Aigebra/Applied Aigebra Qualifying Exam
 Part 1

September 10, 2004
(15) 1. State and prove the Cayley-Hamilton Theorem. You may use the Schur Decomposition Theorem.)
(10) 2. (a) Show that $a_{1}, \cdots, a_{n} \in \mathbb{R}^{m}$ are linearly independent over \mathbb{C} iff they are linearly independent over \mathbb{R}.
(b) Show that if $A \in M_{n}(\mathbb{R})$, then an sigenvalue λ of A is real iff it has a real corresponding eigenvector.
(15) 3. Let \hat{x} be a least squares solution to $A x=b$, where $A \in M_{m, n}$ and $m \geq n$. Let A^{\dagger} be the pseudo-inverse of A. Use the Singular Value Decomposition to show that $\tilde{x}=A^{\dagger} b$ is the min 2 - norm least squares solution to $A x=b$, i.e., show
(a) \tilde{x} is a least squares solution,
(b) if \hat{x} is a least square solution then $\|\hat{x}\|_{2} \geq\|\tilde{x}\|_{2}$, and
(c) \tilde{x} is unique.

Notation: $M_{m, n} \equiv$ set of $m \times n$ complex matrices.
$M_{n} \equiv$ set of $n \times n$ complex matrices.
$M_{n}(\mathbb{R}) \equiv$ set of $n \times n$ real matrices.
as many problems as you can, but y $0: 1$ must at empt ar least 1 problem from probiems 1-3, one probiem from $4-7$ and at least two problems from $7-9$. The point valuss are relative values for this part of the exam. Your final score will be scaled so that this part of the exam re:ll represent 60% of your point total.

Let $N=\{0,1,2, \ldots\}, Z=\{0, \pm 1, \pm 2, \ldots\}$, \mathbb{Q} equal the rationa!s and C denote the complex rumbers.
If $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}\right)$ is a partition of r, let A^{λ} denote the irreducible representation of the symmetric group S_{n} such that the Frobenius image of $\chi^{\boldsymbol{H}^{\lambda}}=\chi^{\lambda}$ is the Schur function $S_{\lambda}\left(x_{1}, \ldots, x_{N}\right)$ where $N>n$.

1) (20 pts.) (a) Prove that if G is finite group and $\lambda(x)$ is a linear character of G, then for any irreducible character χ of G, the function χ^{*} defined by $\chi^{*}(\sigma)=\lambda(\sigma) \chi(\sigma)$ for all $\sigma \in G$ is also an irreducible character of G.
(b) Let $A: G \rightarrow G L_{n}(\mathbf{C})$ and $B: G \rightarrow G L_{n}(C)$ be two representations of a finite group G. Show that if for all $\sigma \in G$, there exists a matrix $P(\sigma)$ such that

$$
(P(\sigma))^{-1} A(\sigma) P(\sigma)=B(\sigma)
$$

then there exist a nonsingular matrix T such that for all σ,

$$
T^{-1} A(\sigma) T=B(\sigma)
$$

(4) 40 pts.) Let $G=\left\{g_{1}, \ldots, g_{k}\right\}$ be a finite group. Introduce variables $x_{g_{1}}, \ldots, x_{g_{k}}$ and consider the $k \times k$

$$
x=\left[x_{9 i g_{2}^{-1}}\right] .
$$

Let $X=\sum_{i=1}^{k} A\left(g_{i}\right) x_{g_{i}}$ so that we can define a map $g_{i} \rightarrow A\left(g_{i}\right)$.
(a) Show that A is the left regular representation of G.
(b) Show that

$$
\operatorname{det}(X)=\prod_{\nu=1}^{h} \operatorname{det}\left(\sum_{g \in \mathcal{G}} A^{(\nu)}(g) x_{g}\right)^{n_{\nu}}
$$

where $A^{(1)}, \ldots, A^{(h)}$ are a complete set of representatives of the irreducible representations of G and $n_{\nu}=$ $\operatorname{dim}\left(A^{(\nu)}\right)$ for $\nu=1, \ldots, h$.
c) Use part (b) to show that

$$
\operatorname{det}\left[\begin{array}{ccccc}
x_{0} & x_{1} & x_{2} & \ldots & x_{n-1} \\
x_{n-1} & x_{0} & x_{1} & \ldots & x_{n-2} \\
x_{n-2} & x_{n-1} & x_{0} & \ldots & x_{n-3} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{1} & x_{2} & x_{3} & \ldots & x_{0}
\end{array}\right]=\prod_{r=0}^{n-1}\left(x_{0}+\epsilon^{\top} x_{1}+\epsilon^{2 r} x_{2}+\ldots \epsilon^{(n-1) r} x_{n-1}\right)
$$

where $\epsilon=e^{2 \pi i / n}$.
3) (20 pts.) Given a partition λ of n, let $l(\lambda)$ denote the number of parts of λ and λ^{\prime} denote its conjugate partition. Let χ_{μ}^{λ} denote the value of the character of the irreducible representation A^{λ} of S_{n} at the conjugacy class indexed by the partition μ. Show that $\chi_{\mu}^{\lambda^{\prime}}=(-1)^{n-l(\mu)} \chi_{\mu}^{\lambda}$.

