Algebra/Applied Algebra Qualifying Exam Part 1 September 10, 2004

- (15) 1. State and prove the Cayley-Hamilton Theorem. (You may use the Schur Decomposition Theorem.)
- (10) 2. (a) Show that $a_1, \dots, a_n \in \mathbb{R}^m$ are linearly independent over \mathbb{C} iff they are linearly independent over \mathbb{R} .
 - (b) Show that if $A \in M_n(\mathbb{R})$, then an eigenvalue λ of A is real iff it has a real corresponding eigenvector.
- (15) 3. Let \hat{x} be a least squares solution to Ax = b, where $A \in M_{m,n}$ and $m \ge n$. Let A^{\dagger} be the pseudo-inverse of A. Use the Singular Value Decomposition to show that $\tilde{x} = A^{\dagger}b$ is the min 2- norm least squares solution to Ax = b, i.e., show
 - (a) \tilde{x} is a least squares solution,
 - (b) if \hat{x} is a least square solution then $\|\hat{x}\|_2 \ge \|\tilde{x}\|_2$, and
 - (c) \tilde{x} is unique.

Notation: $M_{m,n} \equiv \text{set of } m \times n \text{ complex matrices.}$

 $M_n \equiv \text{set of } n \times n \text{ complex matrices.}$

 $M_n(\mathbb{R}) \equiv \text{set of } n \times n \text{ real matrices.}$

Applied Algebra Qualifying Exam: Part III Fall 2004. September 10, 2004

as many problems as you can, but you must attempt at least 1 problem from problems 1-3, one problem from 4-7 and at least two problems from 7-9. The point values are relative values for this part of the exam. Your final score will be scaled so that this part of the exam will represent 60% of your point total.

Let $N = \{0, 1, 2, ...\}, Z = \{0, \pm 1, \pm 2, ...\}, Q$ equal the rationals and C denote the complex numbers.

If $\lambda = (\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_k)$ is a partition of n, let A^{λ} denote the irreducible representation of the symmetric group S_n such that the Frobenius image of $\chi^{A^{\lambda}} = \chi^{\lambda}$ is the Schur function $S_{\lambda}(x_1, \ldots, x_N)$ where N > n.

1) (20 pts.) (a) Prove that if G is finite group and $\lambda(x)$ is a linear character of G, then for any irreducible character χ of G, the function χ^* defined by $\chi^*(\sigma) = \lambda(\sigma)\chi(\sigma)$ for all $\sigma \in G$ is also an irreducible character of G.

(b) Let $A : G \to GL_n(\mathbb{C})$ and $B : G \to GL_n(\mathbb{C})$ be two representations of a finite group G. Show that if for all $\sigma \in G$, there exists a matrix $P(\sigma)$ such that

$$(P(\sigma))^{-1}A(\sigma)P(\sigma) = B(\sigma),$$

then there exist a nonsingular matrix T such that for all σ ,

$$T^{-1}A(\sigma)T = B(\sigma).$$

(40 pts.) Let $G = \{g_1, \ldots, g_k\}$ be a finite group. Introduce variables x_{g_1}, \ldots, x_{g_k} and consider the $k \times k$ matrix

$$X = [x_{g_i g_i^{-1}}].$$

Let $X = \sum_{i=1}^{k} A(g_i) x_{g_i}$ so that we can define a map $g_i \to A(g_i)$.

(a) Show that A is the left regular representation of G.

(b) Show that

$$det(X) = \prod_{\nu=1}^{h} det(\sum_{g \in G} A^{(\nu)}(g) x_g)^{n_{\nu}}$$

where $A^{(1)}, \ldots, A^{(h)}$ are a complete set of representatives of the irreducible representations of G and $n_{\nu} = dim(A^{(\nu)})$ for $\nu = 1, \ldots, h$.

c) Use part (b) to show that

$$det \begin{bmatrix} x_0 & x_1 & x_2 & \dots & x_{n-1} \\ x_{n-1} & x_0 & x_1 & \dots & x_{n-2} \\ x_{n-2} & x_{n-1} & x_0 & \dots & x_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & x_3 & \dots & x_0 \end{bmatrix} = \prod_{\tau=0}^{n-1} (x_0 + \epsilon^{\tau} x_1 + \epsilon^{2\tau} x_2 + \dots + \epsilon^{(n-1)\tau} x_{n-1})$$

where $\epsilon = e^{2\pi i/n}$.

(3) (20 pts.) Given a partition λ of n, let $l(\lambda)$ denote the number of parts of λ and λ' denote its conjugate partition. Let χ^{λ}_{μ} denote the value of the character of the irreducible representation A^{λ} of S_n at the conjugacy class indexed by the partition μ . Show that $\chi^{\lambda'}_{\mu} = (-1)^{n-l(\mu)} \chi^{\lambda}_{\mu}$.