism). Then the invariant rings $\mathbb{C}[x, y]^{G}$ and $\mathbb{C}[x, y]^{H}$ have the same Hilbert series.

